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OPTIMUM DESIGN OF BELT-CONVEYOR BRIDGES

Dr Karoly JARMAI, associate professor, PhD, University of Miskolc, Hungary

We've dealt with the optimum design of belt-conveyor bridges for a long time.
We've collected the state of the art computational technics for the analysis of these
kind of structures. In the education, the subjects Steel structures and Welded
structures contain practical work for students to design a belt-conveyor bridge [1].

There are two main problems raised here, 1., is to determine the forces and
deformations at every members and nodes, 2., is to make a size or a topology
optimization.

THE FINITE ELEMENT PROGRAM PART

To compute the forces and displacements of a plane or a space truss, the most
convenient way to use finite elements. We've built a finite element subprogram
based on the matrix displacement method. The present method is usable only for
pi'n-jointed trusses, loaded at their joints. The element of these trusses are called
rods and they possess only axial stiffness. The structures can be statically
determined or statically indeterminate and they can composed of members with
different cross-section and elastic moduli. The Choleski's method is used for the
decomposition, which was found to be favourable for solution by computer.

Data containing the coordinates of the nodes, bar-ends numbering, cross
sectional areas, forces at nodes (it is possible to give uniformly or linearly distributed
loads), suppressed displacements as usual at every FEM code. The Young module
can be different for every bar. Data are saved in a file. So the FEM part is general in
the sense, that any plane or space truss problem can be solved running it.

THE OPTIMIZATION PROCEDURE

There are several optimization techniques available for nonlinear optimization.
We've used two different direct search techniques, the Complex method of Box and
the Hillclimb method of Rosenbrock. Both techniques solve the following single
objective optimization problem

the objective function y =f(x4, x2,..., Xx3) to be minimized (1)
the unknown variables X1, X2,..., Xp
the nonlinear-constraints xbj < % < xY; i=1,2,..,m
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where xLj and xU; are the lower and upper limits for the constraints.

The Complex method starts generating a so called Complex from the upper and
lower limits.

xjj=xLj + 1 (xYi - xLj),  where random numbers are 0 < rj< 1 (2)

The geometrical movements at the sets of points.resulted by transferring the
worst point (where the function value is the largest) to a new one through the
centroid of the sets. No derivatives are required. These movements are reflection
and halving to the centroid. In details the procedure can be found in [2] with some
extension such as finding discrete results. The procedure—is - stopped by a
convergence criterion, where difference between the largest and smallest function
values in the sets of points should be less than a given value.

The Hillclimb procedure the method of rotating coordinates can be considered
as a further development of Hooke and Jeeves method. At this procedure the
coordinate system is rotated in each stage of minimization in such a manner that the
first axis is oriented towards the locally estimated direction of the 'valley' and all the
other axes are made mutually orthogonal and normal to the first one. No derivatives
are required. A screen for runing the method can be seen in Fig.2. Boundary zones
are established to brake the quick procedure near the boundaries by modifying the
objective function

fnew = old _ (fold_f*) (31 -412 + )3 ), (3)
- where A = distance into boundary zone / width of boundary zone

If there is a function improvement in a direction, than the program increases the
step length, otherwise decreases that one. The convergence criteria, which stops the
procedure contains the difference of two objective function values in two succession
steps, which should be less than a given value. In details the procedure can be
found in [3].

Both optimization techniques are general in the sence that they can solve the
problems formed in (1).

ANALYSIS OF BELT-CONVEYOR BRIDGE STRUCTURE

This kind of bridge can be compute as a plane or a space truss structure
(Fig.1.).

The plane structure contains three different members, the chord, the diagonal
and the column. These are rectangular thin-walled members. The uniformly
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distributed loads are reduced to the nodes as concentrated forces. The constraints
are as follows
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1.. - 6., size constraints

1. 1=bg width of the chord

2., x[2] =tg thickness of the chord
3., X[3] = b width of the diagonal

4., x[4] =t4 thickness of the diagonal
5 ]=bo width of the column

6 =1 thickness of the column

7., - 15.. geometric constraints

ratio of width of different members

7., x[7] = b4/bg

8., x[8] = ba/bg

9., x[9] = b4/bs

limit slendernesses at different members
10., x[10] = bp/tg

1., x[11] = bq/tq

12., x[12] = bolty

angle between column and diagonal

13., x[13] =sin © .

.-overlapping
’)* {
14., x[14] = P_gs_28%bo o, b2"sin®
q 2*Db, 2*b

eccentficity
15., x[15] = 0.45%bg

16., - 18., stress constraints

16., x[16] = Ag = 3.72+bgt

17., and 18., contain A4 and Ao instead of A

19.. - 20., global buckling of members

. limits
0.5.<x[7]1< 1.0
0.5 <x[8]<1.0
1.0 <x[9] < 2.0

15 < x[10] < 40
15..< x[11] € 35
15 < x[12] < 32

0 <x[13] < 1.0

0.5 < x[14] < 0.8

-0.55%b( < x[15] < 0.25*bg

c

Ag 2

y Cadm= 160 [MPa]

Gadm
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N < K*Npl

where N is the compression force,
x is. the reduction factor,
Np| = A* Ry is the plastic force,
Ry is the yield stress.

N 2}3(‘” Jut —4A0), }\y:1+a(k—0_2)+7€
pl

o =0.206 according to Eurocode 3.
for the compression force at the chord

19., x[19] =N X[19] 2 1.5 Fehorg
for the compression force at the column
20., x[20] =N x[20] 2 1.5 Feolumn

21., - 22. constraints on fétiaue of weldments

fatigue of weldment at column - chord connection

21., x[21] = Feolumn/(4*aw2+b2) x[21] 2 -160 [MPa]
where effective weldment size is a2 = {9.

fatigue of weldment at diagonal - chord connection

22., x[22] = JG‘ +2(T° +To°) x[22] £ 180 [MPa]
_ Faisg cosBsin6
where T — aw1 =t
P~ 2awibi wi 1
0o=To= Fuaiag Sin> 0

27/2awibi(1+ sin 0)

punching shear of diagonals, the critical force at the chords Ny

23., X[23] = NCr = Ry*t1 (2h1-4t1+be+beu) X[23] > 1.5 Fd[ag
10 to 10 @1
Where( be = E'{]—bl beU = Et—z‘bl

to t

r-—-A-
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OPTIMIZATION

We've made a size optimization, where the number of unknowns are 6. The 23
nonlinear constraints are described in the previous chapter.
The objective function is the volume of the structures.

V=3 Ai-Li

where Aj and L; are the cross section areas and length of the members

The optimization is made by connected the finite element program to the
optimization one. Both the Complex and the Hillclimb methods were used. The
discrete member sizes came from DIN standard [5].

The programs are written in Borland C language and run on 486 PC.

The span length is 25 m, the truss height is 2.2 m, the nodal loads are 12.5 KN.
The results can be seen in Flg 3. by the Complex method. Fig. 4.,5. show the
survey of fulfilling the constraints. Fig. 6. shows a node after optlmlzatton.
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