Foundations of civil and environmental engineering

2006

To Professor Andrzej GARSTECKI
on His 70th birthday
and a long professional work with us
and for us

Publishing House
of Poznań University
of Technology
Foundations of Civil and Environmental Engineering

I N F O R M A T I O N

Foundations of Civil and Environmental Engineering is a national scientific journal published by Poznan University of Technology.

The papers are printed in English. The scope of subject matter involves the following areas: theory of structural engineering, building processes, theory of organisation and management in civil engineering, geotechnical engineering and environmental engineering.

The FCCEE journal is published periodically, in two semi-annual editions. The details concerning the form of the manuscripts are available in the instruction set at the URL address: www.ikb.put.poznan.pl/fcee.

Scientific Committee:
Tadeusz Burczyński - Silesia University of Technology,
Marcin Grczniański - Silesia University of Technology,
Guy Guerelment - Faculté Polytechnique de Mons,
Jan A. Oleśkiewicz - University of Manitoba,
Peter Wriggers - Universität Hannover,
Edmundas K. Zavadskas - Vilniaus Gedimino Technikos Universitetas.

Editorial Staff:
Jerzy Rakowski - Editor-in-Chief,
Czesław Oleśkowicz-Popiel,
Wojciech Grabowski,
Wojciech Sumelka - Secretary.

Address of the editorial office:
FCCEE
Institute of Structural Engineering
Poznan University of Technology
Piotrowo 5
60-965 Poznań
e-mail: fccee@put.poznan.pl

Cover design
Piskorski Studio 37

ISSN 1642-9303

Edition based on ready-to-print materials submitted by authors
©Copyright by POZNAŃ UNIVERSITY OF TECHNOLOGY, Poznań, Poland, 2006
PUBLISHING HOUSE OF POZNAŃ UNIVERSITY OF TECHNOLOGY
60-965 Poznań, pl. M. Skłodowskiej-Curie 2
tel. +48 61 6653516, fax +48 61 6653583
e-mail: office_ed@put.poznan.pl
www.ed.put.poznan.pl

Edition 1
Binding and duplication in perfektpress
ul. Świerzewska 1, 60-321 Poznań
tel. +48 61 8611187-83
Andrzej AJDUKIEWICZ
On durability aspects of concrete members formed against permeable formwork
7-16

Carlo CINQUINI,
Matteo BRUGGI
On the use of mixed finite elements in topology optimization
17-33

Sélim DATOUSSAID,
Guy GUERELMENT,
Thierry DESCAMPS
Applications of evolutionary strategies to optimal design of mechanical systems
35-51

Krzysztof DEMS,
Jacek WIŚNIEWSKI
Design of fibre layout in multilayer composite using hybrid algorithms
53-77

Wojciech DORNOWSKI,
Piotr PERZYNA
Numerical investigation of localized fracture phenomena in inelastic solids
79-116

Józef FARKAS,
Károly JÁRMÁI
Distortions and decrease of load-carrying capacity of welded structures due to residual welding stresses
117-126

Adam GLEMA
Physical and numerical aspects of dispersion phenomenon in solids under impact loading
127-146

Jan GRATBACKI,
Iwona JURCZAK-BROZSKO
On geometry of porous medium
147-156

Russell A. GREEN,
Radosław L. MICHALOWSKI
Shear band formation behind a retaining structures subjected to seismic excitation
157-169

Michał GUMIŃSKI,
Ryszard SYGULSKI
Initial stability of Kirchhoff plates by the boundary element method using a modified formulation of a boundary condition
171-186

Tomasz JANKOWIAK,
Janusz KLEPAČZKO,
Tomasz ŁODYGOWSKI
Numerical modeling of wave propagation and interaction in bars
187-199

Daniel LAMBLIN,
Laurent VAN PARYS,
Thierry DESCAMPS
A simplified numerical approach of arches affected by horizontal spring displacements
201-213

Tomasz LEWIŃSKI
On the fundamental problem of optimum design of anisotropic plates
215-227

Zenon MRÓZ,
Dariusz BOJČUK
Topological sensitivity derivative: application in optimal design and material science
229-250

Udo NACKENHORST
Computational methods for studies on the biomechanics of bones
251-271

Pauli PEDERSEN,
Niels L. PEDERSEN
On modeling and optimal design of beam-bridge structures
273-291

Anna STANKIEWICZ,
Jerzy PAMIN
Gradient-enhanced Cam-clay model in simulation of strain localization in soil
293-318
Erwin STEIN, Franz Otto KOPP, Karin WIECHMANN, Gerhard WEBER
Czesław SZYMczak
Calculated New research results and functional models regarding Leibniz four function calculating machine and binary calculating machine 319-332

Czesław SZYMczAK
The effect of nonlinear restraint on torsional buckling and post-buckling behaviour of a thin-walled column 333-342

Zenon WASZCZYSZYN, Marek SŁOŃSKI
Bayesian neural networks for prediction of response spectra 343-361

Marcin WIERSZYCKI, Witold KĄKOL, Tomasz ŁODYGOWSKI
Fatigue algorithm for dental implant 363-380

Janusz WOJTKOWIAK, Czesław OLEŚKOWICZ-POPIEL
Investigations of butterfly control valve flow characteristics 381-395

Peter WRIGGERS, Kishor CHAVAN
Beam and shell elements for thin-walled aluminium structures 397-412

Krzysztof ZIOPAJA, Zbigniew POZORSKI
Damage detection and estimation using wavelet transform 413-421
DEFORMATIONS AND DECREASE OF LOAD-CARRYING CAPACITY OF WELDED STRUCTURES DUE TO RESIDUAL WELDING STRESSES

Received: 21 June 2006
Accepted: 11 September 2006

Residual deflection due to restrained shrinkage of longitudinal welds is calculated in the case of an asymmetric I-section crane runway girder. The residual welding compression stresses decrease the load-carrying capacity of a welded I-section compression strut in a significant measure. The effective width of a welded stiffened plate should be calculated considering residual welding stresses. The fatigue strength of welded joints is influenced by residual welding stresses significantly. These effects are illustrated by numerical examples.

Keywords: welded structures, residual welding stresses, distortions, stability, fatigue

1. INTRODUCTION

Modern metal structures are characterized by welding of plated components. The best way to decrease their mass and cost is the decrease of plate thicknesses. This trend results in thin-walled structures. Then the designer faces the following special problems:

(a) high residual welding stresses and distortions occur due to restrained shrinkage of welds,
(b) the load-carrying capacity is influenced by instability phenomena such as overall and local buckling.

* Corresponding author. Tel.: +36-46-565111; fax: +36-46-367828.
E-mail address: altf@uni-miskolc.hu (J. Farkas)

© Publishing House of Poznań University of Technology, Poznań 2006
ISSN 1642-9303
(c) open-section rods are sensitive to torsion,
(d) vibration and noise can be high,
(e) stiffening should be used against buckling and vibration, which increases the cost (Farkas & Jármai 2003),
(f) high stress concentrations initiate fatigue cracks and failure.

To avoid these disadvantages the effect of residual welding stresses and distortions should be taken into account. The role of these residual stresses and distortions is investigated in the present paper for some structural parts.

2. RESIDUAL DEFLECTION OF AN ASYMMETRIC WELDED CRANE RUNWAY GIRDERS

The investigated crane runway girder (Fig.1) (Lequien 1998) is constructed with the following welds: group of upper welds No.1: double bevel butt (V) weld connecting the upper flange with the web and two single bevel butt (1/2V) welds joining the rolled L-profiles to the upper flange, lower welds No.2: double fillet weld. Welds connecting the rail and transverse welds joining the vertical stiffeners are neglected.

For the calculation of residual deflection the Okerblom-method is used, which has been adopted by the authors (Okerblom et al. 1963, Farkas & Jármai 1997, 1998).

The specific heat induced by welding can be calculated as follows:
- for butt welds Q_T (J/mm) = 60.74w
- for GMAW-C (Gas Metal Arc Welding with CO2) fillet welds $Q_T = 78.8aw^2$
- for SAW (Submerged Arc Welding) fillet welds $Q_T = 59.5aw^2$,

where A_w is the cross-section area of a butt weld (mm²), a_w is the fillet weld size (mm).

The specific strain in the gravity center fiber for steel sections is expressed by

$$\varepsilon_G = 0.844 \times 10^{-3} \frac{Q_T}{A}$$ \hspace{1cm} (1)

and the curvature

$$C = 0.844 \times 10^{-3} \frac{Q_T y_T}{I_x},$$ \hspace{1cm} (2)

where A is the cross-sectional area and I_x is the moment of inertia of the girder cross-section, y_T is the weld eccentricity.
In the case of the investigated girder the following numerical data are calculated:

\[A = 32440 \text{ mm}^2, \quad I_x = 9.24266 \times 10^9 \text{ mm}^4, \]

- for the upper double bevel butt weld \(Q_T = 60.7 \times 100 = 6070 \text{ J/mm}, \)
- for two single bevel butt welds \(Q_T = 2 \times 60.7 \times 180 = 21852 \text{ J/mm}, \)
- for upper welds total \(Q_{\text{Total}} = 27922 \text{ J/mm}, \)
- for the lower double fillet weld welded simultaneously \(Q_T = 1.5 \times 59.5 \times 5^2 = 2231 \text{ J/mm} \) (using the factor of 1.5 instead of 2).

Fig. 1. Cross-section of the investigated crane runway girder

The specific strain and the curvature caused by the upper welds

\[\varepsilon_{G1} = -0.7265 \times 10^{-3}, C_1 = 1.1317 \times 10^{-6} \]
and those caused by lower welds

$$\varepsilon_{G2} = -0.05805 \times 10^{-3}, C_2 = 0.2018 \times 10^{-6}.$$

Two welding sequences are considered: upper+lower welds (1+2) or 2+1. In the case of 1+2 the effect of lower welds is calculated using a modifying factor ν expressing the prestraining effect of the upper welds

$$C_{1+2} = C_1 + \nu_{12} C_2$$ \hspace{1cm} (3)

$$\nu_{12} = 1 - \frac{\varepsilon_{12}}{\varepsilon_y}, \varepsilon_{12} = \varepsilon_{s1} - C_1 y_{T2}$$ \hspace{1cm} (4)

$$\varepsilon_y \simeq \frac{f_y}{E}$$ \hspace{1cm} (5)

$\varepsilon_{12} = 0.3947 \times 10^{-3}, \varepsilon_y = 235 / 2.1 \times 10^3 = 1.1190 \times 10^{-3}, \nu_{12} = 0.6473,$

$$C_{1+2} = 1.0011 \times 10^{-6}.$$

For a simply supported girder of span length $L = 10$ m the deflection is

$$f_{1+2} = \frac{C_{1+2} L^2}{8} = 12.5 \text{ mm.}$$ \hspace{1cm} (6)

Using similar formulae one obtains for the welding sequence 2+1

$$f_{2+1} = 11.2 \text{ mm.}$$

Since for crane runway girders the allowable residual deflection is $L/1000 = 10$ mm, the investigated girder does not fulfill the residual deflection requirement.

Note that $f_{2+1} < f_{1+2}$. It results from the larger prestraining effect of lower welds.

3. LOAD CARRYING CAPACITY OF A WELDED I-SECTION COMPRESSION STRUT

The decrease of the load-carrying capacity of an I-section compression strut due to initial imperfection (a_0) and compression residual welding stress (σ_n)
is shown by a numerical example. The distribution of the residual welding stresses can be seen in Figure 2.

![Diagram of a welded I-section with residual welding stresses](image)

Fig. 2. Welded I-section, compression strut and the distribution of residual welding stresses

The load-carrying capacity in the case of $a_0 \neq 0, \sigma_n = 0$ (initial imperfection only) can be calculated as

$$F = \frac{Af_y}{\gamma_{M1}},$$

(7)

where $\gamma_{M1} = 1.1$ and

$$\chi = \frac{1}{\phi + (\phi^2 - \lambda^2)^{1/2}}; \phi = 0.5(1 + \eta_h + \lambda^2)$$

(8)
\[
\overline{\lambda}_r = \frac{\lambda_r}{\lambda_E}; \lambda_r = \frac{L}{r_y}; \lambda_E = \pi \left(\frac{E}{f_y} \right)^{1/2}; r_y = \left(\frac{I_y}{A} \right)^{1/2}
\]

(9)

\[
\eta_h = \frac{a_0 A}{W_y}; a_0 = \frac{L}{1000}; A = \pi t_w + 2bt_f; W_y = \frac{b^3 t_f}{3}.
\]

(10)

The following numerical data are used: \(L = 4000 \text{ mm}, a_0 = 4 \text{ mm}, A = 5600 \text{ mm}^2, I_y = 17.7467 \times 10^6 \text{ mm}^4, r_y = 56.29 \text{ mm}, f_y = 355 \text{ MPa}, \lambda_E = 76.41; \lambda = 71.06; \lambda = 0.9300; \eta_h = 0.1388; \chi_y = 0.7276; F = 0.726 \times 5600 \times 355 / 1.1 = 1315 \text{ kN}.

The effect of residual welding stresses is taken into account calculating with (Eurocode 3. 2002a).

\[
\eta_h = 0.49(\lambda - 0.2)
\]

(11)

\eta_h = 0.3577; \chi_y = 0.5974; F = 1080 \text{ kN}, which is 22\% smaller than that without the effect of \(\sigma_g \).

Let us compare the load-carrying capacity according to the Euler method, which does not take into account the two effects calculated below \((a_0 = 0, \sigma_u = 0)\). The critical strength according to Euler

\[
\sigma_{cr} = \frac{\pi^2 E}{\overline{\lambda}^2} = 410 \text{ kN}.
\]

(12)

Since this value is larger than the yield stress, the load-carrying capacity is calculated taking \(\chi = 1 \) in Eq. (7): \(F = 1807 \text{ kN}, which is 67\% larger than 1315 \text{ kN}. Thus the use of Euler method gives unsafe values and is not recommended.

It should be noted that the unsafe design using Euler formulae is treated also in Farkas & Jármaj 1997 and in Farkas 2005.

4. EFFECTIVE WIDTH OF A STIFFENED PLATE SUBJECT TO COMPRESSION

Figure 3 shows the residual welding stress distribution in a stiffened plate. It can be seen that the residual compressive stresses act together with the compression stresses due to external load, thus, they decrease the load-carrying capacity of the stiffened plate. Therefore the effect of residual welding stresses
should be taken into account in the calculation of the compression strength of stiffened plates.

When the plate slenderness b/t is larger than the limiting slenderness (Farkas & Jármaj 1997), the load-carrying capacity should be calculated considering the effective plate width. To show the effect of residual welding stresses, first we calculate without them using the Winter formula (Winter 1947)

$$\psi_1 = b_c = \frac{2}{\lambda_p} - \frac{1}{\lambda_p^2}; \lambda_p = \frac{b}{t} \left(\frac{\sigma_{\text{max}}}{E}\right)^{1/2}$$

(13)

For the case of $\sigma_a \neq 0$ Faulkner has proposed a formula (Farkas & Jármaj 1997)

$$\psi_2 = \frac{2}{\lambda_p} - \frac{1}{\lambda_p^2} - \frac{\sigma_a}{\sigma_y} = \frac{2}{\lambda_p} - \frac{1}{\lambda_p^2} - \frac{6}{30\lambda_p - 6}.$$

(14)

This formula has been verified by experiments in the University of Cambridge (Bradfield 1979).

In the case of $\lambda_p = 2$, $\psi_1 = 0.75$, $\psi_2 = 0.6389$, the residual welding stresses cause a decrease of 17% in the effective width.

Fig. 3. Residual welding stress distribution and effective width of a stiffened plate
5. FATIGUE STRENGTH OF WELDED JOINTS

In 1960's the fatigue strength of welded joints has been determined by experiments using small specimens (Neumann 1963). Residual welding stresses did not develop in these specimens, since the shrinkage of welds has not been restrained. Later the experiments with large, real-size specimens resulted in much smaller strength due to residual stresses. Therefore, the design values should have been changed.

In thicker plates the residual stresses also occur in the thickness direction and they decrease the fatigue strength as well. Nowadays we can calculate with fatigue strengths determined statistically based on a great number of experiments.

Comparing the data given by Neumann (1963) with the newest Eurocode 3 (2002b) (EC), some significant differences can be found as follows:

(a) EC does not distinguish between fatigue strength values for steels of yield stress 235 and 355 MPa,
(b) EC calculates with fatigue stress range $\Delta \sigma = \sigma_{\text{max}} - \sigma_{\text{min}}$ and does not consider the effect of the factor $\sigma_{\text{min}} / \sigma_{\text{max}}$,
(c) in EC the fatigue stress ranges decrease for numbers of cycles larger than $N = 2 \times 10^6$ and are constant for $N > 10^6$,
(d) Neumann has given allowable fatigue stresses, EC gives limiting fatigue stress ranges and different safety factors.

Let us illustrate the difference between fatigue strengths with a numerical example of a cruciform (or Tee-) joint (Fig. 4).

![Fig. 4. A cruciform welded joint](image)

The allowable fatigue stress for root failure in partial penetration Tee-butt joint or fillet welded joint according to Neumann (1963) is 51.5 MPa and
according to EC is 36/1.25 = 28.8 MPa, which is 44% smaller. This difference is caused by residual welding stresses.

6. CONCLUSIONS

The effect of residual welding stresses on final displacements and on the load-carrying capacity is illustrated by numerical examples.

The longitudinal welding distortions in an asymmetric welded I-section crane runway girder result in the deflection, which is larger than the allowable value, thus the cross-section sizes should be changed by an optimum design procedure.

In the case of a welded I-section compression strut the realistic load-carrying capacity should be calculated according to Eurocode 3 formulae, which allow for the effect of initial imperfection and residual welding compression stresses. The Euler formula does not take into account these effects and results in unsafe design.

The effective width of a welded stiffened plate subject to compression can be decreased due to residual welding stresses significantly.

The new Eurocode 3 gives much smaller values for fatigue strength of welded joints than the old design rules in 1960-s, since the old values have been determined by experiments with small specimens, which do not contain residual welding stresses.

ACKNOWLEDGEMENTS

The project was supported by the Hungarian-Polish Intergovernmental S&T cooperation program No. PL-4/2005. The Hungarian partner is the National Office for Research and Technology (NKTH) and the Agency for Research Fund Management and Research Exploitation (KPI); the Polish partner is the Polish Ministry of Science and Informatics.

REFERENCES