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Multiobjective Optimal Design of Welded
- Box Beams

J. Farkas & K. Jarmai*

Department of Materials Handling and Logistics, University of Miskolc, H-3515 Miskalc, Hungary

Abstract: The cost, mass, and maximal deflection are se-
lected as objective functions. In the cost function, the mate-
rial and fabrication costs are included. The variables are
the four plate dimensions of a symmetrical welded box
beam. The design constraints relate to the bending stress
and local buckling of plate elements. The shear-stress con-
straint and size limitations are also considered. The optimal
beam dimensions are computed using several single- and
multiobjective optimization methods. The results of an illus-
trative numerical example show the effect of yield stress of
steel and that of the weighting coefficients.

1 INTRODUCTION

The multiobjective optimization gives designers aspects for
selection of the most suitable structural version. Some ap-
plications have been treated, e.g., in refs. 1, 10, and 11.
Our aim is to show the application of multiobjective optimi-
zation technique in an illustrative numerical example of a
simple welded box beam.

It has been shown?:5 that the fabrication cost affects the
optimal dimensions of welded structures. Therefore, we use
not only the mass but also the cost as an objective function,
which contains the material and fabrication costs. The de-
flection of a beam is often limited to fulfill the serviceability
requirements. For example, in Eurocode 3,2 the beam de-

 flection is limited to L/200 to L/500, where L is the span

length. Therefore, our aim is to find structurai solutions that
minimize the maximal deflection.

The design constraints on stresses and local buckling of
plate elements are formulated according to Eurocode 3.
Several single- and multiobjective optimization methods are
used to show their suitability for the solution of the defined
noplinear programming problem.

* To whom correspondence should be addressed.

2 THE OBJECTIVE FUNCTIONS

The cost function is defined by
K=K,+K;=k,pV+kZIT, (1)

where K, and K, are the material and fabrication costs,
respectively, k,, and & are the respective cost factors, p is
the material density, V is the volume of the structure, and T,
are the times corresponding to the fabrication parts.

According to the cost-calcuiation method proposed by
Pahi and Beelich!2 and modified by Farkas and Jrmai.s the
times can be calculated as follows: Time (in minutes) for
assembly and tacking is

T, =C, A VpV Vi

where A is a difficulty factor expressing the complexity of
the fabrication of various kinds of structures, and « is the
number of structural elements to be assembled and prepared
for welding. Time (in minutes) for welding is

TZ = ECZiawiLsti (3)

C, = 1.0 min/kg?s (2)

where, for manual arc welding, C; = 0.8 X 10-3 min/
mm?3, for automatic CO, welding, C, = 0.4 x 10-3
min/mm?3, a,, is the weld dimension, and L is the weld
length in millimeters,
Additional time for changing of electrodes, deslagging,
and chipping is
Ty = 2Cya, 5L, 4
where, for manual arc welding, C; = 0.24 X 10~3 min/
mm?3, and for automatic CO, welding, C; = 0.12 X 103

min/mm?2-3,
Equation (1) can be rewritten in the form

Kik, (kg) = pV + kiky (T, + T, + T3)  (5)

To give internationally acceptable results, wide ranges of
values for &, and k, are considered, that is, &,, = 0.5 ~ 1.2
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Fig. 1. Welded box beam with transverse diaphragms,

$/kg, k= 15 — 45 $/manhour = 0.25 — 0.75 $/min, so
the ratio A/k,, varies in the range of 0 to 1.5 kg/min. The
case of &, = 0 corresponds to the minimum weight design.
Prices are in U.S. dollars.

In order to stiffen the box beam apainst the torsional
deformation of the cross-sectional shape, some transversal
diaphragms should be used. As shown in Fig. [, in our
example we use seven diaphragms, so k = 11. Note that the
mass of these diaphragms is neglected. For the four longi-
tudinal fillet welds, we consider the constants C, = (1.4 X
10-3 and C; = 0.12 X 103 min/mm2-%; for manual arc-
welded transverse fillet welds connecting the diaphragms to
the box beam, we use C, = 0.8 X 103 and C; = 0.24 X
103 min/mm?2.3,

For the difficulty factor, we take A = 2, so the final
formula of the cost function as the first objective function is

5 = Kik,, (kg) = pAL + ks/k,, x

1.5
x [ VAL VI + 0.52 X 10-3 X 4L(%‘-‘)

’ t 1.5
+ 1.04 % ]0‘3><7><2(2h+b)(z“') ] (6)

Disregarding the fabrication costs, i.e., taking &, = 0, we
obtain the mass function as the second objective function:

fr = pAL 7

The third objective function to be minimized is the maximal
deflection of the beam due to the uniformly distributed nor-
mal static load p, neglecting the self mass:

_ Spol?
fi= 3IR4ET, (8)

where £ = 2.1 X 105 MPa is the modulus of etasticity for
steels, and 7, is the moment of inertia, that is,
_ k3, | 21} h+ tf)z

I ——+_+2bzf( .

=T T3 ®)

3 THE DESIGN CONSTRAINTS

The constraint on bending stress, according to Eurocode 3,
can be expressed as

— 'Yleax < f_y

max Wx ,Ymo ( ]0)

[e2

where the safety factors are y; = 1.5 and v, = 1.1. The
bending moment is

12
Mmax = ILS-F (I
Considering also the self mass,
p=p, + pAg (1

where g = 9.81 m/s? is the gravitational acceleratios.

Furthermore, J, is the yield stress; for steel Fe 36C, f =
235 MPa, and for steel Fe 510, f, = 355 MPa. The se: .
modulus is

A

(13)

Note that we consider the cross section of class 3, which

means that the stress distribution is linear clastic and the

yield stress is reached in extreme fiber without any local

buckling of plate elements. '
The local buckling constraint for the compressed upper

flange is

L 42¢ € = 235

6 max

1= ob (0. I MPa) (14)

and for bent webs is
t 1
v pp

2
The shear constraint can be expressed according to Euro-
code 3 for 1/ = 124¢ as

= 124¢ (15)

0. = _u"“é’L < 0.627 % 0.50, (16)
where
ht. 1.
Qb = ¥ J_
. Tml \/§
With v,,, = 1.1, Eq. (16) takes the form
L
%_. = .0.1645hs, f, )

since the deflection minimization leads to maximization of
the beam dimensions, size constraints should be defined as
follows:

h = hmax tW = tw.max b 5 bmax l“f S tf,max (18)
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4 THE OPTIMIZATION PROCEDURE

In the optimization procedure, the optimal values of vari-
ables &, 1, b, and ¢, should be determined so as to minimize
the objective functions and fulfill the design constraints.
Note that for the single-objective problem to minimize the
mass f,, the following approximate formulas can be de-
rived:

3
h=V0T5Wy/B 1,/12=P3h b=hVB/E 1,=8b
(19)

where

‘Ylen
f /‘Ym()

is the required section modulus.

For computer-aided optimal design. a decision support
system has been developed’-% containing five single-
objective and seven multiobjective optimization techniques.
The single-objective optimization methods are as tollows:
Himmelblau's method of flexible tolerances. Weisman's di-
rect random search method, Rosenbrock’s hillelimb meth-
od. the complex method of Box. and the Davidon-Fletcher-
Powell method. The multiobjective optimization methods
arc as folfows: min-max. weighting min-max, global crite-
rion types 1 and 2, weighting global eriterion, pure weight-
ing, and normalized weighting.

A multicriterta optimization problem can be formukited
as follows:

Find x such that

W, =

L(2x) = opt x 20
such that

g;(x) = J=1l ... .m
hixy =10 =1 ...,q

where x is the vector of decision variables defined in n-di-
mensional Euclidean space. and f(x) is a vector function
defined in r-dimensional Euclidean space. &/x) and fi(x)
are inequality and equality constraints.

The solutions of this problem are the Pareto optima. The
definition of this optimum is based on the intuitive convic-
tion that the point x* is chosen as the optimal if no criterion
can be improved without worsening at least one other crite-
rion.

We have used the min-max, the weighting min-max. two
types of global criterion, weighting global criterion. pure
weighting. and normalized weighting techniques. They are
described in details in refs. | and 11.

4.1 A brief description of the methods
The min-max optimum compares relative deviations from

the separately reached minima. The relative deviation can
. be calculated from

s — I.ft(x) "f?! " . sz(x) _fﬂ
iy = L 17 2y(r) = LoD S
o 7 A Vo] .

If we know the extremes of the objective functions, which
can be obtained by solving the optimization problems for
each criterion separately, the desirable solution is the one
that gives the smallest values of the increments of all the
objective functions. The point x* may be called the best
compromise solution considering all the objective functions
simultaneously and on equal terms of importance.

z;(x) = max{z/(x), =7 (x)} iel (22}

p(x*) = min max {z,(x)} xEX i€l (23

where X is the feasible region.

One gets the weighting min-max method combining the
min-max approach with the weighting method, and a de-
sired representation of Pareto optimal solutions can be ob-
tained:

z0) = max {w; z/(x), w, TN} P E T (24)

The weighting coefficients w; reflect exuctly the priorty of
the criteria, the relative importance of them. We can get
distributed subset of Parcto optimal solutions.

The global criterion miethod meuans that o function that
describes a global criterion is a measure of closeness of the
solution to the ideal vector of £, The common form of this
function is (type 1)

f('l _f (1)

(25)
I

i)y =

It is suggested to use P = 2, but other valucs of P such as §,
3, 4, cte. can be used. Naturadly, the solution obtained will
differ greatly according to the value of £ chosen.

It is recommended to use relative deviations (type 2):

Lp(f) = [ i

i=t

- i)

Py
|l =P ==
7o
i

(26)

If the weighting global criterion method is used. by intro-
ducing weighting parameters one could get a great number
of Pareto optima with Eq. (25). If we choose P = 2, this
means the Euclidean distance between Pareto optimum and
ideal solution.” The coordinates of this distance are
weighted by the parameters as follows:

Lp(f) = [ Z W

i=1

S = fitx)
fU

J |l =P ==x

(27)

The pure weighting method involves adding all the objec-
tive tunctions together using different weighting coetficients
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Table 1
Characteristics of beams optimized using different single-objective techniques

h tu b i Ji I
Technique fmm) iy, {rmum) {mm) fhg) (mm)
Flexible tolerance S1 min 1450 27 700 19 9.332 19.7
S5 .min 1800 32 1000 40 20.801 5.1
Dircct random search —— f, 1400 i 650 £o) 9.402 20.5
S aomin 1800 32 1000 40 20,801 5.1
Hillclimb St min 1300 20 550 32 9,343 21.9
min 1800 32 1006 40 20,801 5.1

Characteristics of beams optimized using different multiobjective optimization methods

Table 2

and various weighting coefficients

h ' b /, 7 7
Technique [ {nin) () {mmn) (kg) (num}
Min-max 1800 20 750 v 13,762 7.3
Glabal 1, P - 3 1800 20 750 40 13,947 7.2
Global 2, # = 5 1804 20 u0G 33 13.910 2
Weighting nin-mux
wo/uey
0.9/0.1 1750 24 700 18 140,834 12.2
0.75/0).25 1800 2z 930 20 18,974 9.5
0.5/0.5 1800} 20 750 RD; 13.762 7.3
0.25/0.75 1800 18 1K) 38 15.294 0.1
0.1/0.9 1800 4 100 i 17.869 5.5
Weighting global
(L9701 1800 22 950 20 11.974 v.;A
0.75/0.23 1800 20 900} 28 12,7949 8.2
0.5/0.5 1800 20 950 35 14,329 7.0
.25/0.75 1800 18 950 40 15.284 0.1
0. 10/0.9 1800 18 1000 40 15.786 5.9
Normalized weighting
0.9/4.1 _ 1800 26 500 13 10,136 4.0
0.7510.25 1800 22 950 20 1£.974 9.5
0.5/0.5 1800 18 D50 40 15.284 6.1
0.25/0.75 1800 22 950 40 16.658 5.9
0.170.9 1800 32 1000 40 20.801 5.1
Table 3
Characteristics of optimized beams made of stcel Fe 360 and Fe 510
h 1. b i I S
Steel Technique {mm)} {enm) fmmj {rm) (kg) (mm)
Fe 360 Single-objective Optimization Sl min 450 22 700 19 9,332 19.7
S min 1800 32 1060 40 20,801 A1
Min-max method 1550 30 750 25 16.343 8.8
Fe 510 Single-objective Optimization F\ min 1300 20 500 17 7,051 342
F1min 1800 32 1000 40 20,301 5.1
Min-max method 1500 24 750 40 14,253 10.2
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for each. It means that we transform our multicriteria opti-
mization problem to a scalar one by creating one function of
the form ‘

r

&) = 2 wifi(x) (28)

i=]

where w; = 0 and 2r_; w; = 1. If we change the weighting
coefficients, the result of solving this model can vary signif-
icantly and depends greatly on the nominal value of the
different objective functions.

The normalized weighting method solves the problem of
the pure weighting method; e.g., in the pure weighting
method, the weighting coefficients do not reflect propor-
tionally the relative importance of the objective, because of
the great difference on the nominal value of the objective
functions. In the normalized weighting method, w; reflects
closely the importance of objectives:

r

fooy = 3 Wil (29)
i=1 f.l'
where w; = 0 and 27_| w; = . The condition f¢ # 0 is

assumed.

5 THE RESULTS OF A NUMERICAL EXAMPLE

Data: p, = 80 kN/m, L = 15 m. p = 7850 kg/m?, h,,,, =
1800, b, = 1000, ¢, ... = 40, and I max = 40 mm.
Table | shows the results of the single-objective optimi-
zation using three different techniques. The differences be-
tween results are very small. All the techniques treat the
variables as continuous ones and give unrounded optima. To
give plate sizes available in the market, a secondary search
is used for finding the discrete optima. The discrete steps
for £ and & are 50 mm for thicknesses #,./2 and tr 1 mm.
In Table 2, the multiobjective—Pareto—optima are giv-
en, obtained using five different techniques, for steel Fe 360
and for the ratio k;/k,, = 1.5. Figure 2 shows the results in
the coordinate system f, — f; for steels Fe 360 and Fe 510.
The notation f ?10 means the optimum of £, for steel Fe 510.

f
3
151 510
1
10
20
101
. 360
¢ gm
M3
f
" + + 1
5000 10000 15000 20000

Fig. 2. Optima in a coordinate-system f,-fy for various weighting
coefficients, for steels Fe 360 and Fe 510, according to the weight-
ing min-max technique. The points relate to the following weight-
ing coefficients: (a) w, = 0.90, w, = 0.10, (b) w, = 0.75, Wy =
0.25; (c) 0.50/0.50, (d) 0.25/0.75, and (¢) 0.10/0.90,

The Pareto optima for various weighting coefficients of
the weighting min-max technique can be seen between the
limiting points of the single-objective optima. Note that the
points ¢ are the same also for the min-max technique. It can
be seen that the single optimum of the deflection f; does not
depend on the steel type, that is, 390 = 3.

It can be seen from the Table 3 that cost savings of 24%
may- be achieved using Fe 510 instead of Fe 360, but the
deflection will be nearly doubled. _

Table 4 shows the results of the singie-objective optimi-
zation for Fe 360 and k;/k,, = 1.5 for the three objective

Table 4
Characteristics of beams optimized using single-objective optimization technique
Objective h t b £ I S fs
Sfunction {mm} {mm) (mm} {mnt) (kg) tkg) {mm)
£ 14350 22 700 19 9,332 6,888 19.7
/s 1500 24 700 16 9,577 6.876 19.0
fa 1800 32 1000 40 20,801 16.202 5.1
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Fig. 4. Effect of w, and w, on ;.

functions. Figures 3 and 4 show the effect of the relative
importance of an objective function on the value of the other
objective function.

6 CONCLUSIONS

The investigated numerical example illustrates the possi-
bilitics given for designers to select the most suitable struc-
tural version considering the cost, mass, and maximal de-
fiection of a structure. It can be seen from Table 4 that the
fabrication cost is about 26% of the total cost and therefore
does not affect significantly the optima. In other words, the
mass and the cost function are only slightly conflicting.
Therefore, the mass J> is not shown in the figures, The
effect of fabrication cost is much more significant in the
case of a stiffened plate, as has been shown in another
study.s

The deflection minimization leads to maximal prescrivad
sizes and to a significant increase in cost and mass. Th: .+
of steel Fe 510 instead of Fe 360 results in 24% cost sa :
without deflection minimization and no savings consider:;
the deflection minimization. The multiobjective optimiza-
tion gives structural versions for selected weighting coeffi-
cients according to Table 2 and Fig. 2.
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