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4Savaria Department of Physics, Eötvös Loránd University, H-9700 Szombathely, Hungary

Accepted 2018 September 11. Received 2018 September 11; in original form 2018 March 21

ABSTRACT
Pulsations of RV Tauri-type variable stars can be governed by chaotic dynamics. However,
observational evidence for this happening is usually hard to come by. Here we use the contin-
uous, 4-yr-long observations of the Kepler space telescope to search for the signs of chaos in
the RVb-type pulsating supergiant, DF Cygni. We use the Global Flow Reconstruction method
to estimate the quantitative properties of the dynamics driving the pulsations of the star. The
secondary, long-term light variation, i.e. the RVb phenomenon, was removed in the analysis
with the empirical mode decomposition method. Our analysis revealed that the pulsation of
DF Cyg could be described as a chaotic signal with a Lyapunov dimension of ∼2.8. DF Cyg
is only the third RV Tau star, and the first of the RVb subtype, where the non-linear analysis
indicates that low-dimensional chaos may explain the peculiarities of the pulsation.
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1 IN T RO D U C T I O N

RV Tau stars are post-AGB supergiant stars representing the most
luminous group of radial pulsators. They constitute the long period
subclass of Type II Cepheids (P > 20 d).

Two subtypes of RV Tau variables are distinguished: RVb stars
show long-period large-amplitude variability in the mean bright-
ness on top of the pulsation, while RVa stars do not show this phe-
nomenon. Apart from the long-period variations, RVb light curves
are similar to that of RVa stars. The origin of the secondary light
variation is not fully understood yet. Fokin (1994) showed that
intrinsic stellar processes such as pulsation or any thermal instabil-
ities cannot be responsible for the secondary variation. More recent
studies explain RVb phenomenon with binarity: the mean brightness
changes due to periodic obscurations by a circumbinary disc around
the variable and its companion star (Van Winckel et al. 1999; Maas,
Van Winckel & Waelkens 2002; Pollard, McSaveney & Cottrelll
2006). The possibility of interaction between the components has
also been raised (Pollard et al. 1996).

The obscuration scenario seems to work for DF Cyg as well. DF
Cyg (KIC 7466053) is the only known RV Tau star continuously
observed from space in the Kepler primary mission (Bódi, Szatmáry
& Kiss 2016). Using Kepler data, Vega et al. (2017) showed that,
when measured in fluxes, both the pulsation amplitudes and the
mean brightness decrease by ∼90 per cent during the long-period
minimum, strongly supporting the disc occultation scenario. Adopt-
ing the idea of estimating the amplitude changes in flux units, recent
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investigations highlighted that many RVb stars show similar correla-
tions between the pulsation amplitude variations and the long-term
variability (Kiss & Bódi 2017).

RV Tau stars show alternations of deep and shallow minima in
the light curve that are thought to be the sign of the non-linear
phenomenon called period doubling. However, the alternation is
not always recognizable due to the strong irregularity of the light
variation that may signal more complex behaviour. Incidentally,
many RV Tau stars also exhibit occasional interchanges in the order
of low- and high-amplitude cycles (Soszyński et al. 2008; Plachy
et al. 2014a), these features are observable in DF Cyg too.

RV Tau stars are difficult to model, but theoretical calculations
of shorter period subtypes of Type-II Cepheids (W Vir- and BL
Her-type stars) showed that both period doubling and chaos can be
expected in their pulsation (Kovács & Buchler 1988; Moskalik &
Buchler 1990; Smolec & Moskalik 2014; Smolec 2016). Recent
observations confirmed that period doubling is indeed a common
feature in the period range of 16 < P < 20 d (Plachy et al. 2017;
Soszyński et al. 2017; Smolec et al. 2018). In contrast, detecting
chaotic behaviour and determining its fractal dimension in observa-
tional data is a real challenge due to the requirements on data length
and quality. Only two RV Tau stars have been analysed with a non-
linear approach: R Sct (Buchler et al. 1996) and AC Her (Kolláth
et al. 1998). Both of them show low-dimensional chaos with Lya-
punov dimensions of ∼3.1 in the case of R Sct and 2.05–2.45 for
AC Her.

In this paper we report on the dynamical analysis of the most con-
tinuous and accurate photometric data of an RV Tau star available
to date: the Kepler light curve of DF Cyg. DF Cyg is classified as
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an RVb star, its pulsation period is ∼24.9 d while the length of the
secondary, long-period variation is ∼780 d. This star is a popular
target for amateur astronomers, and has been followed since the
1970s, but unfortunately the data collected at the AAVSO (Ameri-
can Association of Variable Star Observers) is too sparsely sampled
to be useful in our analysis.

Below we present two methods that have been applied in this
study: the global flow reconstruction (GFR) method to search and
quantify the chaotic nature of the pulsation, and the empirical mode
decomposition (EMD) method to separate the long-period variation
from the pulsation. Both methods are introduced in Section 2. De-
tails of the data preparation are given in Section 3. Analysis and
results are discussed in Section 4. We also provide summary and
conclusions in Section 5.

2 ME T H O D S

Chaos may emerge in non-linear dynamical systems. This seem-
ingly random behaviour has nothing to do with stochastic processes,
but it is deterministic and has its own characteristic pattern. An im-
portant property of chaotic systems is the sensitivity to initial con-
ditions: an infinitesimally small change at the starting point results
in an entirely different future path. This property is measurable, and
gives quantitative information about the system. The evolution of a
dynamical system can be visualized in a phase space, the collection
of possible system states, where evolving states trace a path draw-
ing a trajectory. The dimension of the phase space is determined
by the degrees of freedom of the system. If the motion reaches an
equilibrium, the trajectory converges into a fixed point. A periodic
motion represents a closed trajectory, called limit cycle. In contrast,
a chaotic trajectory of a dissipative dynamical system is always an
aperiodic, bounded curve that tends to evolve towards a strange
attractor. Strange attractors are not normal geometric objects, they
have no integer, but fractal dimensions, and they typically occupy
a small region in the phase space.

According to Takens’ theorem (Takens 1981) a single measured
quantity is sufficient to reconstruct the attractor. In our case the only
variable arising from the system is the brightness of the star. The
dimension of the reconstructed phase space is called the embed-
ding dimension, which must be larger than the fractal dimension of
the system to avoid crossing of the trajectories. The reconstruction
preserves the ssential mathematical properties of the original sys-
tem like topology and Lyapunov exponents. The latter quantities
describe the rates of exponential growth/contraction in the system
by characterizing the rate of separation of infinitesimally close tra-
jectories that can be different for different orientations in the phase
space. A positive maximal Lyapunov exponent is considered as a
definition of deterministic chaos. Lyapunov exponents are also used
for the calculation of the fractal Lyapunov dimension. For general
review of chaos theory and its applications in astrophysics we refer
to Regev (2006). In the following sections we introduce the two
fundamental tools applied in our analysis.

2.1 The global flow reconstruction method

A powerful technique has been developed by Serre, Kolláth, and
Buchler (1996a) for the special purpose of phase-space reconstruc-
tion of stellar pulsation, the global flow reconstruction (hereafter
GFR) method. The term ‘global flow’ denotes the dynamics of the
hypothetical underlying system. The same non-linear analyser tool
was applied in the studies of R Sct and AC Her, and has been proven

to be useful in searching for chaos in semiregular variables (Buch-
ler, Kolláth & Cadmus 2004), W Virginis models (Serre, Kolláth &
Buchler 1996b), as well as in RR Lyrae models and observations
(Plachy, Kolláth & Molnár 2013; Plachy et al. 2014b). Given the
successful applications we adopted GFR in the analysis of DF Cyg.

The first step in the method is the transformation of
the light curve into a data sequence with equal-time spac-
ing s(tn) and the production of the ‘delay vectors’ X(tn) =
(s(tn), s(tn − �), s(tn − 2�), ..., s(tn − (de − 1)�)). � denotes the
‘time delay’, while de is the embedding dimension of the recon-
struction space. The method is optimized to detect low-dimensional
chaos, so de can be set to 4, 5, or 6. No higher embedding dimensions
are implemented, because the number of variables becomes unman-
ageably high. We consider the dynamical system as an iterated map,
the time evolution rules are given as algebraic equations, and the
values are expressed as a function of the value of the previous step.
So we assume that there exists a map F that evolves the trajectory
in time by connecting the consecutive points: Xn+1 = F(Xn). We
search F in polynomial form: F(X) =∑

k CkPk(X), where Pk(X)
represents the polinomials of order up to p. The value of p was fixed
to 4. After we found F, arbitrary long data sets can be produced that
we call ‘synthetic signals’. The length of the data plays an impor-
tant role in the determination of the fractal dimension of the system.
Our code computes the Lyapunov exponents λi that give the diver-
gence rates of infinitesimally close trajectories in each dimension
(i = 1, 2, 3,...) of the embedding space: |δZ(t)| ≈ eλt |δZ0|, where
Z0 is the initial separation. At least one Lyapunov exponent must
be positive for a chaotic signal. Hundreds of cycles are required to
calculate these values with sufficient accuracy, which are usually
not available from observational data. Therefore we adopt the quan-
titative properties of the synthetic signals that show strong resem-
blance to the light curve instead. The calculation of the Lyapunov
dimensions dL = K + 1

|λK+1|
∑K

i=1 λi is also implemented in the
method.

The success of GFR rests upon the possibility of applying slight
variations to the phase-space trajectories. This can be achieved by
adding a small amount of noise to the data which will be then subse-
quently smoothed. By varying the noise and smoothing parameters
we construct dynamically very similar data sets for reconstruction.
We usually use a large parameter space of noise, smoothing, and
time delay values. Synthetic signals are created for each parameter
set from the corresponding maps. Added noise is defined relative to
the root mean square of the signal through the noise intensity param-
eter (ξ ), which we usually set to be in the range of the observational
noise of the data. The smoothing parameter (σ ) denotes the maxi-
mum standard deviation from the fit in the cubic spline algorithm.
These two parameters help to stabilize the map by broadening the
attractor, but have not as strong impact on the results as the time
delay (�) parameter has.

Sometimes the iteration of the map generates periodic or multi-
periodic signals, converges into a fixed point, or becomes unstable.
A slight change in the parameter can switch between these possible
outcomes.

We consider the reconstruction successful if we gather a signif-
icant number of chaotic synthetic signals that cover a well-defined
area in the parameter space, and the resemblance between the input
data and synthetic signals is convincing. Due to the chaotic nature of
the data, no objective criterion exists for the resemblance. We can-
not expect correspondence between any section of the same chaotic
data either, since the trajectory never repeats itself. On the other
hand, an overall similarity can be visually recognized in diverse
visualization of the data.
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In practice, to perform a reliable comparison between the original
and synthetic signals, the following realizations have been used: the
time series itself, the Fourier transform (FT), and the Broomhead-
King (BK) projections (Broomhead & King 1987). The latter uses
singular value decomposition to visualize the phase space trajecto-
ries in an orthogonal system. In addition, we investigate the time
dependence of the Fourier parameters by calculating the analytical
signals (Gábor 1946) of the main pulsation and the subharmonic
frequency. This provides us with a fourth, more quantitative way
for the comparison.

The GFR method has been carefully and successfully tested with
known chaotic and non-chaotic data. Reconstruction of chaotic data
can fail if the proper parameters are not found. We prevent this by
using an extended parameter space. Multiperiodic data will not yield
chaotic solutions. However, very complex or stochastic components
on top of the data can mimic chaos for a short while, therefore it
is essential to use long and accurate input data that contains the
relevant variability only. If we successfully reconstruct a data set
and find it to be chaotic, it indicates that chaotic dynamics can be a
plausible explanation for the observed behaviour.

2.2 The empirical mode decomposition method

The large-amplitude long-term variation represents a complication
in our analysis that may prevent a robust or successful reconstruc-
tion by elevating the embedding dimension. Here we assume that
the long-period RVb phenomenon is an external variation that is
not connected to the pulsation dynamics, therefore we removed it
before applying the GFR method. For this purpose we adopted the
empirical mode decomposition (hereafter EMD) method, which is
the fundamental part of the Hilbert–Huang transform (Huang et al.
1998). This tool is not widely used in variable star studies, but some-
times applied in other fields of astrophysics, to study non-stationary
signals (Hu et al. 2015; Kolotov, Broomhall & Nakariakov 2015).
The EMD method was tested and found to be suitable for similar
detrending application for GFR in a previous study aimed at coupled
Rössler oscillators (Plachy & Kolláth 2013).

The EMD algorithm decomposes a time series into a set of intrin-
sic mode functions (IMFs) that show variability on different time
scales with variable amplitude and frequency (see Fig. 1). It is based
on producing spline smoothed envelopes defined by local maxima
and minima and subsequent subtractions of the mean of these en-
velopes from the initial data. To get the first IMF, the process is
repeated until the following requirements are satisfied: the number
of extrema and zero-crossings should differ at most by unity, and
the mean of the envelopes should be zero at any point. The next IMF
is obtained by subtracting the previously extracted IMF from the
original data and repeating the same steps. The algorithm ends with
the residual signal from which no more IMF can be extracted. We
used a PYTHON implementation of the Hilbert–Huang transform,
PYHHT.1

3 DATA PR E PA R AT I O N

The large number of well-sampled cycles is a crucial criterion for
the input data in our non-linear analysis. NASA’s Kepler mission
provides a high-quality, 4-yr-long light curve for DF Cyg containing
59 pulsation cycles and two full cycles of large-amplitude variation.
As a consequence of the quarter-year rolls of the spacecraft, the

1https://github.com/jaidevd/pyhht

Figure 1. Intrinsic mode functions of the Kepler light curve of DF Cyg.
The sum of the first three IMFs (IMF1+IMF2+IMF3) has been selected for
GFR. Brightness is in Kp magnitudes, time is in days.

Figure 2. Preparation of the light curve. A fraction of light curve shows the
modifications performed before analysis. The discontinuity of the original
data provided by KASOC (black) was fixed by shifting the light curves of
different observing seasons together and by filling the instrumental gaps
(red). Data was resampled before long-period variation was removed (blue).
The inset shows a zoom around discontinuities for better visibility.

light curve suffers from systematic shifts. The preparatory work for
the correction of instrumental issues on the photometric solution
provided by the Kepler Asteroseismic Science Operations Center
(KASOC) has already been performed by Bódi et al. (2016). We use
the same data set in our analysis with some modifications described
below and showed in Fig. 2.

GFR requires equally sampled data with an optimal number of
data points, somewhere between the empirical range of 100–200
points per cycle. We used the K-INPAINTING software, developed
to fill gaps in Kepler data (Garcı́a et al. 2014; Pires et al. 2015)
to interpolate the missing points, and to resample the 30-min ca-
dence light curve into a data set with ∼5 h sampling. Unfortunately
our analysis cannot gain from the high-cadence sampling of Kepler
measurements, our tests showed that higher resolution just compli-
cates the GFR.

The next step was the subtraction of RVb phenomenon. We used
two different approaches to remove long-term variations: our first
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Figure 3. Different realizations of the three versions of light curves (from top to bottom) that were used in GFR. Left: time series (in relative magnitude);
middle: Fourier transforms; right: BK projections. The FTs only show the low-amplitude range, the main peak extends beyond the plot.

Figure 4. Different realizations of the best synthetic signal examples from the reconstructions of DFC1 and DFC3. (Reconstruction parameters are: � = 10,
ξ = 0.007, σ = 0, de = 6, and DL = 2.199; � = 26, ξ = 0.001, σ = 0.01, de = 5, andDL = 2.421.).

choice was the trigonometric polynomial fit that was used by Bódi
et al. (2016), and as an alternative we applied the EMD method. We
produced three different versions from the resampled light curve:

(i) For DFC1, long-term variations were removed by a trigono-
metric polynomial function.

(ii) For DFC2, we applied the EMD method. The decomposition
is displayed in Fig. 1. The combination of the first three IMFs (i.e.
IMF1+IMF2+IMF3) was selected. Here we used magnitude units.

(iii) For DFC3, we applied the EMD method again, but the de-
composition was performed in flux units. The sum of the first three
IMFs was divided by the normalized signal composed from the rest
of the IMFs and the residual signal, i.e. the long-term variations.
The rate of the apparent amplitude attenuation is equal to the dif-
ference between the average brightness measured in the bright and
faint states in flux units, according to Kiss and Bódi (2017). In this
case we corrected the mean brightness and amplitude changes si-
multaneously. We then transformed our data set to magnitude units
for the reconstruction. As Fig. 3 shows, this curve turned out to be
more smooth than DFC2 or DFC1.

The time series, Fourier spectra, and BK projections of the three
versions of the light curves are shown in Fig. 3. Some differences
can be recognized: traces of the long-period RVb variations appear
in DFC1, while the low-frequency region of DFC3, below 0.01 d−1,
is almost completely empty. Nevertheless, since we do not know the
exact shape of light variation caused by the RVb phenomenon, we
cannot decide which version of the light curve captures the pulsation
signal best.

4 A NA LY SI S AND RESULTS

We performed GFR for all three light-curve versions with the same
settings. The parameters were set as follows: � = 4, 5, 6,. . . ,30
(time delay), ξ = n 0.0001 (noise intensity), σ = n 0.001 (smooth-
ing parameter), where n = 1, 2, 3,. . . ,10. This large parameter
space was used in our previous studies and was found to be ex-
tended enough to find large numbers of chaotic signals, whenever
there were any. We performed GFR in all embedding dimensions
implemented: de = 4, 5, and 6. We iterated synthetic signals up to
300 cycles. We note here that the artificial noise and smoothing dis-
tort the data much less than the detrending techniques aimed at the
elimination of RVb phenomenon, trajectories are modified within
the width of lines displayed in Fig. 3. We present our findings
concerning the three version of light curve below:

(i) We found 170 chaotic synthetic light curves as a result of the
reconstruction of DFC1. None of the synthetic light curves resem-
bled DFC1 sufficiently when the reconstruction was performed in 4-
or 5-dimensional embedding space. However, a few synthetic sig-
nals in de = 6 resemble the strongly alternating part of DFC1, which
is typical in the first 22 cycles of the observed light curve. These
signals have Lyapunov dimensions between 2.199–2.265. The best
synthetic light curve from the reconstruction of DFC1 is presented
in the upper panels of Fig. 4.

(ii) The GFR of DFC2 yielded 627 chaotic synthetic signals. The
higher number of chaotic signals indicates that the reconstruction
of DFC2 was more successful than that of DFC1. Among these
signals we found numerous that show good resemblance to DFC2,
especially at � = 20, in each embedding space. We present this re-
construction in more detail: in Fig. 5 we show examples of ‘bad’ and
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Figure 5. Examples of synthetic signals and their parameters from the reconstruction of DFC2.

‘good’ synthetic signals. SynA is a periodic solution, while SynB,
SynC, and SynD are chaotic signals but different from DFC2. The
overall difference is more prominent in the FT and BK projections
in Fig. 6. The periodic signal appears in the FT as a single frequency
peak with a set of harmonics, and a limit cycle in the BK projec-
tions. SynE, SynF, SynG, and SynH were all reconstructed with
� = 20, we found that these signals nicely resemble DFC2, and
their trajectories explore almost the same extent of the phase space.
However, SynE seems to have more violent cycle-to-cycle changes,
which can be also seen in the analytical functions of Fig. 7 that
displays the amplitude and period change of the fundamental and
the subharmonic oscillations. These plots show that the amplitudes
of the fundamental and subharmonic frequency correlate, and the
same is true for the period changes. On the other hand, the ampli-
tude seems to correlate with the period for some time, then it seems
to anticorrelate. This behaviour is also seen at SynF, SynG, and
SynH. Furthermore, the magnitude and time-scale of the amplitude
and period variations are also similar to that of DFC2. DL values of
the best synthetic signals of these reconstruction (similar to SynF,
SynG, and synH) were calculated to be ∼2.8 (2.720–2.926).

(iii) In the case of DFC3 we obtained 425 chaotic signals, but
could not discover as strong resemblance among the synthetic sig-
nals as in the case of DFC2. An example synthetic signal is displayed
in the lower panels of Fig. 4. The typical DL of the these signals are
∼2.4 (2.358–2.421).

We conclude that the reconstruction of DFC2 was the most suc-
cessful as it reproduced many characteristics, thus we can adopt DL

= ∼2.8 for the fractal dimension of the dynamics of the pulsation in
DF Cyg. DL values calculated in the other two reconstructions (∼2.2
and ∼2.4 in the cases of DFC1 and DFC3) probably underestimate
the true value because they capture only some simpler features. We
note that the GFR method is able to calculate Lyapunov exponents
with high accuracy and DL with three digits, but the scatter in the
values for the best synthetic signals prevents us from estimating DL

with more than one decimal place accuracy.
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Figure 6. FTs and BK projections of synthetic signals presented in Fig. 5.

MNRAS 481, 2986–2993 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/481/3/2986/5097888 by M
TA C

SFK C
SI user on 28 Septem

ber 2020



2992 E. Plachy, E. Bódi, and Z. Kolláth

Figure 7. Analytical functions of DFC2 and the best synthetic signals from
its reconstruction: amplitude (filled symbols) and period (empty symbols)
changes of the main oscillation (circles) and the subharmonic frequency
(triangles).

5 SU M M A RY A N D C O N C L U S I O N S

We attempted the global flow reconstruction of an RVb-type variable
star for the first time. Our method required to separate the long-term
variability from the pulsation. The elimination is not unambiguous,
therefore we used different techniques, and investigated three differ-
ent versions of the light curve. When RVb variations were subtracted
with a trigonometrical polynomial, only the amplitude alternation
could be reconstructed. We suspect that the reconstruction failed
because the long-term variation was not removed properly. When
we used the EMD method to eliminate the long-term variation from
the magnitude data, we were able to successfully reconstruct the
light curve, and calculated DL to be ∼2.8. This result suggests that
the light variation of DF Cyg can be explained with the presence of
low-dimensional, deterministic chaos in the pulsation. In the third
case we applied the EMD method to the flux light curve. We as-
sumed that scaling the stellar flux with the long-period variation
would provide equivalent or better results than subtraction in mag-
nitudes. However, the complex behaviour that typifies DF Cyg was
missed. It is likely that the fractal dimensions calculated in these
reconstructions (DL ≈ 2.4) are underestimations.

Chaotic behaviour can be the result of energy exchange between
two oscillations. The fingerprint of this process can be found by the

linear stability analysis of the map at its fixed points. For R Sct,
the linear stability analysis of the fixed points revealed a 2:1 res-
onance between two extremely non-adiabatic modes. On the other
hand, the properties of fixed points could not be determined for AC
Her because phase space trajectories did not explore the vicinity
of the fixed points, i.e. the amplitude of light curve never became
very small. Our linear stability analysis of DF Cyg led to the same
result as of AC Her: no resonance could be identified as the origin
of chaotic dynamics. In the high-luminosity, strongly dissipative
hydrodynamical model sequence published by Moskalik and Buch-
ler (1990), a half-integer resonance (the 5:2 resonance between the
fundamental and second overtone mode) initiated a period-doubling
cascade to chaos in the 9.5–16 d period range. The same resonance
caused bifurcations with different properties in the lower luminosity
sequence that eventually ended in a period-one cycle at ∼21.1 d.
These calculations also showed that the strong dissipation and non-
linearity causes considerable shifts in the resonances, therefore we
cannot simply extrapolate to the longer period regime of DF Cyg
based on those models.

Irregularities become more prevalent towards longer periods in
RV Tau stars. However, there are exceptions, some long-period
RV Tau stars seem to be less irregular than shorter-period ones.
The Lyapunov dimension is used to quantify chaos, thus it is a
good measure of the rate of irregularity, if it comes from chaotic
dynamics. Kolláth et al. (1998) compared the reconstructions of
W-Virginis models, AC Her, and R Sct, and noticed that Lyapunov
dimensions seem to increase with the pulsation period. DF Cyg does
not fit into the trend, its period being shorter than that of AC Her
(∼37.7 d), but our analysis revealed a higher Lyapunov dimension.
This could suggest that the relationship between the pulsation period
and the irregularity is not unambiguous. Alternatively, the origin
of the discrepancy could be that DF Cyg is an RVb variable. If
small-scale variations are present in the obscuring disc, they could
introduce additional variations to the light curve that we did not
account for, increasing the Lyapunov dimension. Finally, AC Her
itself may be more regular than other RV Tau stars. We note that the
reconstruction of AC Her was less robust than that of R Sct, and the
estimated Lyapunov dimension had a large uncertainty too.

In order to understand the putative relation between periods and
Lyapunov dimensions, more RV Tau stars need to be analysed
with non-linear methods. With the increase of data quality and
length of observations, hopefully this could be achieved in the near
future.

Finally, we remark that while the observations of DF Cyg (as well
as of R Sct and AC Her) can be explained with chaotic dynamics,
the confirmation of the existence of chaos in RV Tau stars with
non-linear hydrodynamic models is yet to come.
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Szabados L., Szabó R., 2017, MNRAS, 465, 173
Plachy E., Molnár L., Kolláth Z., Benkő J. M., Kolenberg K., 2014a, Proc.

IAU Symp. 301, Precision Asteroseismology. Cambridge Univ. Press,
Cambridge, p. 473
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