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Abstract

Purpose

Soil  erosion is  one of the most  serious  hazards that  endanger sustainable
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food  production.  Moreover,  it  has  marked  effects  on  soil  organic  carbon

(SOC) with direct  links to global warming. At the same time, soil organic

matter  (SOM)  changes  in  composition  and  space  could  influence  these

processes.  The  aim  of  this  study  was  to  predict  soil  erosion  and

sedimentation  volume  and  dynamics  on  a  typical  hilly  cropland  area  of

Hungary due to forest clearance in the early eighteenth century.

Materials and methods

Horizontal soil samples were taken along two parallel intensively cultivated

complex convex-concave slopes  from the eroded upper parts  at  mid-slope

positions and from sedimentation in toe-slopes. Samples were measured for

SOC, total  nitrogen (TN) content, and SOM compounds (δ C, δ N,  and

photometric  indexes).  They were  compared  to  the horizons  of  an  in  situ

non-eroded  profile  under  continuous  forest.  On  the  depositional  profile

cores, soil depth prior to sedimentation was calculated by the determination

of sediment thickness.

Results and discussion

Peaks  of  SOC  in  the  sedimentation  profiles  indicated  thicker  initial

profiles,  while  peaks  in  C/N  ratio  and  δ C  distribution  showed  the

original surface to be ~ 20 cm lower. Peaks of SOC were presumed to be

the  results  of  deposition  of  SOC-enriched  soil  from  the  upper  slope

transported  by  selective  erosion  of  finer  particles  (silts  and  clays).

Therefore,  changes  in  δ C  values  due  to  tillage  and  delivery  would

fingerprint  the  original  surface  much  better  under  the  sedimentation

scenario  than  SOC  content.  Distribution  of  δ C  also  suggests  that  the

main sedimentation phase occurred immediately after forest  clearance and

before the start of intense cultivation with maize.

Conclusions

This  highlights  the  role  of  relief  in  sheet  erosion  intensity compared  to

intensive  cultivation.  Patterns  of  δ C  indicate  the  original  soil  surface,

even  in  profiles  deposited  as  sediment  centuries  ago.  The δ C  and  C/N

decrease in buried in situ profiles had the same tendency as  recent forest

soil, indicating constant SOM quality distribution after burial. Accordingly,

microbiological  activity,  root  uptake,  and  metabolism  have  not  been
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effective enough to modify initial soil properties.
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1. Introduction

Soil erosion is one of the most effective soil transporting agents in recent

surface evolution (Poesen 2015). Soil erosion in general, and especially sheet

erosion, removes, delivers, and deposits uppermost soil layers which are

usually relatively rich in organic matter (OM) (Lal et al. 2008; Szalai et al.

2016). Soil organic matter (SOM) quantity and composition reflects to the

former soil formation processes and evolution conditions, including climate,

land use, topography, and hydraulic conditions. Among others, soil loss and

deposition processes can be estimated on the basis of the spatial distribution

of SOM quality and quantity. However, additional estimation methods for soil

redistribution and sedimentation are calculated using proxies such as soil

texture (Jankauskas and Fullen 2002), soil organic carbon (SOC) content

(Polyakov and Lal 2008; Wang et al. 2010; Farsang et al. 2012), or

radionuclides (Mabit et al. 2008). Furthermore, SOM quality can provide

additional important details on soil redistribution processes (Novara et al.

2015; Szalai et al. 2016). On the other hand, SOM cannot be accurately

typified using average chemical composition, since it is a mixture of organic

components at different stages of decomposition. For better characterization,

certain physical and chemical properties are measured, such as solubility in

various media (Kononova 1966), absorbance values of SOM solutions at

different wavelengths (Tan 2003; Her et al. 2008), element ratios (Watteau et

al. 2012), molecular sizes, weights and zeta potential (Esfahani et al. 2015),

(diffuse) reflectance spectra (Viscarra Rossel et al. 2006; Conforti et al.

2013), and labiality (Zimmermann et al. 2007).
AQ2

A widespread method for SOM description is the measurement of carbon and
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nitrogen isotope ratios within SOM. These data are generally used to assess

soil system changes due to cultivation. Hence, there are major differences

between the OM synthesized by C3 and C4 photosynthesis. Organic matter

built by C4 plants has δ C value ~ − 12‰, while C3 plants produces ~ − 

25‰ (Balesdent et al. 1987). Since the primary source of SOM is the dead

biomass, changes in SOM, isotope ratios are the result of changes in

vegetation patterns. Globally, almost 95% of plants belong to the C3 group,

while C4 plants are mainly situated in the tropics. The most common C4 plant

is maize, since it covers the highest proportion of arable lands in Hungary.

Maize (corn) became essential grain in the seventeenth century in the whole

country. At that time, most arable lands were occasionally sown with maize.

From that time, the δ C value of the cultivated soils gradually increased, due

to increasing C4 residuals.

In addition to OM inputs, the mechanisms and rates of SOM decay can

determine or change δ C values in the soil via three main processes (Wynn et

al. 2006). These are described below. (i) Kinetic fractionation occurs since

heavy isotopes have a slower reaction rate that increases δ C concentrations.

This general change follows a logarithmic function based on Rayleigh

fractionation (Guillaume et al. 2015). Accordingly, during the SOM

maturation processes, each abiotic environmental influence that decreases

SOM mineralization (such as either lower temperature or precipitation

amounts) can decrease δ C values (Austin and Vitousek 1998). (ii) During

preferential substrate decomposition certain readily decomposable substances,

such as amino acids and sugars, contain higher δ C concentrations, while

more stable components such as lignin or lipids tend towards negative δ C

signatures. (iii) Rapid growth of microbiological biomass can also increase

the proportion of C (Dijkstra et al. 2006); hence, it has significantly higher

values compared to SOM (Werth and Kuzyakov 2010). Continuous SOM

maturation by microbes can gradually increase δ C (Gunina and Kuzyakov

2014). On the other hand, mean δ C soil values could be a function of

climatic parameters. Stevenson et al. (2005) found an inversely proportional

relationship between mean annual precipitation and δ C ratios in soil. Bird

et al. (2004) concluded the same tendency in Botswana along a 1000-km-long

transect. Moreover, they found a direct connection between mean annual

precipitation (MAP) and topsoil SOC content. This linkage disappears > 

500 mm MAP. In undisturbed, natural soil profiles, the vertical distribution of

SOM content and δ C values are inversely proportional (Novara et al. 2015).

The distribution of N in soils follows rules both at landscape and profile
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scales. However, generally on a global scale, values in soil vary between – 5

and + 12.6‰ (Craine et al. 2015). At the landscape scale, in the

morphologically deeper positions where temporary water saturation can occur,

the proportion of N is generally higher due to increased denitrification

activity (Mukundan et al. 2010). The same is true in a smaller scale within

soil profiles concerning layers with low permeability or compact bedrock. The

δ N values also could have a distinct vertical distribution within a

soil/sediment profile, depending on differences in the sediment and

decomposition rates. Therefore, they could be a useful tracer for sediment

fingerprinting, especially for the identification of sediments eroded by gully

or subsoil erosion (Laceby et al. 2015).

Changes of δ C and δ N values within in situ soil profiles

(Schneckenberger and Kuzyakov 2007) or human-constructed terraces

(Vázquez et al. 2015) are studied and interpreted as the results of past land

uses. Some decrease could be due to major changes in global atmospheric

C, concentration due to the Industrial Revolution and the greater use of

fossil fuels, widely known as the Suess effect (Suess 1955; Levin et al. 1989).

Guillaume et al. (2015) found the stable isotope measuring method a powerful

tool to estimate the degree of erosion from soil profiles which had

experienced major land use changes (e.g., rainforest to arable land). Novara et

al. (2015) investigated results on erosion and redistribution processes under

vineyards using stable isotope techniques. However, little is known about the

applicability of stable isotope ratios in studying soil redistribution processes

(erosion and deposition) within arable fields.

Most studies have taken place in the tropics, because SOM mineralization and

the exact change between C4 and C3 plants are most intense and common

there (Nottingham et al. 2015). Moreover, in a global context, soil erosion

mainly endangers tropical soils, while Mediterranean soils are usually already

excessively eroded. Thus, the secondary spatial concentration of stable carbon

isotope research on soil redistribution and degradation has focused on

Mediterranean environments (Novara et al. 2014a, b, 2015; Vázquez et al.

2015) but relatively few studies have reported results from the temperate zone

(Zhang et al. 2015; Zollinger et al. 2015).

Even though many papers are published on soil erosion each year, deficiencies

remain in assessments of the degree and temporal dynamics of agriculture-

accelerated surface development at the field scale (Poesen 2015). Therefore,

the aims of this study were (i) to establish whether C and N stable isotope
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patterns in deposited profiles are adequate proxies to identify the temporal

distribution of surface development beyond the present and initial stages and

(ii) to make numerical predictions on sedimentation volumes based on stable

isotope distribution techniques.

2. Materials and methods

2.1. Study site

The study was conducted at Ceglédbercel (47.249221°, 19.678067°) on

intensively cultivated arable land south east of Budapest central Hungary

(Fig. 1). Previous investigations demonstrated that this field site was

representative of local cropland and suitable for historical soil erosion studies

(Jakab et al. 2016; Szalai et al. 2016). Moreover, landscapes with very similar

properties and processes are widespread in Western and Central Europe,

where soil erosion became serious due to forest clearance in historical times

(Cerdan et al. 2010).

Fig. 1

Location of the Ceglédbercel study site. Dots indicate the boreholes involved in

this  study.  Slope  sections  indicate  the  slope  positions  of  the  boreholes  and

solum depth. The contour line interval is 2.5 m
AQ3
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The catenas represent two convex-concave complex slopes with a narrow

inflection strip in the middle. Soil was formed on a Quaternary sandy loess

parent material, originally under forest vegetation. Land use change (forest to

crop field) dates were calculated on the basis of local historical maps (Szalai

et al. 2016). After forest clearance in the early eighteenth century, soil and

tillage erosion developed and reformed the soil profiles along the slopes. Both

sheet and tillage erosion were identified as the main driving processes, those

diminished soil depth at the slope shoulder and deposited soil loss at the toe-

slope, whereas no signs of linear erosion were observed (Fig. 1). The

investigated catenas were individual erosion units without relevant external

in- or outflow. Erosion rates were calculated by Szalai et al. (2016) for the

field, with a maximum of 3 mm year  (loss of 1 m soil layer) at the most

eroded spots, that resulted approximately 2 m sedimentation at the toe.

Moreover, laboratory rainfall simulations identified sediment concentration

values 6–50 g L  (Szabó et al. 2015) that also underlined the high

vulnerability of the site against sheet erosion. Thus, soil types of the study

−1
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field have become heterogeneous, including Eutric Calcaric Cambisols,

Loamic and Eutric Calcaric Ochric Regosols (IUSS WRB 2015) (Szalai et al.

2016). Cambisols and Regosols cover considerable parts of the temperate

zone and are prone to soil erosion (Parras-Alcántara et al. 2015; Szabó et al.

2017). The main properties of the soil are in Table 1. Slope steepness of the

current surface varies between 5 and 17% with a mean of 12%, on elevations

between 154 and 170 m a.s.l. Mean annual precipitation is ~ 600 mm, while

mean annual temperature is 10.8 °C (Dövényi 2010). The investigated section

has been cultivated in the slope direction using conventional tillage

techniques. Since forest clearance, the appearance of C4 plants (maize) was

occasional, but C3 crops (e.g., winter wheat, sunflower, and rape) still

remained predominant. The tilled layer of this field was also investigated

using rainfall simulation experiments, in order to measure initial SOC and

SOM erosion in the sub-meter scale (Jakab et al. 2016).

Table 1

The  main  properties  of  the  investigated  soil  (composite  sample  from  the  cultivated

layer) (after Jakab et al. 2016)
AQ4

Color 10YR 3/3 Conductivity μS cm 137.0

pH (distilled water) 7.63 pH 8.2

pH 7.13 Alkalinity cmol  L 8.1

CEC (cmol  kg ) 11.08 0.09 HCO mg L 46.7

Al O  (m m ) 12.15 0.04 Total hardness cmol  L 11.2

MnO (m m ) 0.11 0.01 Ca mg L 22.9

MgO (m m ) 1.89 0.04 Mg mg L 0.0

CaO (m m ) 5.23 0.04 Permanent hardness cmol  L 4.0

SiO  (m m ) 57.22 0.51 Cl mg L 0.0

P O  (m m ) 0.33 0.00 NO mg L 44.63

TiO  (m m ) 0.66 0.01 SO mg L 13.7

Fe O  (m m ) 3.92 0.03 K mg L 1.16

K O (m m ) 2.54 0.02 Na mg L 0.57

SD standard deviation, CEC cation exchange capacity

−1

KCl +
−1

+
−1

3
− −1

2 3
−1

+
−1

−1 2+ −1

−1 2+ −1
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+
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−1
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− −1
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2.2. Sampling

Soil sampling was conducted in summer 2013 as a part of a holistic sampling

campaign, in which 100 soil samples were removed from 47 boreholes using

hand auger. These samples were gathered from representative layers of the

solum with varying thickness. Detailed description of the sampling process is

reported in Szalai et al. (2016). In the present study, only 33 samples are

investigated and discussed, including four soil profiles, and four additional

samples from the uppermost tilled layer from the Regosol points (Fig. 1). The

profiles/samples represent in situ soils at the (i) inflection strip (D3); (ii)

eroded parts (A1, A3, D1, D2); (iii) depositional surfaces (A5, D5); and (iv)

intact profile under forest (presumed to be non-eroded and without severe

sedimentation) (Jakab and Kertész 2014) (Fig. 1). In coding letters stand for

the parallel catenas and numbers indicate slope position (1—up-slope;

3—mid-slope; 5—toe-slope).

2.3. Chemical analysis

To quantify relationships between particle size and stable isotope

distribution, soil texture was determined. For particle size analysis, the

samples were treated with 0.5 M sodium pyrophosphate (Na P O  × 10H O)

and 15 min ultrasonic agitation in order to breakdown aggregates. Particle

size distribution was measured using a laser diffraction particle sizer (Horiba

Partica LA-950) within a range of 0.2–2000 μm (Centeri et al. 2015). The

particle size calculating method was based on Mie theory (Mie 1908). For

compatibility with pipette method 8 μm was used as the upper diameter value

for the clay fraction (Konert and Vandenberghe 1997). Inorganic carbon

content was measured using the gas volumetric method of Scheibler (Pansu

and Gautheyrou 2006). For SOC and δ C investigations, the inorganic

carbon was removed from samples using 19% HCl. Acid treatments were

repeated until the completion of CO  release. Nitrogen and SOC content was

measured using an element analyzer (Tekmar Dohrman Apollo 9000N)

(Buurman et al. 1996). Carbon/nitrogen ratio was calculated on the basis of

the result of elemental analysis. Stable carbon and nitrogen isotope signatures

were measured using a Thermo Scientific FLASH 2000 HT Elemental

Analyzer mass spectrometer. Polyethylene [(CH )n] and urea calibrated to

IAEA standards were used as references. Samples were measured in triplicate.

Where standard deviations were > 10% repeated measurements were used.

Stable carbon isotope composition is expressed as the ratio of C isotopes to

4 2 7 2
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1

C (δ C) in parts per thousand (‰). Since most of the values in nature are

too small in this scale, zero value was set to a standard of a marine fossil

(Belemnitella americana), which has an extremely high and uniform ratio of

0.0112 as a convention. This fossil was from the Pee Dee formation hence was

called Pee Dee Belemnite (V-PDB). Therefore, ‰ values used in soil science

and also in this study are related to V-PDB as zero, which triggered negative

values.

Similarly, stable nitrogen isotope composition is expressed as the ratio of N

and N in parts per thousand (‰). In nature, approximately 0.36% nitrogen

is in N form. For standard, atmospheric molecular nitrogen (AIR) is used

which by convention is set to 0‰. This way, studied SOM samples were

compared to standards according to Eq. (1):

where R is the C/ C ( N/ N) ratio in the sample or in the international

standard (Coplen 2011).

Molecular properties of SOM were estimated on the basis of photometric

properties using absorbance spectra of alkali solved SOM. Sodium hydroxide

(NaOH) solution (0.5 M) was applied for SOM extraction from soil.

Extracted SOM were characterized by recording their absorbance spectra in a

wavelength range of 1800–180 nm. Absorbance values at distinct wavelengths

were used to calculate indexes, such as E /E  and E /E  indexes as proxies of

the degree of mean polymerization (Tan 2003) as well as ultraviolet

absorbance ratio index (URI, UVA /UVA ) as an indicator for mean

functional group density (Her et al. 2008) of SOM. Absorbance value at

280 nm was applied to estimate the mean degree of aromaticity (Chin et al.

1994) of SOM molecules.

3. Results and discussion

Solum depth varied 0–280 cm in the studied profiles. In the eroded parts, the

recent solum was formed due to cultivation therefore its depth ≤ 25 cm. The in

situ site under the forest was 110 cm deep, while the profile in the inflection

(D3) was 100 cm. The measured properties of each catena are reported in

Table 2.

12 13

15

14

14

δ = ( − 1) ∗ 1000Rsample
Rstandard

13 12 15 14

4 6 2 3

210 254
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Table 2

Measured properties of the soil samples on the Ceglédbercel catena

Profile URI E /E E /E

A1 0–10 4.1 − 
23.0 32.7 23.2 44.17 1.48 3.00 1.53 2.80

A3 0–10 5.3 − 
23.7 26.2 21.9 51.82 1.09 3.13 1.58 2.76

A5 0–25 5.9 − 
24.9 33.3 24.3 42.40 1.00 2.65 2.11 2.47

A5 25–50 7.1 − 
25.4 31.0 25.2 43.77 1.36 3.22 1.75 2.71

A5 50–80 7.7 − 
25.5 36.3 28.5 35.23 1.41 3.53 1.24 2.84

A5 80–110 7.2 − 
25.6 29.7 27.3 42.99 1.46 5.93 1.20 2.95

A5 110–140 6.8 − 
25.7 31.4 28.0 40.65 1.37 4.42 1.12 2.82

A5 140–160 6.5 − 
25.7 32.5 29.3 38.19 1.47 6.70 0.95 2.87

A5 160–185 5.8 − 
25.6 27.8 24.6 47.53 1.62 4.73 0.85 2.78

A5 185–210 5.3 − 
25.4 28.7 27.8 43.53 2.08 4.71 0.50 3.04

A5 210–250 5.5 − 
25.2 29.2 26.4 44.38 1.81 3.04 0.49 2.81

A5 250–280 5.7 − 
25.3 31.2 28.0 40.76 2.35 3.27 0.35 3.08

D1 0–10 5.3 − 
24.2 38.3 23.5 38.22 1.59 13.20 1.21 3.26

dN and dC stand for stable isotope ratios. E /E  and E /E  are indexes as parameters for the degree of soil org
matter polymerization (Tan 2003)

URI  ultraviolet absorbance ratio index (ratio of absorbance values measured at 210 and 254 nm (Her et al. 
280 Abs. measured absorbance at 280 nm as a proxy of aromaticity, SOC soil organic carbon, 
carbon/nitrogen ratio

< 8 μm measured by laser diffraction

8 μm–50 mμ Please change the order.

> 50 μm

a b c

4 6 2 3

2 3 4 6

a

b

c
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Profile URI E /E E /E

dN and dC stand for stable isotope ratios. E /E  and E /E  are indexes as parameters for the degree of soil org
matter polymerization (Tan 2003)

URI  ultraviolet absorbance ratio index (ratio of absorbance values measured at 210 and 254 nm (Her et al. 
Abs. measured absorbance at 280 nm as a proxy of aromaticity, SOC soil organic carbon, 
carbon/nitrogen ratio

< 8 μm measured by laser diffraction

8 μm–50 mμ Please change the order.

> 50 μm

D3 0–10 6.3 − 
24.5 33.5 24.6 41.83 1.71 2.24 0.94 2.81

D3 50–60 6.4 − 
24.8 38.9 26.6 34.55 1.96 2.88 0.68 3.25

D3 80–90 6.8 − 
24.7 42.3 26.7 31.00 2.12 n.a. 0.52 3.78

D4 0–10 3.6 − 
22.9 26.0 24.7 49.34 2.16 1.97 0.72 2.79

D5 0–30 5.7 − 
24.5 29.2 23.3 47.56 1.44 2.34 1.31 2.98

D5 30–80 6.9 − 
25.1 36.4 24.4 39.25 1.59 3.90 1.12 3.17

D5 80–110 7.2 − 
25.6 42.7 28.5 28.86 1.47 2.46 1.32 2.91

D5 110–125 7.1 − 
25.6 41.4 30.4 28.13 1.56 3.71 1.09 2.97

D5 150–160 6.3 − 
25.6 39.4 26.2 34.38 1.75 2.26 0.94 2.79

D5 180–190 4.7 − 
25.6 32.1 25.1 42.79 1.93 2.70 0.76 2.73

D5 200–210 5.8 − 
25.6 30.7 25.5 43.81 2.17 1.74 0.62 2.60

D5 210–220 4.9 − 
25.4 34.9 27.5 37.64 2.83 2.61 0.29 3.21

Forest 0–24 5.0 − 
25.4 36.1 23.2 40.68 1.93 3.00 2.53 2.95

Forest 30–45 6.1 − 
25.3 37.5 26.7 35.83 2.64 2.76 1.84 2.95

a b c

4 6 2 3

2 3 4 6

a

b

c
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Profile URI E /E E /E

dN and dC stand for stable isotope ratios. E /E  and E /E  are indexes as parameters for the degree of soil org
matter polymerization (Tan 2003)

URI  ultraviolet absorbance ratio index (ratio of absorbance values measured at 210 and 254 nm (Her et al. 
Abs. measured absorbance at 280 nm as a proxy of aromaticity, SOC soil organic carbon, 
carbon/nitrogen ratio

< 8 μm measured by laser diffraction

8 μm–50 mμ Please change the order.

> 50 μm

Forest 45–54 6.9 − 
25.3 34.4 25.0 40.63 3.89 2.26 1.23 2.96

Forest 70–80 6.2 − 
25.1 32.4 26.3 41.32 4.92 1.90 1.00 2.44

Forest 95–102 6.4 − 
25.1 32.4 24.5 43.08 6.01 1.77 0.83 2.50

Forest 106–110 3.4 − 
25.2 38.2 26.9 34.90 7.83 1.65 0.61 3.00

3.1. Spatial distribution of SOC

Distribution of SOC content varies with depth in the investigated profiles

(Fig. 2). Profile D3 and the forest profile have a pattern of gradually

decreasing SOC with depth, which is considered representative of the natural

vertical distribution. The content and the trend of decreasing SOC below

50 cm are quite similar, but the SOC content of the uppermost 50 cm differs.

Over 10 g kg  SOC is absent in the tilled layer of profile D3. This could be

the result of (i) SOC mineralization of SOC due to intensive cultivation or (ii)

soil erosion and/or deposition in the D3 profile. On the other hand, surface

sample properties are highly variable and measured values seem to be

independent from morphological position. Many studies report data on SOC

enrichment down-slope (Wang et al. 2010; Farsang et al. 2012). Szalai et al.

(2016) found SOC deposition spots on the toe-slope of the same research site.

This suggests that beyond mass movement spatial heterogeneity of selective

SOM deposition or mineralization may hardly affect local SOC contents.

Thus, soil surface properties are highly variable even under intensive

cultivation.

Fig. 2

a b c

4 6 2 3

2 3 4 6

a

b

c

−1
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Changes in SOC content of the studied profiles. Shallow profiles, such as A1;

A3 and D1; D4 are included in “surface samples” (error bars indicate standard

deviation), n = 3–6 (depending on standard deviation)

In contrast, SOC content in profiles A5 and D5 reach their maximum value

below the surface at depths that relate to sedimentation in these parts of the

landscape (Fig. 2). Profile A5 has a bimodal distribution due to periodical

changes in the SOC concentrations of sediments, while in profile D5 there is

a definite peak at ~ 1 m depth.

3.2. Spatial distribution of δ C

Besides the high variance in SOC content of the uppermost cultivated layer

samples of each crop field profile, they have higher δ C values, with very

high variance (Fig. 3). This could be the result of the more frequent sowing of

maize in recent decades. High variance refers to the altering decomposition

degrees of the relatively recent plant residuals. An additional possibility is

selective decomposition. However, Vázquez et al. (2015) stated that decreased

tillage intensity results in higher C/N ratios and the increase of δ C values

and vice versa.

Fig. 3

Changes in δ C values in the investigated profiles (error bars indicate standard

deviation) n = 3–6 (depending on standard deviation)
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According to the results of Stevenson et al. (2005), pedogenic carbonates have

significantly higher δ C values within a range of − 4.1 to − 10.8‰ that

ensure the possibility of separation of organic and inorganic carbon solely on

the basis of stable isotope concentrations. Accordingly, the higher values

could be the result of CaCO  exhumed from the parent material due to

intensive erosion. However, the samples in question were completely

decarbonated by HCl. It is postulated that some of the most reactive SOM

components, such as sugars and proteins, could be mobilized by the acid

application and leached out during the acid removal process. Since all

samples were treated the same way, this is probably not the reason for the

higher values in the cultivated layer.

Soil samples beneath the tilled layer had a significantly lower C values with

much less variation (Fig. 3). The range is between − 24.5 and − 25.8‰, which

completely covers the C3 plant residuals (Balesdent et al. 1987). This

suggests that the main part of soil redistribution on the investigated field

occurred prior to the widespread farming of maize in the eighteenth century in

Hungary (Hadi 2006). According to this scenario, the main erosion and

redistribution processes occurred immediately after forest clearance

(Vanwalleghem et al. 2006), but before the frequent growth of maize (first half

of the eighteenth century).

Only profile D3 had higher signature values, those are still less than surface

samples. Since this profile is on the inflection section, on the basis of its

depth and vertical SOC distribution, it could be original and intact. On the

other hand, because of the long time elapsed since forest clearance on the site,

this profile could be completely eroded and redeposited again. This variation,

however, shows a consequent spatial distribution. On the sedimentary parts,
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soil profiles have a specific U-shaped δ C value distribution with depth (Fig.

3).

The smallest δ C value is ~ 130–150 cm depth, which is presumed to be the

original soil surface prior to the onset of accelerated erosion processes. This

does not accord with the SOC content distribution since SOC has a maximum

higher in the profile, at 100 cm depth. This difference of 30 cm suggests that

immediately after forest clearance when erosion rates accelerated, selective

erosion ( Lal and Pimentel 2008 Lal et al. 2008

) caused SOC enrichment of sediment. Thus, deposited soil loss with a

higher SOC content covered the lower parts of the catena (A5 and D5

profiles). After the deposition of this ~ half a meter of sediment, the SOC

content of soil loss became lower because of the loss of SOM enriched “A”

horizons on the upper parts of the catena. Hence, erosion mobilized and

delivered much less SOC, which presumably created the upper part of the

sedimentary profiles.
AQ5

The original, buried soil profiles have increasing δ C values with depth,

which accords with the results of Novara et al. (2014a, b, 2015). Vázquez et

al. (2015) also found that values of δ C increased with depth in all pedons

and decreased from the top to the bottom of the slope. Catena A followed this

trend and there was a distinct decrease in δ C values along the slope in the

tilled layer, while in catena D, there was no apparent connection among SOC

content, δ C values and geomorphologic position (Table 2).

Wynn et al. (2006) reported logarithmic increases of δ C in both cultivated

and control soil profiles. The trend observed in this study is probably linear

rather than logarithmic (Fig. 4). This increasing value is most likely explained

by the greater degree of decomposition in deeper horizons resulting from

SOM maturation with depth (Wynn et al. 2006). Quite similar tendencies were

observed in the neighboring profile in the forest (Fig. 4), which is the natural

undisturbed vertical distribution. Wynn et al. (2006) found that δ C

distribution was not clearly logarithmic in the cultivated profiles, but has a

shift to 1‰ upwards compared to the control site. In the control site, the

distribution could be described using the Rayleigh distillation model.

However, in that case the range of δ C varied within a wide range between − 

22 and − 28‰. As the shape of the fitted lines are quite similar in the buried

and forest profiles, there was no significant SOM maturation since burial in

the present case. Consequently, burial conserved the vertical distribution of
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δ C; therefore, no detectable maturation or SOM decomposition occurred. In

profile D3, δ C decreased with depth (Fig. 3). Compared to the regular

vertical SOC distribution, this profile seemed to be similar, therefore in situ.

Fig. 4

Changing δ C values in the in situ parts of the profiles follow a linear function

(error  bars  indicate  standard  deviation)  n = 3–6  (depending  on  standard

deviation). n.s., not significant

The steepness of the fitted linear functions was one order of magnitude higher

in Mediterranean vineyards (Novara et al. 2015), which supported the

existence of linear connection also found in this study, nevertheless

emphasized the role of local modifying (probable mineralization related)

parameters. However, this model has ambiguities, since it does not take into

account selective erosion and deposition and carbon sequestration and

mineralization (Fiener et al. 2015; Doetterl et al. 2016; Hu and Kuhn 2016).

As in this study (Table 2), Laceby et al. (2015) also found no correlation

between particle size distribution and δ C or δ N values. However,

Bellanger et al. (2004) reported associations between specific size fractions

with different δ C concentrations. The reason of this contradiction may be

the different age of SOM attached to soil particles. This can result in various

δ C values due to land use and/or agrotechnical changes. According to Bai et

al. (2012), the (measured) δ C values can also be a function of soil texture.

They found a positive significant correlation between silt + clay fraction and

δ C value. Moreover, according to their results, SOC concentration is

significantly and negatively correlated with δ C values. They concluded that

SOC is mostly derived from roots rather than shoot derived (above ground)
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plant residuals. Metabolites of C4-type photosynthesis persist longer in

organo-mineral complexes and thus increase δ C values compared to sandy

soils deficient in fine-sized particles. The depositional, upper parts of the A5

and D5 profiles have an opposite distribution in which δC  values decrease

with depth (Fig. 3). Since the cultivated surface layer has significantly lower

values, their deposition on toe-slopes is a plausible explanation. In the

original undisturbed parts (beneath the deposition layers), δ C values appear

to be largely a function of SOC content (Fig. 5). There is a reciprocally

proportional linear linkage between them; however, the steepness of the fitted

trend lines varies. In the cultivated eroded and deposited parts there is no

significant correlation, which accords with Vázquez et al. (2015), who

reported δ C variations to be independent from the C content along the

depth of a manmade terrace in Spain since terrace soils were typically mixed.

Fig. 5

Connection  between  SOC  and  δ C  values  in  the  in  situ  parts  of  the

investigated profiles (error bars indicate standard deviation) n = 3–6 (depending

on standard deviation). n.s., not significant

The higher the SOC content, the lower the δ C value, which was interpreted

by Austin and Vitousek (1998) as the higher resistance of the heavier

molecular weight carbon that finally resulted in δ C enrichment in the

mineralized parts. On the basis of the results presented above, the burial of

these profiles occurred over 200 years ago that limited SOM decomposition

processes in these layers, and accordingly selective decomposition was less

effective (Van Oost et al. 2007). This relationship is assumed to have

developed during SOM formation, as was the case in the forest profile.

According to this theory, the most mobile components had higher δ C values
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that could increase this in deeper horizons, due to the higher ratio in

migrating SOM.

3.3. Spatial distribution of N and C/N

Generally, SOM quality tends to be fairly constant within a small scale,

homogenous land use unit, which suggests a narrow range of C/N ratio within

this homogeneous unit. In contrast, in the present study, the spatial

distribution of the TN content compared to that of the carbon shows a

different pattern (Fig. 6).

Fig. 6

Plot  of  soil  nitrogen  values  (a)  and  C/N  ratios  (b)  with  depth  (in  the

investigated profiles (error bars indicate standard deviation) n = 3–6 (depending

on standard deviation)

The highest difference is found in the case of the forest profile, especially in

the upper part. Here, a relatively high SOC content, paired with a relatively

low TN concentration, results in a C/N ratio of ~ 40. This implies the

dominance of the forest derived, weakly decomposed SOM.

The most salient point indicated by the TN peaks is in the depth range of

0.5–1.2 m depth, while the value on the surface is much lower in each

cultivated profile. This suggests increased selective SOM decomposition in

the upper layers, probably due to intense physical disturbance (aggregate

breakdown) and greater oxidation (Kuhn et al. 2012). The undisturbed forest

profile had the same vertical pattern that could not be affected by tillage. In

profiles A5 and D5, these TN peaks could refer to the original soil surface, as

it does with SOC patterns. However, SOC peaks and δ C abundance
13
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indicated the original surface at a lower level of 1–1.5 m. In soils,

environmental conditions (e.g., moisture, temperature, available and

biologically active N and pH) can limit SOM decomposition and maturation

processes. Therefore, its concentration can change much more rapidly as a

function of temporal variations in biological activity (Liang et al. 1999).

In each in situ soil profile (forest and the lower parts of A5 and D5), C/N

ratios show a decreasing trend with depth, while in the sedimentary sections

there are no clear trends. Taking the decreasing curves as a proxy of the

original soil profile, the same deposition depth (~ 130 cm) is identified as

calculated from the vertical pattern of δ C.

3.4. Spatial distribution of δ N

Recent N stock and forms in soil is believed to be the result of

microbiologically driven complex progression. Thus, most studies on δ N

focused on processes within the uppermost 10 cm of soil (Wang et al. 2014;

Snider et al. 2017). Depth-related distributions were studied only in the upper

30 cm by Kerley and Jarvis (1997). However, they described TN increase and

δ N decrease in an undisturbed soil profile with depth. In this study, δ N

did not have a clear holistic spatial distribution, although there is a definite

increase with depth in the uppermost 0.5–1.0 m layer. This ~ 1.0 m depth

could be the limiting factor for biological activity. Boddey et al. (2000) also

described irregular N patterns with depth, even within in situ soil profiles.

Generally, it is also true that the highest N values in each profile in the

present study were found at 0.5–1.0 m depth (Fig. 7), as in the case of the TN

content (Fig. 6), which accords with the depth limit of microbiological

activity discussed above.

Fig. 7

Plot of δ N values and depth in the investigated profiles (error bars indicate

standard deviation) n = 3–6 (depending on standard deviation)
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The δ N peak refers to the most mature SOM to be found in the 0.5–1.0 m

layer, since during decomposition processes the ratio of the heavier fraction

( N) increases in residuals in tandem with a decreasing C/N ratio (De Clercq

et al. 2015), while the biologically active substrates are taken by plant roots.

There could be a lack of mineralized N depleted in N in this layer compared

to the upper, and especially the surface layer, where microbial activity is

generally of higher magnitudes. Therefore, most biologically active N forms

remain in the layer, mainly within cells. Below this peak, both N content and

δ N decrease with depth, as reported by Craine et al. (2015). The relatively

lower values of the upper layers are the results of (i) high C/N ratios of the

aboveground plant residuals; (ii) low SOM content, due to intensive

cultivation; and (iii) low microbiological activity. Therefore, N distribution

patterns are much more a function of microbial activity and hydrological

conditions than SOC and δ C distribution, since they could vary seasonally

≤ 2.5‰ (Kerley and Jarvis 1999). Accordingly, N is much less suitable for

retrospective surface identification predictions (Handley and Raven 1992).

While SOC content was linked with δ C only in the undisturbed in situ

parts, there is a slight connection between TN content and δ N in the whole

depth of both sedimentation profiles (A5, D5). Higher N content indicates

higher δ N value, although in the forest profile and surface samples there is

no significant correlation (Fig. 8). Accordingly, N amount determines the

degree of maturation only in buried in situ profiles.

Fig. 8

Soil  nitrogen  content  as  a  function  of  δ N  (error  bars  indicate  standard

deviation) n = 3–6 (depending on standard deviation)
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Former fertilization processes may have been influential. Manure and other

animal wastes have higher δ N values (10–20‰), while SOM derived

inorganic nitrogen (IN) has a range of 2–8‰ and artificial N fertilizers have

the lowest range of – 2–3‰ (Freyer and Aly 1974; Kreitler et al. 1978).

However, little is known about the isotopic fractionation processes of mineral

N forms especially in the soils of the temperate zone (Boddey et al. 2000).

Since little fertilizer or manure application has occurred in the study area, the

lack of trends in the deposited and tilled soil layers could be the result of the

occasional nutrient application.

Tiessen et al. (1984) found that 90 years of intensive tillage on a virgin prairie

decrease the TN value by 51% but had little decrease effect on δ N in the

bulk soil. On the other hand, N abundance of most fractions could vary

considerably. Inorganic nitrogen mineralized from SOM had lower values and

extractable SOM had higher values, while the bulk soil as a whole remained

constant (Koba et al. 2010). Others reported that dissolution of SOM

components did not fractionate the isotopes (Amundson et al. 2003).

3.5. Connection between stable isotopes and soil properties

Many researchers found considerably stable connections between C and N

stable isotopes in soil samples. In the present study, no relationship was

found for the whole group of samples (Fig. 9). Although excluding the buried

in situ and forest samples, a strong inverse correlation was found in eroded

and deposited cultivated soil samples. Dijkstra et al. (2006) found this

relationship to be inverse, both in the cases of total SOM and microbiological

biomass. This relates to the parallel enrichment of stable isotopes during

transformation and maturation processes. Thus, arable land acts as a separate
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unit with a wider variation in both isotope ranges, while the in situ profiles

seemed to be more stable and with less variability. This inverse linkage

appears only in the cultivated and therefore strongly oxidized parts,

suggesting differential transformation processes of C and N, namely selective

isotope mineralization of C parallel with relatively stable δ N values.

Fig. 9

Relationships between the stable isotope values of soil samples

Although photometric and C/N ratio-based SOM properties varied in a wide

range within the investigated site, there were no significant correlations

between them and the stable isotopes (Table 2). This accords with the results

of Yu et al. (2010) who reported considerable changes between δ C value of

soil samples with various sources but found no significant difference in C/N

values. Stable isotope ratios are properties of the in situ bulk SOM; however,

photometric indexes are based on only the alkali soluble components of

SOM, and accordingly, the soluble part does not represent the solid SOM as

it was reported by Lehmann and Kleber (2015). However, C/N values also

represent the bulk solid SOM the lack of connection suggests that stable

isotope ratios of SOM components are independent from the degree of

aromaticity or polymerization. Liang et al. (1999) published results on

specific SOM component adsorption to various textured soils, but in the

present case, no linkage was found between stable isotope values and soil

texture. The absence of associations between particle size distribution and

stable isotope ratios was presumed to be due to the lack of isotope selective

bonds between organic and mineral components. Nevertheless, this study was

based on a local soil type and SOM composition, in small scale; therefore

spatial validity of absence of connection among SOM properties are limited.
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4. Conclusions

The δ C and C/N decrease in buried in situ profiles had the same tendency as

recent forest soil, indicating of the conservation of SOM quality distribution

after burial. Accordingly, microbiological activity and root uptake and

metabolism have not been effective enough to modify initial soil properties.

These were in line with the results gained from the Mediterranean, even

though the role of local modifying parameters was clear.

The highest SOC and TN values did not refer to the original buried soil

surface, but rather with a layer of sediment deposited by selective initial

erosion. On the other hand, δ C and C/N ratios indicated the original surface

adequately to be ~ 1 m above parent material. This accords with the depth of

the in situ forest profile and, if homogeneous soil depth is assumed, it means

70–80 cm soil loss from upper slopes. Consequently, at initial stages of sheet

erosion, changes in δ C abundance due to tillage and delivery would much

better fingerprint the original surface under sedimentation than SOC content.

Concentration of SOC and C abundance within soil profiles are much more

persistent than those of N. Therefore, the former are more suitable for

estimating soil redistribution. More precisely, δ C patterns indicate the

original soil surface, even in profiles sedimented centuries ago.

Most sedimentation occurred soon after forest clearance and before the start

of intensive cultivation. This highlights the role of relief in sheet erosion

intensity, compared to that of intensive tillage, which accords with the results

of Szalai et al. (2016) at the same site.
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