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Abstract 

High strength steel application for a welded fixed roof of a vertical storage tank is studied. The load 

from snow and from a 150 mm soil layer is considered.  The roof is constructed from stiffened sectorial 

trapezoidal plate elements and radial beams. The stiffeners are of halved rolled I-section and the radial 

beams are constructed from rolled I-sections. To find the minimum cost solution the thickness of the 

base plate, the position, number and size of circumferential stiffeners, the size of radial beams as well 

as the number of sectors is varied. The distances of stiffeners are equidistant. In the cost function the 

cost of material, welding and painting is taken into account. 
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1. Introduction 

The economic design of a tank roof made of normal steel (yield strength fy = 235 MPa) has been treated 

in our previous study [1]. 

The roofs constructed from welded stiffened plate sectorial elements are suitable for carrying the load 

of a 150 mm soil layer used to decrease the evaporation loss of stored liquid (kerosene). 

The adaptation and development of effective mathematical optimization methods make it possible to 

use an optimum design system for the economic (minimum cost) design of welded structures [2] -[6]. 

In the present study this economic design method is applied for a fixed storage tank roof constructed 

from stiffened plate sectorial elements and radial beams made of high strength steel of yield strength 

fy = 690 MPa.. In the optimization procedure the optimum values of the following structural 

characteristics are sought: number and size of radial rolled I-section-beams, the thickness and the 

equidistant circumferential stiffening of the deck plate elements. 

The roof is designed to carry the snow load as well as the load of 150 mm thick soil layer mentioned 

earlier. In a previous study it has been shown that the most economic stiffening can be designed with 



the equidistant stiffener distances with variable base plate thickness. The necessary base plate 

thicknesses are calculated from the condition that the deck plate part should fulfil the bending stress 

constraint. 

 

2. Loads 

Snow load is calculated according to Eurocode 1 [7] 

 

kte sCCs 1=                 (1) 

 

2511801 .s,CC,. kte ====  kN/m2, thus s = 0.8x1.25 = 1.0 kN/m2. 

Soil load: 150 mm thick layer of a humid light sand of bulk density 17 kN/m3 

ps = 0.15x17 = 2.55 kN/m2. 

Snow and soil together s + ps = 3.55 kN/m2, multiplied by a safety factor of 1.5 

p = 5.325x10-3 N/mm2. 

The safety factor for the self mass of sectorial elements is 1.35, and for self mass of radial beams is 

1.1. 

 

3. Numerical data (Figures 1,2,3) 

 

Storage tank diameter D = 20 m, inner ring beam diameter d = 1.0 m, roof angle α0 = 150. 

The length of a radial beam L = 9500/cos 150 = 9835 mm. The characteristic sizes of a trapezoidal 

deck plate xA = 618, xB = 10353 mm. α = 180/ω, where ω = 10, 12, 14, 16 is the number of sectors. 

The length of stiffeners is calculated for given ω: yi = xifω, where fω = 2tanα.  

It should be mentioned that the sectorial plate is treated as a trapezoidal one, the curved part is 

neglected, but the height of the trapezoid is taken equal to the length of the radial beam (9835 mm). 

 

4. Design of sectorial stiffened deck plate elements 

 

4.1 Calculation of base plate thicknesses 

 

These thicknesses are determined using the condition that the maximum normal stress due to bending 

in each plate element between stiffeners should not be larger than the yield stress. The maximum 



bending moment in a deck plate element is calculated approximately for a simply supported rectangular 

plate according to Timoshenko [8] 
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Figure 1. A fixed tank roof 
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Figure 2. Forces from the roof load 
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where ai is the smaller side length and  βi is given in function of  1ii a/b  in Table 1. 

 



Table 1. Bending moment factors 

 

b/a 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 

104β 479 554 627 694 755 812 862 908 

 

1.8 1.9 2.0 3.0 4.0 5.0 >5 

948 985 1017 1189 1235 1246 1250 

 

The values of Table 1 are approximated by the following expressions 
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Figure 3. Stiffener distances and a part of the base plate 
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a0 = -0.08022658, b = 0.180443, c = -0.061636, d = 0.009575,  e = -0.00056537 

 

From equation 

 

62 /tfM iymaxi =                (7) 

 

t is the deck plate thickness,   fy = 690 MPa is the yield stress,  
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It should be noted that in this calculation the transverse bending moments are neglected, but the plate 

elements are calculated as simply supported and it is also neglected that their edges are partially 

clamped. 

 

4.2 Design of stiffeners 

 

A stiffener is subject to a bending moment 
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The cross-sectional area of a stiffener of halved rolled I-section and the effective plate part 
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The effective plate width is calculated as the sum of the half effective widths of the neighbouring plate 

parts. The effective width is calculated according to the Eurocode 3 [9]  
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E = 2.1x105 MPa   is the elastic modulus. 

The required section modulus is given by 
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The distances of the gravity centres Gi 
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the moments of inertia  
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The section moduli are defined as 
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where 1−i.Gz  is the greater of  1−i.Gz   and 11 −i.Gz . 

The required stiffener profile is selected from Table 2 to fulfil the stress constraint 

 

101 −−  i.i.y WW                 (18) 

 

Table 2. UB profiles used for halved rolled I-section stiffeners 

 

UB profile h b tw tf 

127x76x13 127.0 76.0 4.0 7.6 

152x89x16 152.4 88.7 4.5 7.7 

 

4.3 Cost calculation for a sectorial stiffened plate element 

 

A whole sectorial plate element is assembled from the base plate parts, n-1 stiffeners and 2 radial edge 

plates. 

In the case when all the base plate parts are of the same thickness (tmin = 4 mm), the welding of the 

base plate is made from 7 elements (considering the maximum fabricated plate width of 1500 mm) 

using SAW (Submerged Arc Welding) butt welding. The length of the plate (9835 mm) is divided into 

7 parts, the total length of welds is 

 

fLw 326131 =                (19) 



 

and the welding time is 
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where 

 

6

1 10857201 −=== x.,min,/$.kw  kg/mm3, Cw1 = 0.1559x10-3, 

 

tfx.tfV 
6

1 104581539835
2

51810353
=

+
=    (21) 

 

It should be mentioned that these formulae are different when the base plate thicknesses are different 

(the case of n = 4) 

 

Time of welding of the base plate to the edge radial plates as well as to the inner and outer ring beam 
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Welding of stiffeners to the base plate and to two edge radial plates to complete a sectorial plate 

element using fillet welds: 
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where n-1 is the number of stiffeners,  ,32 =  
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the volume of the edge radial plates is 

 

sss thxV 98352=                (25) 

 

ts = 6 mm, hs  equals to the maximum stiffener height + 30 mm, volume of a stiffener is 
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welding time for a stiffener is 
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where 
3
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are the constants for SAW and SMAW (Shielded Metal Arc Welding) fillet welds, respectively, 

aw = 3 mm, the second part is multiplied by 2, since the welding position is mainly vertical. 

The time of welding of the two edge radial plates to the base deck plate is 

 

9835231 2

3 xL,LaC.T sswws ==           (28) 

 

Material cost of a complete sectorial element is 

 

0121 .k,VkK mmm ==  $/kg.          (29) 

 

The painting cost of a complete sectorial element is 
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( ) fxbhS iii.i.stif 11111 2 −−−− +=           (33) 

 

The total cost of a sectorial element is 

 



11 Pwsms KKKK ++=              (34) 

 

5. Design of radial beams 

 

Radial beams of rolled I-section are subject to bending and compression. The load is calculated from 

snow and soil load (pM), the mass of a sectorial element (q) and the self mass (ρ1Ar): 

 

p = pM + q + ρ1Ar,   q = ρ1V2/L1,  ρ1 = 7.85x10-5 N/mm3,  

 

L1 = 9500 mm.                (35) 

 

The maximum bending moment is 
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The compression force is 
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where 

 

200002 === L,/pLPF MV  mm,  H = 9500sin150 = 2459 mm                 (38) 
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Stress constraint for bending and compression according to Eurocode 3 [9] 
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Figure 4. Cross-section of a stiffener and connection to the radial beam 

 

Table 3.  Data of UB profiles used for radial beams, dimensions in mm 

 

UB profile h b tw tf A  

[mm2] 

Wx10-

3[mm3] 

r 

305x102x28 308.7 101.8 6 8.8 3588 3476 122.3 

305x102x33 312.7 102.4 6.6 10.8 4183 4158 124.7 

305x127x37 304.4 123.4 7.1 10.7 4738 4711 123.3 
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r is the radius of gyration, Ar is the cross-sectional area, for 1  
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The suitable rolled I-profile is selected from an ArcelorMittal product catalogue using the British UB 

profiles. 

 

6. Cost of a radial beam 

 

Material cost     

9825=== RRrRRmM L,LAV,VkK   mm,     (44) 

 

cost of welding to the inner ringbeam and to the tank shell 
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the factor of 2 is used since the welding is mainly vertical. 

 

Cost of painting 

 

( ) RRRPP LbhkK 42 1 +=             (46) 

 

Total cost of a radial beam 

PWMR KKKK ++=              (47) 

 

7. Additional cost 

 



Material, welding and painting of a deck plate of size 200x6x9825 connecting the sectorial elements 

as well as welding of the sectorial elements to the radial beam 

 

AmMA VkK =                 (48) 
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VA = 200x6LR                (50) 

 

RPPA LkK 200=                (51) 

 

PAWAMAA KKKK ++=             (52) 

 

Total cost of the whole roof structure 

 

( )ARs KKKK ++=             (53) 

 

8   Optimization results 

 

Table 4 and 5 summarize the results (masses and costs) for different values of ω for a sector and for 

the whole roof 

Table 4. Total costs in $ for different numbers of stiffener distances 

 

ω n Ktotal 

12 4 61000 

12 6 51060 

12 8 52230 

 

It can be seen that the optimum number stiffener distances is 6. Therefore, in the further search, the 

number of sectors is varied. The results are shown in Table 5. 

 

Table 5. Masses in kg and costs in $ for the whole roof 



 

ω n ρVtotal Ktotal 

10 6 17670 49270 

12 6 18378 51060 

14 6 18251 52450 

 

It can be seen that ω = 14 and ω = 10 gives the minimum mass and minimum cost for the whole roof, 

respectively. It should be noted that the case of ω = 8 is unrealistic, since in that case the sectorial 

element has not a trapezoidal but a circular sector form, which needs also  partial radial stiffeners 

beside of the circumferential ones and the cost increases. 

 

Table 6 gives the details of the investigated roofs. 

 

Table 6.  Details of the investigated roofs. Dimensions in mm. The optima are marked by bolt 

numbers 

 

ω n Base plate 

thicknesses 

Stiffeners 

1/2 UB 

Radial 

edge 

plates 

Radial beams 

UB 

ρVtotal 

[kg] 

Ktotal [$] 

12 4 4,5,6,6 1: 152 

2,3: 127 

106x6 305x102x33 26819 61280 

12 6 7 parts 

all 4 

1: 152 

2-5: 127 

106x6 305x102x33 18615 51060 

12 8 7 parts,all 4 all: 127 93.5x6 305x102x33 18417 52230 

10 6 7 parts 

all 4 

1: 152 

2-5: 127 

106x6 305x127x37 17670 49270 

14 6 7 parts,all 4 all: 127 93.5x6 305x102x28 18251 52450 

 

In order to consider a 10% increase in material and welding cost factors, we multiply the material and 

welding costs by using  kM = 1.1 $/kg and kW = 1.1 $/min. Calculate the increased cost for ω = 10 and 

n = 6. 

Eq.(22): Kws = 664.985x1.1 = 731.5, Eq(28): Km1 = 1310x1.1 = 1441, Eq.(33): Ks = 731.5+1441+1920= 

4092.5 $. 



Eq(43): KM = 364.25x1.1 = 400.67, Eq(44): KW = 152.52x1.1 = 167.8, Eq.(46): KR= 300.67+167.77+ 

230.2 = 798.64 $, Eq(47): KMA = 92.65x1.1 = 101.9, Eq(48): KWA = 135.3x1.1 = 148.83, Eq(51): KA = 

101.9+148.83+56.6 = 307.33 $, Eq(52): K = 10(4092.5+798.64+307.33) = 51985 $ instead of K total = 

49270 $. 

It can be concluded that the cost saving in this case is (66550-51985)/66550x100 = 22%. 

 

9. Conclusions 

 

Minimum cost design of a fixed roof of a vertical steel storage tank is worked out for a numerical 

model structure and for a high strength steel with a yield strength of fy = 690 MPa. Load of snow and 

a soil layer is considered. The roof is constructed from sectorial stiffened plate elements and radial 

beams. The number of sectors varies between 10 and 16.  

The sectorial elements are circumferential stiffened with halved rolled I-section stiffeners welded to 

the base plate. The equidistant distances of stiffeners are used and the necessary base plate thicknesses 

are calculated so that the plate parts are equally stressed. The radial beams are constructed from rolled 

I-sections. The cost function contents the cost of material, welding and painting. The cost calculation 

shows that the minimum roof mass and cost corresponds to the number of sections of 14 and 10 

respectively. 

 

In a previous study [1, 6] we have optimized a tank roof with the same loads and main dimensions 

using a mild steel of yield stress fy = 235/1.1 = 213.6 MPa and obtained the optima of ρVtotal = 23240 

kg and Ktotal = 66550 $. This means that, calculating with cost factors of kw = 1 $/min and kM = 1 $/kg, 

the use of high strength steel results in savings in mass (23240-17670)/23240x100 = 24% and in cost 

(66550-49270)/66550x100 = 26%.  

Calculating with cost factors of kw = 1.1 $/min and kM = 1.1 $/kg the cost savings is 22%. 
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