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Abstract—A dynamic input reconfiguration architecture is pro-
posed for over-actuated aerial vehicles to accommodate actuator
failures. The method is based on the dynamic nullspace computed
from the linear parameter-varying model of the plant dynamics.
If there is no uncertainty in the system, then any signal filtered
through the nullspace has no effect on the plant outputs. This
makes it possible to reconfigure the inputs without influencing the
nominal control loop and thus the nominal control performance.
Since the input allocation mechanism is independent of the
structure of the baseline controller, it can be applied even if
the baseline controller is not available in analytic form. The
applicability of the proposed algorithm is demonstrated via the
case study of designing a fault tolerant controller for the Rockwell
B-1 Lancer aircraft.

Index Terms—fault tolerant control, null space computation,
linear parameter varying systems, control input reallocation,
aircraft control

I. INTRODUCTION

THE most stringent requirements for improved reliability
and environmental sustainability of safety critical flight

control systems could only be satisfied with the most advanced
fault tolerant control (FTC) techniques [1], [2]. The FTC
system is required to detect and identify the failure and then
to compensate its effect by reconfiguring the control system
[3]. Focus on the environmental impact of the aircraft triggers
the need for higher performance flight control systems, which
leads to a paradigm shift from robust passive FTC towards
active methods relying on switching, gain scheduled or linear
parameter-varying (LPV) methods with certifiable algorithms
[4]. In the past few years a wide variety of FTC design
approaches have been proposed [5], [6].

This paper focuses on the reconfiguration task in the case
of actuator failures. The approach considered here is the
control input reallocation, where the aim is to compensate the
actuator failures by reconfiguring the remaining flight control
surfaces such that the forces and moments required by the
flight controller can be generated. A broad picture on the state-
of-the-art control allocation methods can be found in [7]. One
class of the several approaches developed so far is formed by
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the nullspace (or kernel) based methods that can be applied if
control input redundancy is available in the system [8]. As in
aerospace applications this is often the case [9], this approach
is a promising method for fault tolerant flight control design.

The classical kernel-based algorithms assume constant input
direction matrices and thus use static matrix kernels [7], [8].
This concept is extended in [10] and [11] by using dynamic
annihilators. Though the reconfiguration architecture in these
papers is similar to that is proposed here, the algorithms in
[10] and [11] highly depend on the linear time invariant (LTI)
framework and thus their extension to the parameter varying
case rises several theoretical problems. This paper proposes a
different approach, which is promising for LPV applications
as well.

The main component of the proposed reconfiguration ar-
chitecture is the nullspace of the LPV system to be con-
trolled. Although the nullspace of a dynamical system bears
significant importance on several other fields of control as
well [12],[13],[14] its numerical computation has been solved
only partially so far. In [15] an algorithm based on matrix
pencils is proposed to compute the dynamic kernel of an
LTI system. Although this approach is computationally ef-
ficient, it is based on frequency domain formulation, which
prevents its extension to LPV systems. In [12] the nullspace
of a parameter-dependent, memoryless matrix is addressed
in connection with controller design. The paper uses linear-
fractional representation (LFR), but it does not consider the
case of dynamic kernels. Moreover, the method of [12] does
not analyze and thus cannot guarantee the well-definedness of
the kernel basis, which are also necessary to use the kernel
in any further design process. The LFR-Toolbox [16] also
provides a method for nullspace computation. The algorithm
is similar to the one given in [12] and it can be applied for
dynamical systems as well, but it does not work for the general
case as it requires certain rank conditions to be satisfied. In this
paper we revise the existing methods and assemble a complete
tool for kernel computation that can be applied for parameter-
dependent matrices and LTI/LPV dynamical systems as well.

The paper is structured as follows, Section II is devoted to
the numerical computation of the parameter varying nullspace.
The proposed actuator reconfiguration architecture is discussed
in Section III. The simulation example, using the B-1 aircraft
is presented in Section IV, while the paper is concluded in
Section V.
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II. NULLSPACE COMPUTATION FOR PARAMETER-VARYING
SYSTEMS

In this section the definition of the nullspace of a linear map
is defined and the problem related to its numerical computation
is addressed.

A. Nullspace of a linear map

Definition 1 (nullspace and its generator). Let L denote a
linear map assigning to the elements of a linear input space U
the elements of a linear output space Y . The (right) nullspace
(kernel) of L, denoted by N (L), is a subset (subspace) of U
that are mapped to 0, i.e. N (L) = {u ∈ U | Lu = 0}. If for
some linear map N : W → U , N (L) = Im(N), then N is
called the generator of the nullspace.

The following lemma gives the basis of the nullspace
construction algorithms derived afterwards.

Lemma 1. Let L : U → Y and Q : U → Z be two linear
maps such that

[
L
Q

]
: U → Y×Z is invertible. Then N (L) =

Im

([
L
Q

]−1 [
0
I

])
.

Proof. ⇐) Let z ∈ Im

([
L
Q

]−1 [
0
I

])
, i.e. z =[

L
Q

]−1 [
0
I

]
r, with some r. If [M N ] =

[
L
Q

]−1
, then

Lz = L[M N ]
[

0
I

]
r = [I 0]

[
0
I

]
r = 0.

⇒) Let z s.t. Lz = 0. Then with r = Qz,
[
L
Q

]
z =

[
0
Qz

]
=[

0
I

]
r, which implies z ∈ Im

([
L
Q

]−1 [
0
I

])
.

We consider now two special classes of linear maps – the
parameter varying memoryless matrices and LPV systems –
and construct their nullspace by using Lemma 1.

B. Memoryless matrices

Let M(ρ) be a parameter-dependent memoryless matrix
such that M : Ω→ Rny×nu where ρ : R+ → Rnρ denotes the
vector of time-varying parameters. Assume 0 ∈ Ω, ny < nu.
Assume also that M(ρ) has full row rank for all ρ ∈ Ω. (We
focus only on this case, because it is enough to construct
the nullspace of an LPV system in the next section). If the
parameter dependence is linear fractional, then M(ρ) can be
given in LFR as follows

M(ρ) = M21∆(ρ)(I −M11∆(ρ))−1M12 +M22

= Fu
([

M11 M12
M21 M22

]
,∆
)

(1)

where Mij are constant matrices, ∆ : Ω→∆ ⊂ Rr∆×c∆ is a
parameter dependent matrix whose entries are linear in ρ and
M22 is of full row rank. The representation is well-defined if
I −M11∆(ρ) is invertible for all ρ ∈ Ω.

According to Definition 1 the kernel of M(ρ) is the set of all
input vectors u ∈ Rnu satisfying M(ρ)u = 0, ∀ρ ∈ Ω. Based
on Lemma 1 the generator of the nullspace can be constructed
by finding a (generally) parameter dependent matrix Q(ρ)

such that [M(ρ)T Q(ρ)T ]T is invertible for all ρ ∈ Ω. Since
some additional smoothness properties are also prescribed
in general for the parameter dependence of the nullspace
generator, thus finding an admissible Q(ρ) is difficult in
practice. Therefore, based on the idea in [16], the following
algorithm can be applied: choose some parameter value ρ∗ and
find (a parameter-independent) Q such that [M(ρ∗)T QT ]T is
invertible. (Without loss of generality, we can choose ρ∗ = 0,
i.e. M(ρ∗) = M22 and Q can be chosen to be a basis of
the nullspace of M22.) Then use Q over the entire parameter
domain, i.e. consider the matrix [M(ρ)T QT ]T . Based on [16],
the formal inverse of [M(ρ)T QT ]T and thus by Lemma 1 the
formal generator of N (M(ρ)) can be obtained in LFR form
as follows:

N(ρ) = Fu
([

M11 −M12XM21 M12Y
−XM21 Y

]
,∆

)
(2)

where
[
M22
Q

]−1
=[X Y ] such that M22X=I and M22Y =0.

We called the inverse and the generator formal, because if
[M(ρ)T QT ]T is not invertible for all ρ ∈ Ω, then (2) is not
well-defined. Well-definedness and thus the invertibility can
be achieved by finding a factorization N(ρ) = Nr(ρ)Mr(ρ)−1

such that Nr(ρ) is well-defined. It is clear that Nr(ρ) spans the
same nullspace as N(ρ), so N(ρ) can be replaced by Nr(ρ).
Unfortunately there is no general algorithm that finds the
factorization above in all cases. Instead, there are approaches
that generally work in the practical situations.

M1) Before trying any factorisation method, it is advisable
to minimize the realisation of N(ρ) first. This means
finding an equivalent representation for N with smaller
∆. The observability and reachability decomposition
proposed in [17], [18] and implemented in the LFR
Toolbox1 [16] is a possible algorithm to minimize the
realisation. Although the algorithm is efficient in several
cases it has non negligible limits: it can work only
with diagonal ∆ and seeks only transformations, which
commute with the parameter block.

M2) Find a matrix F such that Nr(ρ) and Mr(ρ) defined by[
Mr(ρ)
Nr(ρ)

]
= Fu

 N11 +N12F N12

F I
N21 +N22F N22

 ,∆
 (3)

are well-defined. It follows from the construction that
N(ρ) = Nr(ρ)Mr(ρ)−1, so (3) is a suitable factorization
of the kernel. Unfortunately, this approach cannot be
applied in all cases: there are ill-defined systems (even
in minimal realisation), for which there does not exist a
suitable F , but a well-defined left-right factorisation can
still be found. See e.g. the example in [19].

M3) It is clear that the entries of N(ρ) are rational functions
of δi-s. If p(ρ) denotes the product of terms, which are
responsible for the poles of N(ρ), a possible factorisation
can be obtained by choosing Nr(ρ) = N(ρ)p(ρ)q(ρ) and

Mr(ρ) = p(ρ)
q(ρ) , where q(ρ) is an arbitrary polynomial,

which does not have zero in Ω. In this way, the ill-

1minlfr function
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definedness can be fully eliminated. The only weak point
of this algorithm is the difficulty of finding the poles of
N(ρ) in larger dimensional cases.

C. LPV systems

Consider now an LPV system in the usual state-space form:

G :
ẋ = A(ρ)x+B(ρ)u
y = C(ρ)x+D(ρ)u

, (4)

where ρ : R+ → Ω ⊆ Rnρ collects the time-varying
scheduling parameters; u : R+ → Rnu , y : R+ → Rny ,
x : R+ → Rnx are the input, output and the state vector,
respectively. If x(0) = 0, (4) defines a linear map that
uniquely assigns to any input signal u(t) an output signal y(t).
Moreover, this map, denoted by G(ρ, I) can be given in LFR
as follows:

G(ρ, I) = Fu
([

A(ρ) B(ρ)
C(ρ) D(ρ)

]
, I
)
. (5)

I is used to denote an nx-dimensional diagonal matrix of
integral operators such that v = Iz means that vi(t) =∫ t
0
zi(t)dt, i = 1 . . . nx with v(0) = x(0) = 0. Using

Definition 1, we can now define the nullspace of G(ρ, I) as
a set of all input signals that are mapped to the constant 0
output. Due to the zero initial condition the defninition of the
nullspace makes sense even if G is an unstable system. In the
remaining part of the section we give an algorithm to construct
the generator of the nullspace.

In order to proceed, two additional assumptions are made
on G: (i) the entries of D(ρ) are linear fractional functions of
the parameters and (ii) D(ρ) is a full row rank matrix for all
ρ ∈ Ω. Assumption (i) is not restrictive and necessary to use
LFR formulation. Assumption (ii) facilitates the discussion and
will be relaxed at the end of the section. The two assumptions
imply that there exists a well-defined generator ND(ρ) for
the nullspace of D(ρ) such that D′(ρ) :=

[
D(ρ)
ND(ρ)

]
=

Fu
([

D′11 D′12
D′21 D′22

]
,∆′
)

is invertible for all ρ ∈ Ω. The inverse
can be determined by applying the following formula [16] with
similar considerations as in the previous section:

D′(ρ)−1 = Fu
([

D′′11 D′′12
D′′21 D′′22

]
,∆′
)

D′′11 = D′11 −D′12(D′22)−1D′21, D′′12 = D′12(D′22)−1

D′′21 = −(D′22)−1D′21, D′′22 = (D′22)−1

The invertibility of D′22 is guaranteed by the fact that D′(ρ)
is invertible for all ρ ∈ Ω and by assumption, 0 ∈ Ω. Let
D′(ρ)−1 be partitioned as [X(ρ) Y (ρ)] such that D(ρ)X(ρ) =
I and D(ρ)Y (ρ) = 0. Then, by using (2) the generator of
N (G(ρ, I)) can be computed as

N(ρ, I) = Fu
([

Ao(ρ) Bo(ρ)
Co(ρ) Do(ρ)

]
, I
)

(6)

Ao(ρ) = A(ρ)−B(ρ)X(ρ)C(ρ), Bo(ρ) = B(ρ)Y (ρ)

Co(ρ) = −X(ρ)C(ρ), Do(ρ) = Y (ρ)

Note that N(ρ, I) is an LFR of integrators, thus it is always
well-defined [19]. By construction, the linear mapping v =

us

v

yu

N

G
w

Fig. 1. A typical interconnection of G with its nullspace generator Go in a
reconfiguration architecture

N(ρ, I)w assigns to the input signal w(t) the output response
v(t) of the dynamical (LPV) system

N :
ẋo = Ao(ρ)xo +Bo(ρ)w
v = Co(ρ)xo +Do(ρ)w

, (7)

where xo(0) = 0. Due to practical applicability we are
interested in stable nullspace generator, therefore if N is not
stable, it has to be stabilized. For this, we can use a similar
factorization as (3). To proceed, we make assumption (iii):
there exists a stabilizing state feedback gain F (ρ) such that
Ao(ρ) +Bo(ρ)F (ρ) is asymptotically stable. Then with[

Mr(ρ, I)
Nr(ρ, I)

]
=Fu

 Ao(ρ) +Bo(ρ)F (ρ) Bo(ρ)
F (ρ) I

Co(ρ) +Do(ρ)F (ρ) Do(ρ)

, I


the equality N(ρ, I) = Nr(ρ, I)Mr(ρ, I)−1 holds so
Nr(ρ, I) defines a stable generator system.

In the fault tolerant control framework the role of N is to
generate an input reconfiguration signal for G that does not
influence its output. The general interconnection is depicted
in Fig. 1. G is assumed to be connected in a closed loop such
that us is a stabilizing input generated by some (baseline)
controller. Let us examine the system behavior in a practical
situation, when the initial state of G differs from zero and is
not known either. Assume that N is stable and starts from zero
initial state. Since the systems are linear, G is stabilized via
us(t) and N is stable, the state transients generated due to the
nonzero initial condition die out and the output of G converges
to the response corresponding to us(t). Consequently, w(t)
does not influence y(t).

Finally, assume that condition (i) does not hold, i.e. D(ρ)
is not a full row rank matrix. We show that in this case the
full row rank property can still be achieved by iteratively
replacing the outputs causing rank deficiency by their time
derivatives until a full row rank D′ matrix is obtained. This
idea is the same as that is used in [20] for constructing the
inverse of a linear system. The main steps of the procedure
are summarized in the following algorithm. For simplicity, we
present the procedure for LTI systems. The parameter-varying
case can be similarly handled.

Algorithm 1. Assume for simplicity that [C D] has full row
rank, i.e. the trivial output redundancy is excluded. Let C1 =
C, D1 = D, y1 = y and k = 1.

1) If Dk 6= 0 compute its SVD as Dk =

[Uk,1 Uk,2]
[

Σk 0
0 0

] [
V ∗k,1
V ∗k,2

]
, and perform a

linear transformation using the invertible matrix
U∗k : ỹk = U∗kyk =

[
U∗k,1Ckx+ ΣkV

∗
k,1u

U∗k,2Ckx

]
=[

Ck,1x+Dk,1u
Ck,2x

]
=

[
ỹk,1
ỹk,2

]
. Trivially, if Dk = 0,
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then ỹk,2 = yk and there is no ỹk,1.
2) Replace ỹk,2 by its time derivative, i.e. let the new output

equation be defined as follows:
yk+1 =

[
Ck,1
Ck,2A

]
x+

[
Dk,1
Ck,2B

]
u = Ck+1x+Dk+1u.

3) Set k := k+ 1. If Dk is of full row rank, then terminate
and go to step 4. Otherwise, go to step 1.

4) Let the transformed system be defined as follows:

G′ :
ẋ = Ax+Bu
y = Ckx+Dku

(8)

If the algorithm terminates in finite steps, then G′ can be con-
structed. Since only derivations and invertible transformations
are applied in each step, G′ has the same kernel as of G and,
by construction, Dk has full row rank. Consequently, (6) can
be applied. The main concept of the algorithm can be extended
to LPV systems, but in that case the transformed system will
depend on the time derivatives of the scheduling parameters
as well. As the generator computed from G′ inherits this
dependence, the time derivatives of the parameters have to
be known (measured or precisely computed) to evaluate the
generator system.

III. CONTROL INPUT RECONFIGURATION ARCHITECTURE
FOR COMPENSATING ACTUATOR FAILURES

In this section an input reconfiguration method is proposed
to compensate actuator failures. The concept extends the main
idea of [8] to parameter varying systems that do not necessarily
have static nullspace. The architecture presented in Figure 2
is similar to that proposed in [10], but the concept we follow
is basically different.

Before proceeding, we introduce the following notational
convention: If S denotes a dynamical system, then its `-th
input and output will be denoted by uS,` and yS,`, respectively.
Let the nu input – ny output LPV plant be denoted by G.
Assume the actuators driving the inputs of G are modeled by
LTI systems collected in the nu input – nu output block A.
Let KB denote the baseline controller designed to guarantee
the stability and control performance in fault-free case. For
simplicity, consider now the case of one actuator fault affecting
the `-th control input such that uG,` = yA,`+f = A`(yKB ,`)+
f , where f is an external fault signal, A` is the `-th actuator
dynamics. Suppose that uG,` (or equivalently f ) is available
for measurement or can be reconstructed by a suitable FDI
filter, e.g. [21]. Let Ā be an nu input – nu output LTI shaping
filter defined later and let N be the (stable) generator for the
nullspace of G·A·Ā. The procedure of input reconfiguration is
the following. If controller KN is designed such that v3,` (the
`-th component of v3) tracks the fault signal f , then uA,` =
yKB ,`+v2,`, i.e. yA,` = A`(yKB ,`)+A`(v2,`) = A`(yKB ,`)+
f = uG,`, i.e. the `-th output of the actuator block equals to
the faulty input to the plant. Therefore it looks as if the faulty
input had been generated by the baseline controller. The input
reconfiguration is performed via v2, because it modifies the
other control inputs such that they adapt to the faulty input.
Since v2 is generated from the nullspace, thus it does not have
any effect on the plant’s behavior, i.e. the baseline control
loop remains intact and the nominal control performance is
preserved.

r z

FAULT

yKB ,`

-
+

f

uG,ℓ

v3v1

v2

uA

AĀNKN

A G

A`

KB
yKB

Fig. 2. Input reconfiguration architecture

To complete the discussion, the role of the shaping filter Ā
remains to be clarified. This dynamical block can be chosen
by the designer to shape the actuator dynamics in order to
simplify the nullspace computation. For example, if A is
invertible then one can choose Ā = A−1 and thus the actuators
are eliminated from the reconfiguration procedure. If A is not
invertible, it may be possible to find an invertible Â, which
approximates A over the frequency range of its bandwidth.
Then Â = Â−1 can be chosen. If the approximation does not
work either, Ā can still be chosen to ”advantageously shape”
the actuator dynamics. For example, [10] proposes to choose Ā
such that A · Ā = κ(s)I , where κ(s) is a user-defined transfer
function. This unification simplifies the generator system and
can improve the conditioning of the numerical computations
related to the construction of N .

Finally, we add some comments and remarks to the archi-
tecture above.

1) It is clear that the method works perfectly only if the
exact model of the plant is known, since the kernel and the
plant should perfectly match in order that the effect of the input
reconfiguration on the control performance could be perfectly
cancelled. If there is modelling uncertainty in the system, then
the robustness of the reconfigured system has to be checked
either by simulations or by using a classical analysis tool based
on L2 gain computation and Integral Quadratic Constraints
(IQC), see e.g. [22]. It is a possible option as well to improve
the robustness properties of the reconfigured system by tuning
the tracking controller KN .

2) The design of the trajectory tracking controller KN is not
difficult in general as the states of every dynamical model in
the reconfiguration block (i.e. N , Ā and A) are fully available.
Also, when modelling uncertainty is present the tracking
controller can also be used to attenuate the performance
degradation caused by the mismatch of the (nominal) nullspace
and the (uncertain) plant. To handle this additional objective,
this requirement has to be transformed to a performance target
considered in the design of KN .

3) The number and type of faults that can be compensated
by the proposed method depend on the dimension and dynam-
ical properties of the kernel space. If the dynamical properties
are not appropriate (e.g. the kernel dynamics contain too fast or
too slow dynamical components) the stabilizing state feedback
gain F (ρ) or the tracking controller KN can be used to shape
this dynamics and set the required behaviour.
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IV. RECONFIGURABLE FAULT TOLERANT CONTROL OF THE
B-1 AIRCRAFT

The Rockwell B-1 Lancer is a supersonic bomber that was
introduced in the 1970s. It has four turbofan engines and
variable wing sweep. In order to analyze the aeroelastic issues
occuring at subsonic speeds a high fidelity simulator was
developed in [23].

A. The nonlinear flight simulator

To test the reconfigurable architecture in a realistic envi-
ronment, the high-fidelity mathematical model is used. The
simulator consists of the following main components: the
nonlinear dynamics of the B-1 aircraft, the dynamics of the
actuators and the stability augmentation system (SAS). In this
case study the flexible components were neglected, only the
rigid body dynamics were used. The simplified structure of
the simulator is presented in Fig. 3.

The inputs to the nonlinear model are the left (L) and
right (R) horizontal tails (uHR, uHL), wing upper-surface
spoilers (uSPR, uSPL), splitted upper (RU) and lower (RL)
rudders (uRU , uRL) and control vanes (uCV R, uCV L). All
are measured in [deg]. Since the flexible part was neglected
the control vanes appear as free inputs that can be used in
actuator reallocation. This configuration corresponds to the
subsonic, clean configuration case. The model has 10 states:
x = [φ, θ, ψ, p, q, r, u, v, w, h], where φ, θ, ψ are the roll-,
pitch- and yaw angles in [rad], p, q, r are the corresponding
angular rates in [rad/s], u, v, w denote the body axis velocities
in [ft/s] and h is the height in [ft]. The model is scheduled with
height and the Mach number M . The inner loop system has 4
outputs, y = [p, q, r, ay]T , where ay is the side acceleration
measured in [g], which is often referred as side load factor ny .
The structure of the dynamics can be given as follows:

ẋ = F (ρ, x, u)

y =

[
E4,5,6x
h(ρ, x)

]
+

[
0

`(ρ, x)

]
u

where matrix E4,5,6 selects p, q, r from the state vector
and h(ρ, x), `(ρ, x) are nonlinear functions defining ay . The
scheduling variable ρ is a two dimensional vector comprising
of the height and the Mach number, i.e. ρ = [h, M ]. We
assume that the flight envelope is defined such that ρ takes
values only from polytope Ω, defined by the following 4 ver-
tices: [10000, 0.55], [10000, 0.7], [20000, 0.65], [20000, 0.8].

The actuators are modeled by first order linear systems
with output saturation. The poles of the LTI models and the
saturation limits are collected in Table I. The sensors dynamics
are neglected from the present investigation due to their high
bandwidth.

The SAS is responsible for the inner-loop rigid body control
of the aircraft, providing pitch-, and roll-rate tracking and a
yaw damper function using the measurements defined above
and the reference stick commands from the pilot. In our
reconfigurable control architecture the SAS is considered as
the baseline controller KB .

Actuator Poles Lower Lim. Upper Lim.
Horizontal tails −10, −57.14 −20 deg 10 deg
Wing u/s spoilers −10, −20 0 deg 45 deg
Lower rudder −20, −80 −10 deg 10 deg
Upper rudder −10 −10 deg 10 deg
Control vanes −50 −20 deg 20 deg

TABLE I
PROPERTIES OF THE ACTUATORS

Actuator
Dynamics

Nonlinear 
Aircraft
Model

SAS
uHR, uHL, uSPR,

uSPL, uRU , uRL

uCV R,

uCV L

h, M

p, q, r, ay

Fig. 3. Basic configuration of the closed loop system

B. Construction of the LPV model

In order to construct the LPV model, the nonlinear dynamics
are trimmed and linearized at different points of the flight
envelope. By analyzing several configurations, we finally
select 12 points equidistantly covering the Ω domain. After
removing the unstable spiral mode from the model, least-
squares interpolation is used to connect the 12 LTI systems
into the following affine LPV model:

G(ρ, I) = Fu
([

A(ρ) B(ρ)
C(ρ) D(ρ)

]
, I
)
, where (9)

A(ρ) = A0 +A1h+A1M B(ρ) = B0 +B1h+B1M

C(ρ) = C0 + C1h+ C1M D(ρ) = D0 +D1h+D1M

The results are verified by computing the gap- and ν-gap
metrics [24], [25] between (9) and the linearized models at
the 14 grid points. Since none of the gap metrics exceed
0.025 among the points, the LPV model is accepted as a good
approximation of the original dynamics.

C. Actuator inversion and nullspace computation

Since the actuator dynamics are stable, they can be aug-
mented with suitably fast left half plane zeros to make them
biproper, and hence invertible. It is clear that the faster the
zeros, the better the approximation is. On the other hand,
arbitrarily fast zeros cannot be chosen because that would
lead to high transients in the inverse dynamics. Therefore, as
a compromise, the zeros are chosen to be four times faster
than the poles in each actuator. Since the zeros are much
faster than the bandwidth of the controller and the plant, the
use of approximate inverses do not significantly influence the
performance of the reconfigured control loop.

The next step is the computation of the nullspace of G(ρ, I).
For this, the first three outputs p, q, r have to be derived
because D(ρ) is not a full row rank matrix. After derivation,
the rank condition is satisfied so no more derivations are
necessary to determine the kernel. Since the output equations
defining p, q and r do not depend on ρ, the new outputs ṗ, q̇
and ṙ and consequently the kernel do not depend on ρ̇. The
kernel N(ρ, I) finally obtained is unstable, so it has to be
stabilized. For this, following the formal coprime factorization
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Fig. 4. Bode plot of the systems G(ρ, I)N(ρ, I) (blue) and G(ρ, I)N(ρ)
(green) from the first input to the output q. Different lines correspond to
different flight speed and height

method, a stabilizing state feedback F (ρ) is designed by
solving the feasibility problem as follows:

A(ρ)Q+QA(ρ)T +

+B(ρ)Y + Y TBT (ρ) + 2cQ ≺ 0[
u2limI Y
Y T Q

]
� 0

(10)

where Q = P−1, V (x) = xTPx is the Lyapunov function and
constants c, ulim are used to control the location of the poles
(at fixed ρ values) and the norm of the feedback gain matrix,
respectively [26]. The free variables in (10) are Q and Y from
which the feedback gain is computed as F := Y Q−1, which
is now parameter-independent. (Parameter-dependent feedback
gain can also be constructed by choosing Q and Y parameter-
dependent.) To solve (10) the matrix inequalities are reduced
to a finite set of LMI-s by evaluating them over a suitable
dense grid over Ω [27].

We found in this particular example that the parameters c
and ulim can be chosen such that the kernel dynamics become
significantly slower than the closed loop formed by the plant
and the baseline controller. This makes it possible to truncate
the states and substitute the dynamical kernel by a static,
parameter dependent feedthrough gain, i.e. N(ρ) := Do(ρ). In
order to analyze how N(ρ) ”approximates” the true generator
system the bode plots of G(ρ, I)N(ρ, I) and G(ρ, I)N(ρ)
are computed for different values of ρ. The worst results are
obtained from the first input of the kernel to the output q.
This input-output combination is shown in Fig. 4. It can be
seen that G(ρ, I)N(ρ) is very close to zero in this case as
well, so N(ρ) is a suitable approximation of the nullspace. It
is important to emphasise that N(ρ) can not be determined
without the dynamical kernel, because the augmented input
matrix [B(ρ)T D(ρ)T ]T has full column rank for all ρ ∈ Ω
so it does not have a nullspace.

D. Fault signal tracking

The next component of the reconfigurable control architec-
ture is the construction of the KN controller that is responsible
for tracking the fault signal f = u` − A`(s)yKB ,`, where
u` is the output of the `-th (faulty) actuator and yKB ,` is
the `-th output of the baseline controller. Since the kernel

is static, this trajectory tracking problem is equivalent to
finding for each time t a suitable uN (t) such that the `-th
entry of N(ρ(t))uN (t) be equal to f(t). As we have strict
and asymmetric constraints for the actuator outputs (Table
I), this problem is solved by parameter-dependent quadratic
programming (QP):

min
uN (t)

(r(t)−N(ρ(t))uN (t))TW (r(t)−N(ρ(t))uN (t))

w.r.t. N(ρ(t))uN (t) ≥ L− yKB
N(ρ(t))uN (t) ≤ U − yKB

(11)

where the vector r of reference signals is defined as ri = 0
if i 6= ` and r` = f . Vectors L and U collect the lower and
upper limits of the actuators and the diagonal matrix W is used
to weight the tracking errors [8], [13]. By defining r in the
way above we prescribe 0 reference for the non faulty inputs.
This expresses our intention to keep the healthy inputs close
to the value determined by the baseline controller. By varying
the entries of W the contribution of each control input to
the reconfiguration signal yN can be tuned. (In the numerical
simulations below W = diag(w1, . . . , wnu) is used with w` =
1000 and wi = 1 for i 6= `, i.e. precise tracking is demanded
for the fault signal but no preferences are prescribed for the
use of other control inputs.

E. Simulation results

To demonstrate the applicability of the proposed recon-
figurable control architecture the following fault scenario is
presented: the pilot performs a pitch-rate doublet maneuver,
by giving a qref command as shown in Fig. 6. The maneuver
starts at t = 0sec. It is assumed that at t = 1sec the
right horizontal tail is jammed at its actual position. By
assuming an ideal fault detection and isolation algorithm, the
reconfiguration starts also at t = 1sec.

Simulation results are shown for the healthy (green), faulty
(blue), and for the reconfigured (red) cases in Figs. 5-7.

The roll rate response of the three cases are shown in Figure
5, where the ideal case of healthy behavior is constantly zero
again, in case of a right horizontal tail fault roll rate excursions
of 4 deg/s occur due to the asymmetrical deflections of the
control surfaces. The proposed control allocation scheme is
able to reduce it by at least a factor of four and the steady
state error is zero, showing the clear advantage of the proposed
method. The nonzero transient error is due to the nonlinear
aircraft model. By testing the method on the LPV model only
a negligibly small (less than 10−5) error can be experienced
due to the numerical inaccuracy of the simulation and the use
of approximate actuator inverse.

The main objective of pitch rate tracking in healthy, faulty
and reconfigured cases are simulated in Figure 6. The healthy
and reconfigured responses are very close to each other,
while the uncompensated case have more than 50% error and
nonzero steady state error. This shows that, although stability
is not lost, the performance of the uncompensated case in not
acceptable.

The yaw rate response of the three cases are shown in
Fig. 7, where it is clear that the healthy behavior does not
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Fig. 5. Simulation result of the angular rate p in three different cases: without
fault (green dashed), with fault and reconfiguration (red solid), and with fault
(blue dot-dashed)
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Fig. 6. Simulation result of the angular rate q in three different cases: without
fault (green dashed), with fault and reconfiguration (red solid), and with fault
(blue dot-dashed). The reference signal qref is plotted by solid blue.

leave the longitudinal plane, while the uncompensated case
have small but non negligible yaw rate response. When the
reconfiguration scheme is applied a similar fourfold transient
response decrease can be seen, while the steady state error
is improved by an order of magnitude. The nonzero error is
again due to the nonlinear characteristics of the simulation,
since in the LPV simulations the difference between healthy
and compensated behaviors are not visible.

Fig. 8 - 10 show the inputs uHR, uHL, uSPR and uSPL
with and without reconfiguration. The contribution of the other
inputs are small in all the simulation scenarios. It can be
seen that the compensation of the faulty right horizontal tail
required the active use of the left horizontal tail (uHL) and
the two spoilers (uSPR, uSPL). The latter two are not used
in normal operations.

F. Robustness analysis

As our reconfigurable control is based on perfect cancella-
tion of the plant dynamics, the performance of the baseline
controller can be perfectly preserved only if the exact plant
model is known. Since in a real environment this condition is
never met the performance of the reconfigured system always
has to be checked for a set of models. Therefore, simulation are
performed with different values of inertia and mass parameters
of the aircraft. The nullspace based allocation and the tracking
controller are held the same as in the nominal case. The actual
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Fig. 7. Simulation result of the angular rate r in three different cases: without
fault (green dashed), with fault and reconfiguration (red solid), and with fault
(blue dot-dashed)
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Fig. 8. Simulation result of the input uHR in three different cases: without
fault (green dashed), with fault and reconfiguration (red solid), and with fault
(blue dot-dashed). The fault occurs at 1 sec

values of the parameters are selected randomly according to
uniform distribution in a ±20% interval around their nominal
values of: Ixx = 950000, Ixz = −52700, Iyy = 6400000,
Izz = 7100000, mass = 8944, where the inertia is measured
in [sl.ft2] and the mass is given in [sl]. This way 500 different
scenarios are generated and tested. The results are summarized
in Fig. 11, where the angular rates are plotted for the 7 most
representative parameter values. It can be seen that the results
are very similar in all cases, leading to a conclusion that
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Fig. 9. Simulation result of the input uHL in three different cases: without
fault (green dashed), with fault and reconfiguration (red solid), and with fault
(blue dot-dashed). The fault occurs at 1 sec
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Fig. 10. Simulation result of the two spoilers uSPR and uSPL in the case
of reconfiguration. These inputs are not used by the SAS. The fault occurs at
1 sec
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Fig. 11. Robustness analysis of the angular rates p (blue), q (green), r (red)

the fault-tolerant controller is robust to the mass and inertia
parameters.

V. CONCLUSION

A dynamic kernel based input reallocation framework has
been proposed to accommodate actuator faults in LPV sys-
tems. The method improves and extends the concept presented
in [8]. Though the paper provides a complete design method,
there are several points where the proposed approach can be
further improved. First of all, the properties of the nullspace
and the generator system have to be further analyzed in order
to provide clear conditions for the stabilizability and well-
definedness of the generator system and to find a systematic
method for the right (or left) factorization. Second, the recon-
figuration architecture provides large freedom for the designer:
the generator dynamics can be shaped by state feedback and
the design method used to construct the tracking controller can
be freely chosen. This freedom can be exploited to achieve
further performance objectives, e.g. to improve the robustness
properties of the closed-loop against modeling uncertainties.
These points assign research directions that should be focused
on in the future.
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