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Abstract: Computation of the annihilator of a linear parameter-dependent (LPV) dynamical
system is an important subtask in several fields of control theory, such as fault detection design
or reconfigurable control design. While for LTI systems the problem can be efficiently handled,
for LPV systems is not available a single algorithm that would provide the desired annihilator.
Thus alternative solutions are needed to handle the cases that might appear in applications.
This paper provides new insights and additional technical details for the authors’ previously
proposed inversion based technique. As an alternative, for a special class of LPV systems
where the parameter variation is affine, this paper provides an extension of the LTI techniques
that computes the annihilator based on the geometric framework. A comparison of the two
approaches gives an opportunity to illustrate some of the intricacies of the LPV modeling.
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1. INTRODUCTION AND MOTIVATION

The image and the kernel of a linear map are well-known
notions. More formally, given a bounded linear operator
T : U → Y it is standard to introduce the notion of
the image-space R(T ) = {y ∈ Y | ∃u ∈ U, T (u) = y}
and null-space (or kernel) N (T ) = {u ∈ U |T (u) = 0},
respectively. Having an input output description of a linear
dynamical system Σ, i.e., a transfer function in the linear
time invariant (LTI) context, it is natural to consider
the set N (Σ) and to search for a stable linear system
Γ such that R(Γ) = N (Σ), i.e., ΣΓ = 0. This system
Γ will be called the right-annihilator of Σ. Analogously
one can define as ΛΣ = 0 the left-annihilator system
associated to Σ. In what follows, we will concentrate on
right-annihilators only.

A traditional application of annihilators can be found in
the fault detection filter design and the fault tolerant
reconfiguration based control design approaches of LTI
systems, see, e.g., Patton and Hou [1998], Varga [2009,
2013] and Cristofaro and Galeani [2014], Galeani et al.
[2015]. For this class of systems the annihilator is de-
termined based on (both polynomial or rational) matrix
pencil methods, see Forney [1975], Kailath [1980] and
Varga [2008]. Although this approach is computationally
efficient, it highly depends on the frequency domain formu-
lation, which prevents its extension to general time varying
systems.

Linear parameter varying (LPV) modelling has proven to
be an efficient approach in many areas of control and

? This work has been supported by the GINOP-2.3.2-15-2016-00002
grant of the Ministry of National Economy of Hungary and by
the European Commission through the H2020 project EPIC under
grant No. 739592. The work was also supported by the János Bolyai
Research Scholarship of the Hungarian Academy of Sciences.

filtering in treating nonlinear problems in the past years.
A broad class of nonlinear system models can be converted
into a quasi-linear form, obtaining the system:

ẋ(t) = A(ρ)x(t) +B(ρ)u(t), x(0) = 0, (1)

y(t) = C(ρ)x(t) +D(ρ)u(t), (2)

where x ∈ X ⊂ Rn is the state, u ∈ Rm and y ∈ Rp

are the input and output functions, respectively, while
ρ is the scheduling function, which is determined by the
measured variables. This means that its values are known
in operational time by measurement. The approach is
particularly appealing when a natively nonlinear problem,
embedded in the LPV framework, can be solved by using
traditional linear techniques.

It is a standard assumption that each parameter ρi ranges
between its known extremal values ρi(t) ∈ [ρ

i
, ρi]. In

control design problems even the derivative of the param-
eters are supposed to be bounded. The given parameter
set (ρ1(t), · · · , ρN (t)), fulfilling the modelling assumptions,
will be denoted by P. We assume that 0 ∈ P and if
Pi ⊆ Rnρ denote the sets of parameter derivatives such
that ρ(i)(t) ∈ Pi, then 0 ∈ Pi. It is also assumed that the
parameters are sufficiently smooth, i.e., all the derivatives
that might enter in the formulae exists. Note that this as-
sumption out-rules the switching systems, that sometimes
are also cast as an LPV system.

It assumed that the matrices are given as a well-defined
linear fractional transform (LFT). Often the model takes
the form of a polytopic qLPV system, i.e., affine parameter
dependence of the form

M(ρ(t)) = M0 + ρ1(t)M1 + . . .+ ρN (t)MN (3)

is assumed for the system matrices. None of these as-
sumptions is restrictive. In contrast to the misbelieve often
encountered in the literature, by merely defining some LTI
systems on a given parameter grid does not define an LPV



system. For a sound definition of the system a rule is also
necessary, that uniquely provides the system matrices in
every frozen parameter point. Since this rule is often a
linear interpolation, our assumptions are justified.

While the LPV system is actually a set of time varying sys-
tems determined by the assumptions on the parameters,
by a slight abuse of the notation, we identify and denote
it as Σ(ρ):

Σ(ρ) ∼
[
A(ρ) B(ρ)
C(ρ) D(ρ)

]
, (4)

i.e., as a linear system that obeys to (1)-(2) viewed at
fixed parameter ρ. In what follows we will use greek
upper case letters to denote systems and latin upper case
letters for the matrices of a state space representation.
Note that we consider the rank of the parameter varying
matrices as being independent on the parameter, i.e., we
assume tacitly that the rank is constant on P. A standing
assumption throughout this paper is that the system is
stable. To ease the notation we will suppress the parameter
dependence when there is no risk of confusion.

At a fixed parameter ρ we can define the corresponding
(right) annihilator system Γ(ρ) as Σ(ρ)Γ(ρ) = 0 and
the notion can be trivially extended to the LPV system
itself. In Szabó et al. [2015] we already proposed a general
method for the computation of the annihilator based on an
inversion technique. The core of the algorithm assumes a
full row-rank D(ρ) and, if it is not the case, a considerable
amount of work is necessary to produce an equivalent
system with the desired property by a successive derivation
of the outputs. In other words, it is supposed that the LPV
system has a well defined vector relative degree, see, e.g.,
Isidori [1989], Edelmayer et al. [2004] for the definition.

In contrast to the LTI case, however, the computation
of the LPV annihilators is not a straightforward task in
general and there is an interest in alternative approaches to
comply the task. As an extension of the LTI construction
detailed in Galeani et al. [2015], this paper proposes a
geometric method to obtain the annihilator based on the
extension of the invariant spaces to the LPV case. The new
algorithm can be applied for affinely parametrized LPV
systems and it is intended mainly for the case when the
system does not have a direct feedthrough term (D = 0).

Since the new algorithm, compared to the inversion based
one, can be applied only to a smaller class of LPV sys-
tems, it could be questioned its usefulness. Actually both
approaches have their merit and the paper provides some
explanation on their role and applicability. Despite the fact
that LPV systems neither have a coherent input-output
theory nor a transfer function description, the inversion
based approach is related to such a description while the
geometric approach is related to a state transformation
approach performed with a constant (not time varying)
state transformation.

We emphasise that this paper does not revolve around
conditions for the existence of an LPV annihilator or
around issues concerning the minimal state space repre-
sentation for the annihilator. Both topics goes well beyond
the possibilities of this paper.

For the sake of completeness in Section 2 we recall the
inversion based strategy for the annihilator design. Then,
in addition to the previous results contained in Szabó
et al. [2015], we provide more insights and give additional
details that facilitates the necessary computations. Section
3 is dedicated to the main result of the paper, i.e., the
construction of an annihilator for LPV systems that have
affine parameter dependence based on parameter-invariant
subspaces. This newly introduced algorithm is illustrated
on a simple LPV example. The paper is concluded by a
comparison of the two approaches.

2. INVERSION BASED ANNIHILATORS

The aim of this section is to recall the basic setting for the
inversion based approach of the annihilator design. Since
a detailed discussion was already provided in Szabó et al.
[2015], here we only provide a sketch of the algorithm by
pointing out the main issues that one might encounter
during the implementation.

2.1 A particular case

The starting point of the approach is the observation that
if one has a system Σ with a full row rank matrix in the
form D = [I 0], the computation of a proto-annihilator is
immediate: partition the inputs according to the structure
of D as B = [Bi Bs], i.e.,

Σ ∼
[
A B
C D

]
=

[
A Bi Bs

C Ii 0

]
, (5)

and augment the outputs with the lines ya = [0 Is]u. Here
Ii and Is are identity matrices with appropriate size. The
term ”proto” refers to the fact that the annihilator is not
necessarily stable. Thus we obtain an invertible system

Σa ∼
[
A B
Ca Da

]
. (6)

By an application of the matrix inversion lemma, see, e.g.,
Zhou et al. [1996], we have in general that

Σ−1a ∼
[
A−BD−1a Ca BD

−1
a

−D−1a Ca D−1a

]
, (7)

i.e., in our particular case

Σ−1a ∼

A−BiC Bi Bs

−C Ii 0
0 0 Is

 . (8)

Thus, a candidate for the annihilator of Σ is the system

Γ0 ∼

A−BiC Bs

−C 0
0 Is

 . (9)

In general we need an additional step here: our task is to
obtain a stable annihilator but Γ0 is not necessarily stable.
A remedy would be a suitable (not necessarily coprime)
factorization Γ0 = ΓΩ−1 with stable terms Γ and Ω. Then
Γ would be the desired annihilator. We note here, that such
a factorization is highly non unique and there is a certain
freedom in imposing the stable dynamics of Γ, that can
be exploited in the solution of different design problems,
e.g., in the design of a robust FDI filter in order to obtain
a required detection performance and to have a desired



disturbance rejection property, see, e.g. Varga [2009]. In
the LTI case the coprime factorization provides a solution
which always exists after obtaining a minimal realization,
if necessary. It is a standard fact that in the LTI case
a right coprime factorization is obtained by computing a
stabilizing state feedback, see, e.g., Zhou et al. [1996].

The same idea can be applied for LPV systems by using
a quadratic stability notion and by using either constant
or parameter varying Lyapunov matrices for the design
of the parameter-varying state feedback gain, which can
be cast as a set of linear matrix inequality (LMI) feasi-
bility problems, see, e.g., Apkarian and Gahinet [1995],
Wu [2001], Scherer [2001]. The LPV design might fail,
however, at this step due to different reasons: either the
representation is not minimal (stabilizable) or it is not
quadratically stabilizable. Recall that in the LPV case
even to decide wether the realization is minimal or not
is highly nontrivial. This fact is a fundamental limitation
of the technique.

Remark 1. It is an easy exercise to check directly that
ΣΓ0 = 0: after a change of variables one has

ΣΓ0 ∼

A 0 0
0 A−BiC Bs

C 0 0

 . (10)

Thus, while with the assumption x(0) = 0 we have the an-
nihilation, for dynamical systems we only have an asymp-
totic nullity provided Σ is stable. Recall that the concept of
the annihilator is an open-loop concept: Γ does not depend
on the current state. If such a feedback is allowed one
arrive to the notion of the zero-dynamics, Edelmayer et al.
[2004]. In this particular example, however, one can imme-
diately see that the dynamics of the proto-annihilator (9)
is related to the zero-dynamics of Σ (using the constraint
y = 0 eliminate ui from the output equation). But, in
contrast to the dynamic inverse tasks encountered, e.g., in
input reconstruction tasks, this fact does not introduce any
additional constraints. Observe that here the factorization
is related to feedback stabilization and not to output
injection, as for the applications related to the dynamic
inverse.

Starting from the special case of this subsection is not hard
to compile a general algorithm to provide a sufficiently rich
set of annihilators: the question here is the dimension of
the annihilator as a MIMO system. As (9) this dimension
is (m − p) ×m. For a more formal proof see Lemma 7 of
the Appendix.

2.2 The general scheme

The main observation that is needed for the general case,
i.e., D(ρ) does not have full row-rank, is that the null-space
of the strictly proper system is equal to the null space of
the ”shifted” system associated to the time derivative of
the output, defined by[

A(ρ) B(ρ)

[
d

dt
C + CA](ρ) [CB](ρ)

]
(11)

for LPV systems. Thus the preparatory phase of the algo-
rithm is a procedure that finally ends up in an equivalent
system with a full row rank feedthrough term. Once that
we arrive to that point it is almost trivial to reduce the

system with a suitable input mixing to the special case
of (5). Note that the core of the applied procedure, i.e., a
successive application of the ”shifts” for certain outputs, is
the same as the one that defines the vector relative degree
of a MIMO system.

Thus the skeleton of the inversion based annihilator design
algorithm is the following:

Step. 1 If D is of full row rank compute the input
mixing map that brings the system to the form (5),
compute (9) and stabilize the system if necessary by
a suitable factorization. Finally apply the necessary
transformations at the output in order to have the
desired annihilator.

Step. 2 If D is not of full row rank compute the input
and output mixing map that splits the system into a full
row rank part and a strictly proper part. For the strictly
proper part repeat Step 2 and 3 until the strictly proper
part vanishes. Then apply Step 1 and finally apply the
necessary transformations at the input and output in
order to have the desired annihilator.

Step. 3 If the system is strictly proper consider the time
derivatives of the outputs until a nonzero feedthrough
term appears by applying recursively (11). Note that at
this step time derivatives of the parameters might also
occur in the expressions and thus a reparametrization
of the LPV system might be needed.

Since a thorough description of the algorithm has been
given in Szabó et al. [2015] we skip its detailed presenta-
tion. In that paper we also point out how to apply the al-
gorithm for memoryless parameter varying matrices given
in an LFT form. In what follows we make some additional
technical remarks that might facilitate the implementa-
tion and enhance the method. Moreover we provide some
insight that emphasises the input-output nature of the
approach.

2.3 Comments to the general scheme

While the conceptual structure of the annihilator con-
struction algorithm is simple, the quest for an intensive
manipulation of parameter varying matrices might make
it practically challenging even if there are available tools,
e.g., the MATLAB LFR toolbox, Magni [2006], to comply
such tasks. In the parameter varying context it is highly
nontrivial to determine the rank of a matrix, the domain
of a rational matrix and the the full rank factorization of
a matrix, which are the basic operations involved in the
algorithm. It goes well beyond the scope of this paper to
tackle these topics in detail. In what follows only some
hints are given that might facilitate the execution of the
method.

Step 1. If D is of full row rank we should augment it to
an invertible Da. This task is trivial for constant matrices:
taking a full SVD and setting D = U [S 0]V ∗ one has

Da =

[
US 0
0 I

]
V ∗, i.e., D−1a = V

[
S−1U∗ 0

0 I

]
. (12)

The parameter-varying case is more intricate in general,
even if we have an LFT representation

D(ρ) = Fu(M,∆(ρ)) = M22 +M21∆(I −M11∆)−1M12.



Since M22 should be of full row rank by assumption we
can complete it to an invertible matrix M22,a, e.g., as in
(12), to obtain a Da(ρ) with the symbol matrix

Ma =

[
M11 M12

M̄21 M22,a

]
, M̄21 =

[
M21

0

]
.

Its inverse is D−1a (ρ) = Fu(Ma,i,∆(ρ)) with

Ma,i =

[
M11 −M12M

−1
22,aM̄21 M12M

−1
22,a

−M−122,aM̄21 M−122,a

]
. (13)

The problem is that by this construction is not granted
that Da(ρ) is invertible on the entire parameter set P.
Note that on the level memoryless matrices this is the same
problem that make us to stabilize the proto-annihilator:
since causality is granted, in the memoryless context
stability is equivalent to well-posed.

As an illustrative example take

D(ρ) = [1− ρ ρ 0] , with

Da(ρ) =

[
1− ρ ρ 0

0 1 0
0 0 1

]
being singular at ρ = 1. In contrast, the choice

Da(ρ) =

[
1− ρ ρ 0
−1 1 0
0 0 1

]
is everywhere invertible.

As a general strategy one can perform a gausian elimina-
tion strategy line by line to obtain a full rank factorization,
in our example

[1− ρ ρ 0] = [1 ρ 0]

[
1 0 0
−1 1 0
0 0 1

]
The aim is that the transformed matrix, say D̄ to be in
the form D̄ = [ D̄1 D̄2 ], with D̄1 invertible on P.

Step 2. If D is not of full row rank we need to perform
a full rank factorization, i.e., to obtain a setting with

TyDT
−1
u =

[
D̄
0

]
, where D̄ is of full row rank and by

applying suitable nonsingular input and output mixing.
Again, the case when D is constant can be trivially solved
by applying an SVD factorization.

If D(ρ) is parameter varying and we have an LFT repre-
sentation

D(ρ) = Fu(M,∆(ρ)) = M22 +M21∆(I −M11∆)−1M12,

then with M22 = U

[
S 0
0 0

]
V ∗ and by applying a Schur

complement based factorization we have

U∗D(ρ)V =

[
D̄11(ρ) D̄12(ρ)
D̄21(ρ) D̄22(ρ)

]
Recall that by our standing assumption D(ρ) has a con-
stant rank on P. If D̄11(ρ) is not invertible, as we have
already seen in the previous step, we need to perform an
additional transformation that brings

[
D̄11(ρ) D̄12(ρ)

]
to

the desired form. Thus, for the sake of simplicity let us
suppose that D̄11(ρ) is invertible. Then

U∗D(ρ)V =

T̄y(ρ)

[
D̄11(ρ) 0

0 D̄22(ρ)− D̄21(ρ)D̄−111 (ρ)D̄12(ρ)

]
T̄u(ρ)

with

T̄y(ρ) =

[
I 0

D̄21(ρ)D̄−1
11 (ρ) I

]
, T̄u(ρ) =

[
I D̄−1

11 (ρ)D̄12(ρ)
0 I

]
.

Due to the assumption made on the rank of D(ρ) we
have that D̄22(ρ)− D̄21(ρ)D̄−111 (ρ)D̄12(ρ) = 0, by, e.g., the
Guttman rank addition formula, see Tian [2004].

Thus, the desired transformation can be obtained as

Ty(ρ) = T̄−1y (ρ)U∗, and Tu(ρ) = V T̄−1u (ρ).

Further details are left out for brevity.

Step 3. This is the most problematic part of the algo-
rithm. While we can assume that for the original system
C and D does not depend on the parameter it is very likely
that after the second derivation, if needed, the new readout
map will be littered by the derivatives of the scheduling
variable. At one hand side this is a technical difficulty
because a reparametrization is needed to continue the
algorithm. Moreover, the obtained annihilator will also
depend on these derivatives, that might be unmeasurable,
making the implementation impossible. Recall that in the
controller design based on parameter varying Lyapunov
techniques the controller also depends on the derivatives
of the scheduling variable, Wu et al. [1996], but that
dependency can be eliminated at the expense of some
conservativeness. In this case this is not possible.

Remark 2. We conclude this section with an observation
related to the Schur complement formula: we have seen
that by a possible input and output mixing any system
can be reduced to the following particular form: A Bi Bs

Ci I 0
Cs 0 0

 ∼ Σ =

[
Σ11 Σ12

Σ21 Σ22

]
. (14)

It follows that its annihilator is the same as for the system[
Σ11 Σ12

0 Σ22 − Σ21Σ−111 Σ12

]
,

i.e.,

Γ0 =

[
−Σ−111 Σ12

I

]
Γsch = ΓfrΓsch, (15)

where Γfr is the annihilator for the full row rank part while
Γsch is the annihilator of the Schur complement – a strictly
proper plant. This formula does not give any advantage
for LTI systems over existing formulas. For LPV systems,
however, it might provide a viable method for annihilator
computation if one can obtain Γsch.

To conclude this section we stress the fact that the inver-
sion based approach to compute the annihilator is basically
an input-output approach. Through the algorithm we only
operate on the D matrix and apply suitable memoryless
input and output mixing maps without requiring to modify
the state of the system. However, being in the time varying
case, we actually perform all the manipulations on the
available state matrices. As a consequence representation
of the resulting proto-annihilator will not necessarily be
minimal which will result in additional nontrivial task
when searching for a stable annihilator.

In the next section we provide a geometry based method
that might be successfully applied for LPV systems with
affine parameter dependence in A and B (C constant).



3. GEOMETRY BASED ANNIHILATORS

Embedding the basic concepts of control in the system
of geometry and the interpretation (and re-interpretation)
of the results of mathematical system theory by using a
geometric approach was initiated in the beginning of the
1970’s by Basile, Marro and Wonham. By now, the ap-
proach has proved to be an effective means to the analysis
and design of control systems and the idea gained some
popularity that was followed by many authors successfully.
Good summaries of the subject can be found in the classi-
cal books of Wonham [1985] and Basile and Marro [1992].

The linear geometric systems theory was extended to
nonlinear systems in the 1980’s, see, e.g., Isidori [1989],
De Persis and Isidori [2000]. In the nonlinear theory, the
underlying fundamental concepts are almost the same,
but the mathematics is different. For nonlinear systems
the tools from differential geometry and Lie-theory are
primarily used. Due to the computational complexity
involved, these general nonlinear methods have limited
applicability in practice.

The concept of invariant subspace known from the ge-
ometric theory of LTI systems were extended to LPV
dynamics by introducing the notion of parameter-varying
invariant subspace, see Balas et al. [2003]. We emphasise
that despite to its names these subspaces are not pa-
rameter dependent! In introducing the various parameter-
varying invariant subspaces an important goal was to set
notions that lead to computationally tractable algorithms
for the case when the parameter dependency of the system
matrices is affine. These invariant subspaces play the same
role in the solution of the fundamental problems, such as
disturbance decoupling, unknown input observer design,
fault detection, as their counterparts in the time invariant
context, see Szabo et al. [2003], Bokor and Balas [2004].

3.1 Parameter varying invariant subspaces

The invariant subspace concept, which is a cornerstone of
the classical LTI geometric framework, can be extended to
LPV systems as follows:

Definition 1. A subspace V is called parameter-varying
invariant subspace for the family of the linear maps A(ρ)
(or shortly A-invariant subspace) if

A(ρ)V ⊂ V for all ρ ∈ P. (16)

Definition 2. Let B(ρ) denote Im B(ρ). Then a subspace
V is called a parameter-varying (A,B)-invariant subspace
(or shortly (A,B)-invariant subspace) if for all ρ ∈ P:

A(ρ)V ⊂ V + B(ρ). (17)

As in the classical case this definition is equivalent to
the existence of a mapping F ◦ ρ : [0, T ] → Rm×n such
that (A(ρ) +B(ρ)F (ρ))V ⊂ V. The set of (A,B)-invariant
subspaces contained in a given set is an upper semilattice
with respect to the subspace addition, hence it has a
maximal element. As in the LTI case we denote by V∗
the maximal (A,B)-invariant subspace contained in kerC.

Let us denote the maximal A-invariant subspace contained
in a constant subspace K by 〈K|A(ρ)〉. For the LPV case
one can get the following definition:

Definition 3. A subspace R is called parameter-varying
controllability subspace if there exists a constant matrix
K and a parameter–varying matrix F : [0, T ] → Rm×n

such that

R = 〈A+BF|Im BK〉, (18)

where A+BF denotes the system A(ρ) +BF (ρ).

As in the classical case, the family of controllability sub-
spaces contained in a given subspace K has a maximal
element. We denote by R∗ the maximal controllability
subspace that corresponds to K = kerC.

From a practical point of view it is an important question
to characterize these subspaces by a finite number of
conditions. If the parameter dependence is affine these
subspaces can be computed by efficient algorithms in a
finite number of steps, for details see Balas et al. [2003],
Bokor and Szabo [2009].

If certain conditions are fulfilled, e.g., if the parameter
functions are differential algebraically independent, then
the parameter invariant subspaces defined above coincide
with the corresponding invariant distribution or codistri-
bution, respectively. To give sufficient conditions for the
solution of observer filter design problems, however, it is
enough that some decompositions of the state equations
could be performed. The parameter–varying versions of
these invariant spaces are suitable objects to define the
required decompositions, therefore they can play the same
role as their counterparts in the time invariant context.

3.2 Annihilator construction

In this section we would like to construct an annihilator
for systems of the type

ẋ(t) = A(ρ)x(t) +Bu(t)

y(t) = Cx(t),

where A(ρ) depends affinely on the parameters. Note that
the results can be also extended to the case where B is
also parameter varying.

Let us denote by V∗ the weakly unobservable subspace,
i.e., the set of initial conditions for which there exists an
input function such that the ensuing output is identically
zero. V∗ is the largest subspace such that there exists a
static feedback gain F (ρ) ensuring

(A(ρ) +BF (ρ))V ⊂ V, (C +DF (ρ))V = 0, ρ ∈ P.
These gains F are called friends of V.

Recall that the controllable weakly unobservable subspace
R∗ ⊂ V∗, i.e., the set of initial conditions for which there
exists an input function able to steer the state to zero in
finite time while keeping the output identically zero, has
the same friends as V∗. Moreover, it is known that in the
LTI case the spectrum on R∗ is freely assignable.

Let us chose the invertible input mixing map

Tu = [V1 V2 V3]

such that

imV1 = B(−1)R∗, im [V1 V2] = kerD

and the invertible output mixing map Ty =

[
W1

W2

]
such

that W1DV3 = 0 and W2DV3 = I, respectively.



Chose a state transformation (ξ = T−1x) matrix

T = [T1 T2 T3]

such that

imT1 = R∗, im [T1 T2] = V∗.
Note that these matrices do not depend on the parameters.

Applying all these transformations one has, see Aling and
Schumacher [1984], Basile and Marro [1992]

ξ̇ = Ā(ρ)ξ + B̄ū, ū = T−1u u, (19)

ȳ = C̄ξ + D̄ū, ȳ = Tyy (20)

with

Ā(ρ) =

[
Ā11 Ā12 Ā13

Ā21 Ā22 Ā23

Ā31 Ā32 Ā33

]
(ρ), B̄ =

[
B̄11 B̄12 B̄13

0 B̄22 B̄23

0 B̄32 B̄33

]
C̄ =

[
0 0 C̄13

C̄21 C̄22 C̄23

]
, D̄ =

[
0 0 0
0 0 I

]
.

One should take a F̄1(ρ) (e.g., by considering the first
block column of a friend of V∗) that fulfils conditions

C̄21 + F̄13(ρ) = 0, (21)

Ā21(ρ) + B̄22F̄12(ρ) + B̄23F̄13(ρ) = 0, (22)

Ā31(ρ) + B̄32F̄12(ρ) + B̄33F̄13(ρ) = 0, (23)

and renders the parameter varying matrix Ā0(ρ) =
Ā11(ρ) + B̄11F̄11(ρ) + B̄12F̄12(ρ) + B̄13F̄13(ρ) stable (e.g.,
quadratically). Note that for strictly proper systems con-
dition (21) vanishes.

LPV annihilator: after all these preparatory steps we
are ready to design the LPV annihilator Γ:

ζ̇ = Ā0(ρ)ζ + B̄11v, ζ(0) = 0 (24)

u = Tu(F̄1(ρ)ζ + Ev), (25)

with E =
[
I 0 0

]T
and F̄1(ρ) the first block column of F̄ (ρ).

Note that while the dimensions of the matrices follows
from the dimensions of the invariant subspaces, one can
figure out that v(t) ∈ Rm−p, as for the inversion based
approach.

One can check that this Γ defined by (24) is indeed an
annihilator. Plug in (25) into (19) and take the new state

as e =
[
ξT1 − ζT ξT2 ξT3

]T
to get

ė = Āe, e(0) = 0,

ζ̇ = Ā0ζ + B̄11v

ȳ =

[
0 0 C̄13

0 C̄22 C̄23

]
e,

i.e., ȳ = 0. This result has the same structure as (10).

Remark 3. Even if D 6= 0 one can compute R∗ and V∗
by using an equivalent strictly proper system, Aling and
Schumacher [1984], Basile and Marro [1992]. Then V∗ is
the maximal (A,B)-invariant subspace contained in kerC
and R∗ is the corresponding maximal controllability sub-
space that can be computed by applying the algorithms
described in Balas et al. [2003], Bokor and Szabo [2009].
This fact and also Remark 2 reveals that the most rele-
vant application case for the geometry based method (if
applicable) is for the case when D = 0.

Remark 4. In the control design of LPV systems it is quite
popular to work with a pointwise approach (gridding) by
applying some sort of - usually linear - interpolation. The

expressions for the annihilators for both method reveals
that the gridding approach cannot be applied, in general.
However, if the conditions for the geometry based design
are fulfilled and either B is constant or one can chose a
parameter independent friend F , then the annihilator will
be linear in the original data. Hence, in that case one can
apply a pointwise approach for the implementation.

3.3 Example

For illustrative purposes we show a simple academic ex-
ample. Consider an LPV system

ẋ(t) = A(ρ)x(t) +Bu(t)

y(t) = Cx(t),

with A(ρ) = A0 + ρ1A1 + ρ2A2 and |ρi| ≤ 1. The state
matrices are:

A0 =


−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
1 0 0 0 −1

 , A1 =


0 −1 1 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

 ,

A2 =


0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 1 0 0 0

 , B =


1 0 1
0 1 1
0 1 0
0 0 0
0 0 0

 ,
C =

[
0 0 0 0 1
0 1 0 0 0

]
.

Applying the algorithms which compute the parameter-
varying invariant subspaces one has

V∗ = Im

[
0 0 1 0 0
0 0 0 1 0

]T
and

R∗ = Im [ 0 0 1 0 0 ]
T
,

respectively. Then the corresponding state transform and
input mixing is given by:

T =


0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

 , Tu =

[
1 0 0
1 1 0
−1 0 1

]
.

Taking F̄1 =

[
−ρ1
ρ1
−ρ1

]
one has the annihilator

ζ̇ = −ζ + v,

u =

[−ρ1
0
0

]
ζ +

[
1
1
−1

]
v.

It is not hard to figure out that by following the inversion
based principle one will necessarily have derivatives in that
description: after taking the first two derivatives we have

CB =

[
0 0 0
0 1 1

]
and CA(ρ)B =

[
1 + ρ1 ρ2 1 + ρ1 + ρ2

0 −1 −1

]
. Thus,

a second derivation is needed (ÿ1 in our case) that will
introduce the derivatives of the parameters into the state
matrices through CA2(ρ) + d

dtCA(ρ). Moreover, selecting
ÿ1 and ẏ2, the final full row rank D matrix will be

D =

[
1 + ρ1 ρ2 1 + ρ1 + ρ2

0 1 1

]



which needs some further manipulation to be augmented
to an invertible one. Thus even this simple example can
show the benefit of the geometric approach for the anni-
hilator computation.

4. CONCLUSION

In this paper we have revisited the topic of the computa-
tion of (stable) annihilators based entirely on time domain
techniques. Concerning the inversion based approach, ad-
ditional details has been provided over the existing results
that leads to some simplification of the algorithm.

The main result of the paper is that it provides an
extension of the LTI techniques that allows to compute the
annihilator based on the geometric framework for a special
class of LPV systems where the parameter variation is
affine.

We conclude the paper by making a short comparison
of the two approaches: it is obvious that the geometry
based approach has serious limitations in that the assump-
tion on the parameter dependence and the fact that the
parameter-invariant subspaces are robust counterparts of
the classical ones, i.e., the methods based on these concepts
provides only sufficient conditions. Observe that the key
element of the approach is that state transformation is
defined by a constant matrix.

If the design can be performed, we can obtain a very
economic description of the null space by using a ”one
shot” algorithm, avoiding the intricacies of the inversion
based approach. Moreover, in view of Remark 2 the two
approaches can be also applied in a complementary way.

There is a more subtle issue, however, revealed by these
two approaches. The inversion based method relies on
techniques that consider the system from an external
(input-output) perspective even if we represent the system
by using a particular state space description (this is
indispensable for LPV systems!).

The problem appears at the point where this system is
replaced with an ”equivalent” one and a reparametrization
is needed (the derivatives of the scheduling variables might
occur). It is apparent that this issue is not present in
the geometry based approach which always works on the
same system and, which is very important in this context,
uses only parameter independent transformations. Thus
derivatives of the parameters cannot occur. Thus the
general question, that needs more research and goes far
beyond the scope of this paper, is that how can be two
LPV systems related from an input-output perspective
(e.g., when the two system are equal?).

Appendix

If one has a fine rank linear operator L its kernel can be
computed based on the following lemmas, see Wemhoff
[2003].

Lemma 5. Suppose L is a finite rank linear operator of
the form L((x, y)) = L1x + L2y with L1 : Rm → Rm an
invertible linear operator and L2 : Rp−m → Rm. Define
N : Rp−m → Rp by N(f) := (−L−11 L2f, f). Then N is
a basis for the nullspace of L, i.e. R(N) = N (L) and

N (N) = {0}, i.e. N is a bijection between Rp−m and
N (L).

Lemma 6. For U, V invertible let R(B) = N (U−1AV ).
Then R(V B) = N (A).

These lemmas imply the following strategy: for a given
L find a linear transformation, which splits L into the
sum of an invertible L1 and a non-invertible L2 operators.
Lemma 5 can be applied then to compute the kernel of
the transformed operator. Finally, Lemma (6) is used to
transform this nullspace back to the kernel of L.

The next lemma determines the kernel space from an
invertible operator: instead of finding the invertible part
it completes to be invertible.

Lemma 7. Suppose L is a finite rank linear operator. Let

Q be chosen such that
[
L
Q

]
is invertible. Then N (L) =

R
([

L
Q

]−1 [
0
I

])
.

Proof:

a) Let z ∈ R

([
L
Q

]−1 [
0
I

])
, i.e. z =

[
L
Q

]−1 [
0
I

]
r, with

some r. If [M N ] =

[
L
Q

]−1
, then

Lz = L[M N ]

[
0
I

]
r = [I 0]

[
0
I

]
r = 0

b) Let z s.t. Lz = 0. Then with r = Qz[
L
Q

]
z =

[
0
Qz

]
=

[
0
I

]
r =⇒ z ∈ R

([
L
Q

]−1 [
0
I

])
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