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Abstract: Mid-infrared (MIR) spectroscopy has received widespread interest as a method to
complement traditional soil analysis. Recently available portable MIR spectrometers additionally
offer potential for on-site applications, given sufficient spectral data quality. We therefore tested
the performance of the Agilent 4300 Handheld FTIR (DRIFT spectra) in comparison to a Bruker
Tensor 27 bench-top instrument in terms of (i) spectral quality and measurement noise quantified by
wavelet analysis; (ii) accuracy of partial least squares (PLS) calibrations for soil organic carbon (SOC),
total nitrogen (N), pH, clay and sand content with a repeated cross-validation analysis; and (iii)
key spectral regions for these soil properties identified with a Monte Carlo spectral variable
selection approach. Measurements and multivariate calibrations with the handheld device were as
good as or slightly better than Bruker equipped with a DRIFT accessory, but not as accurate as with
directional hemispherical reflectance (DHR) data collected with an integrating sphere. Variations in
noise did not markedly affect the accuracy of multivariate PLS calibrations. Identified key spectral
regions for PLS calibrations provided a good match between Agilent and Bruker DHR data, especially
for SOC and N. Our findings suggest that portable FTIR instruments are a viable alternative for MIR
measurements in the laboratory and offer great potential for on-site applications.

Keywords: portable FTIR spectrometer; mid-infrared soil spectroscopy; benchmarking;
noise analysis; continuous wavelet transform; multivariate calibration; partial least squares;
spectral variable selection

1. Introduction

In recent years, soil spectroscopy has been established as an efficient method to complement
conventional soil analysis [1–3]. Compared to analytical laboratory methods, soil spectroscopy is more
cost-efficient as measurements can be carried out faster and various soil properties can be inferred from
a single spectral measurement. Accordingly, soil spectroscopy has the potential to greatly increase the
scope of soil sampling efforts through increased coverage in both space and time.
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The capability of laboratory soil spectroscopy in the visible to near-infrared (VIS-NIR) and
mid-infrared (MIR) to determine a wide variety of chemical, physical and biological soil properties
has been established by an extensive body of research over the years (see reviews, e.g., in [1,2,4,5]).
Since estimations of soil parameters with spectral data are based on multivariate calibrations,
a large number of statistical modelling approaches that relate the soil information in the spectra
to reference values acquired with traditional laboratory methods were evaluated in parallel (see [6,7]).
These include—in addition to partial least squares (PLS) regression as the most commonly used
method [8]—multivariate adaptive regression splines, artificial neural networks, support vector
machines, or regression trees and random forests [9–12].

In addition to laboratory spectroscopy, portable soil spectroscopy has received increasing attention
in recent years in the context of proximal soil sensing, which refers to a range of methods that aim
to provide a rapid on-site characterization of soils [13]. With the recent availability of portable
MIR instruments, the potential for on-site analysis of soils has increased markedly as the MIR region
(2.5–25 µm) is sensitive to the fundamental vibrations of various main soil constituents, in contrast to
the VIS-NIR region (0.4–2.5 µm), which had been available for on-site spectroscopic measurements
previously, but was limited to the detection of considerably weaker overtone and combination bands.

Compared to laboratory spectroscopy, on-site spectral analysis with portable instruments can
further increase the benefits of soil spectroscopy by minimizing the number of soil samples that have to
be collected and transported to the lab, as well as the requirement for extensive sample pre-treatment,
which most commonly consists of drying and grinding [14,15]. In addition, the on-site analysis of
spectral measurements allows us to devise more effective and representative spatial soil sampling
strategies as MIR spectra essentially represent a fingerprint related to chemical or physical soil
properties and may thus be used to gather information about the spatial distribution of soil properties
in advance. Portable MIR spectroscopy therefore represents a promising approach to enhance
traditional soil mapping efforts.

Operational use of portable MIR spectroscopy for soil mapping requires spectral readings
of sufficient quality to derive quantitative predictions of spectrally active key soil components,
ideally comparable to bench-top instruments. The accuracy of spectral prediction models is linked to
both the overall sensitivity of the measured spectra towards the studied soil properties as well as the
specific in situ soil conditions. Reeves [16], for example, scanned field moist and dry soil samples with
a portable MIR spectrometer and found some predictions of soil properties to be poor, presumably
due to of the effects of soil water, which obscured the spectral impact of other soil constituents on
the measured spectra. Similar observations regarding the effects of soil moisture on the prediction
accuracies obtained from MIR data for organic matter, iron content, cation exchange capacity or bulk
density were also made by Ji et al. [15]. These studies, however, did not include direct comparisons
with bench-top instruments, which makes it difficult to separate technical capabilities, i.e., the quality of
measurements that can be achieved with portable spectrometer technology, from environmental effects.

Further restrictions of portable MIR spectroscopy may arise from the type of instrumentation.
For the collection of in situ soil data, the DRIFT (Diffuse Reflectance Infrared Fourier Transform)
recording technique is most commonly used. DRIFT is applicable to surfaces of solid and particulate
materials with low transmissivity. Furthermore, the DRIFT method does not require extensive sample
preparation (no pellets or dispersive matrices are needed, only crushing of crusts or of stable soil
aggregates may be necessary). DRIFT spectra are recorded by illuminating the sample with an artificial
light source; the IR radiation penetrates the sample and undergoes absorption, transmission and
scattering before eventually leaving the sample as diffusely reflected light, which is collected by a
set of mirrors and then focused onto the detectors [17]. Energy throughput, detector type and the
employed measuring protocol (sampling interval, spectral resolution, integration time or number of
co-added scans) will influence the quality of the collected spectra [18] and might cause differences
between data measured by portable and classical lab spectrometers.
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Against this background, the overall goal of this study was to test a recently
introduced commercial portable MIR spectrometer (Agilent 4300 Handheld FTIR Spectrometer;
Agilent Technologies, Santa Clara, CA, USA) for its general use and performance in soil spectroscopy
in comparison to an established lab spectrometer. We collected MIR spectra for a set of 40 soil samples
using the Agilent instrument equipped with a DRIFT accessory and compared them to readings
performed for the same samples with a Bruker Tensor 27 bench-top spectrometer. Measurements
with the Bruker instrument were carried out with both a DRIFT accessory and a nitrogen-purged
Ulbricht sphere. This integrating sphere allowed measurements of a sample’s directional hemispherical
reflectance (DHR), which can be used to determine emissivity spectra by applying Kirchhoff’s law
(with emissivity = 1 − reflectance) and thus allows quantitative comparisons with measurements
acquired in passive mode as carried out in thermal infrared remote sensing [19].

Our test comprised three series of measurements on dried and ground soil samples with the
Agilent instrument. Spectra were evaluated by (i) comparing their shape to that of the Bruker spectra
and by (ii) quantification of the inherent noise estimated by wavelet decomposition. We thus focused on
the comparison of portable and bench-top FTIR instruments under standardized laboratory conditions
(air-dried samples, ground to particle sizes <100 µm) to exclude environmental effects that may arise
from on-site measurements.

In addition, we explored whether quantitative prediction models for various physicochemical soil
properties would achieve similar accuracies for spectra collected with different instruments and/or
sampling technologies (Bruker DHR, Bruker DRIFT, Agilent DRIFT). We focused on five soil properties
that are relevant for agricultural practices and constitute key indicators of soil health and fertility:
soil organic carbon (SOC), total nitrogen (N) (both closely related to soil organic matter), soil pH,
clay and sand content. These soil properties can typically be estimated from VIS-NIR and MIR spectra
since they are either spectrally active with well-defined absorption bands (SOC, clay minerals) or may
correlate highly with other spectrally active soil constituents [2,20]. Since exploring the potential of
different multivariate calibration methods was not in the scope of this study, we used PLS regression for
multivariate calibrations, which is the de-facto standard tool in soil spectroscopy due to its ease-of-use
through implementation in all spectroscopic software packages and a comparably straightforward
and efficient calibration and parameter tuning approach. Calibration models were evaluated in a
repeated 10-fold cross-validation approach to estimate both model accuracy and precision. Finally,
we identified and compared key wavenumbers and spectral regions relevant for the prediction of
soil components between instruments and sampling technologies with a Monte Carlo based variable
selection approach.

2. Materials and Methods

2.1. Study Site, Sampling and Soil Chemical Data

We collected a set of soil samples with limited heterogeneity with respect to soil parent material.
A limited heterogeneity is appropriate to avoid highly variable and usually complex spectral properties
of soils with great differences in soil conditions [21], as this would have potentially masked systematic
differences induced by the tested spectrometers and measurement settings. The sampling area
was located in the German state of Saxony in the Northwest Saxon basin. We included a set of
40 agricultural plots where we took samples from the very top layer (0–5 cm depth in the Ap
horizon) (Figure 1). Geologically, the sampled region is characterized by Permian bedrock geology
(rhyolites and ignimbrites), Cretaceous-Tertiary weathering products (like kaolin) and quaternary
sediments (loess, Pleistocene terrace gravel) [22]. Typically, the top soils in the selected study region
are influenced by loess sediments with variable particle size following a gradient from sandy loess
sediments in the north to more finely textured silty loess in the south. According to this spatial gradient,
soil texture classes differed and ranged from loamy sand (n = 2), sandy loam (11), loam (5), silt loam (21)
to silty clay loam (1) (classes according to FAO [23]).
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Figure 1. Overview of the study area in eastern Central Germany (State of Saxony) with soil sampling
locations (coordinate system: UTM zone 32U, ETRS89).

For each soil sample, contents of SOC, N, clay and sand, and pH values were determined
with standard laboratory methods. Prior to analysis, soil samples were air-dried, sieved (≤2 mm) and,
depending on the analysis method, subsequently homogenized by careful grinding. The Köhn
sieve-pipette method [24] was used to determine soil texture from the sieved soil material. We found
contents of rock fragments or skeleton (>2 mm) to be low in all cases (less than 10 percent by volume).
None of the soil samples contained carbonate-C. Total contents of SOC and N were measured by
dry combustion of samples at 1100 ◦C and gas chromatography using a EuroEA elemental analyzer
(HekaTech, Wegberg, Germany). Soil pH was measured potentiometrically in 0.01 M CaCl2 solution
with a glass electrode.

Summary statistics for each soil parameter are given in Table 1. Values for SOC ranged from
0.62% to 2.70 with a standard deviation of 0.41%. Soil N was highly correlated with SOC (Pearson’s r = 0.90;
significant at the p = 0.01-level) and also followed a similar distribution. High correlations (albeit
markedly lower) were also found between clay and sand (r = −0.73) and between clay and N (r = 0.72)
(both significant at the p = 0.01-level). Soil pH ranged from acidic (two samples with pH < 4.5) to
slightly acidic to neutral (24 samples in the 6.0 ≤ pH ≤ 7.3 range) conditions. The large spread in
contents for sand (3.5–82.4%) and clay (6.8–35.9%) reflects the large diversity in soil texture ranging
from loamy sand to silty clay loam. Overall, the collected sample set provided a usable, albeit limited
range for SOC and N for multivariate calibrations, while the limited number of covered soil types
and parent materials ensured that calibration models would be more likely driven by individual
absorption bands instead of primarily by soil type dependent spectral profiles.

Table 1. Summary of chemical data for the studied soil samples (n = 40).

Min 1 Q1 1 Median Q3 1 Max 1 Mean sd 1 Skewness

pH 4.15 5.55 6.14 6.49 7.17 5.98 0.685 −0.84
SOC (%) 0.62 1.12 1.35 1.64 2.70 1.39 0.41 0.83

N (%) 0.048 0.105 0.125 0.152 0.291 0.133 0.046 0.99
Clay (%) 6.8 11.0 14.4 17.9 35.9 15.0 5.6 1.45
Sand (%) 3.5 14.3 31.2 62.6 82.4 38.1 24.9 0.43

1 Metrics: minimum (min), first quartile (Q1), third quartile (Q3), maximum (max) and standard deviation (sd).
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2.2. Spectral Data

Spectral data in the MIR region were acquired with bench-top (Bruker Tensor 27; Bruker Optik GmbH,
Ettlingen, Germany) and handheld (Agilent 4300 Handheld FTIR) instruments on sieved (<2 mm),
dried (lab oven at 40 ◦C) and then ball-milled soil samples (finely ground for 5 min to achieve particle
sizes <100 µm and to homogenize the sample). A detailed overview of the different measurement
configurations for each instrument is provided in Table 2.

Table 2. Overview of collected MIR data and instrument configurations.

Measurement Series Instrument Interface Co-Added Scans Frequency Range (in cm−1) Background

Bruker DHR Bruker Tensor 27 Ulbricht sphere 2 × 200 7000–370 2a Gold reference
background

Bruker DRIFT Bruker Tensor 27 DRIFT 2 × 200 7000–370 2a Blank sample
compartment

Agilent #1 Agilent 4300 DRIFT 2 × 64 4000–650 2b

Gold-plated
reference cap

Agilent #2 Agilent 4300 DRIFT 2 × 64 4000–650 2b

Agilent #3 Agilent 4300 DRIFT 2 × 64 4000–650 2b

Agilent #4 Agilent 4300 DRIFT 3 × 2 × 64 1 4000–650 2b

1 Pooled from Agilent #1, Agilent #2 and Agilent #3; 2a corresponds to a wavelength range from 1.429 to 27.027 µm;
2b corresponds to 2.5 to 15.385 µm.

Five series of measurements were collected in total. On the Bruker instrument (equipped
with a deuterated, L-alanine doped triglycine sulfate (DLaTGS) detector and an extended range
KBr beam-splitter), we measured DHR spectra using a nitrogen purged integrating sphere and
DRIFT spectra with a diffuse reflectance accessory (EasyDiff, Pike Technologies, Madison, WI, USA).
With both accessories, we performed 200 scans of the sample and 200 scans of the background with a
spectral resolution of 4 cm−1, corresponding to a 2 cm−1 sampling interval. The spot diameter was
about 20 mm for DHR and 6 mm for DRIFT measurements.

For the handheld instrument, equipped with a deuterated triglycine sulfate DTGS detector and a
zinc selenide beam splitter, we collected three series of measurements with the instrument’s diffuse
reflectance interface (spot diameter about 2 mm only). These series were collected by three different
operators (Agilent #1, #2, #3) as we expected its performance to be more variable in comparison to the
standardized bench-top instrument measurements. Each series of measurements for the Bruker and
Agilent instruments was generated by pooling individual spectra collected on two subsamples taken
from the bulk soil sample.

Diffuse reflectance measurements with the handheld spectrometer were carried out with a custom
sample setup (Figure 2). Soil samples were filled into a small sample cup (~1 cm diameter) and put
into a custom sample holder, which provided some guidance to stabilize the instrument and ensured a
consistent measurement angle and distance between soil sample and sampling interface while holding
the instrument (~0◦ zenith angle, distance < 0.5 mm). We opted for a simple sampling setup and
manual operation of the handheld instrument, in contrast to a larger fixed stage, since portability and
potential on-site use in the field are the main advantages of handheld instruments and the sampling
approach suggested here is similar to what might be achieved under field conditions. Integration time
(number of co-added scans) was adjusted following the same rationale. For each spectral measurement,
64 individual scans were averaged as a compromise between signal-to-noise ratio and scan duration
(~1 min for 64 co-added scans). To test the potential benefits of additional scans, however, we also
pooled all three 2 × 64 measurements into a single composite spectrum (Agilent #4) with a total
number of scans comparable to the bench-top instrument measurements.

Handheld MIR data were collected in the 4000–650 cm−1 frequency range with 4 cm−1 spectral
resolution (sampling interval ~2 cm−1); prior to each measurement, a background spectrum was taken
with a gold-plated reference cap, which is part of the diffuse reflectance interface provided by the
manufacturer. The background spectrum was collected to compensate for the effects of potential



Sensors 2018, 18, 993 6 of 17

instrument drift and variation in the lab environment, respectively (e.g., changes in the composition
of the local atmosphere). To remove these effects, the measured signal was divided internally by the
collected background spectrum.

For further statistical analysis, we used the spectra in the domain between 4000 and 650 cm−1,
as this spectral range was available for all instruments and settings. Spectra were resampled to
a regular increment of 2 cm−1 using the shape-preserving Piecewise Cubic Hermite Interpolating
Polynomial approach implemented in MATLAB (see, e.g., Moler [25]). Pre-processed spectra therefore
consisted of 1676 data points xi (with i = 650, 652, . . . , 4000 cm−1), measured reflectances (R) were
transformed to (pseudo-)absorbances by −log10(R).

Figure 2. MIR spectrometers used in this study: (a) Bruker Tensor 27 bench-top instrument with
EasyDiff diffuse reflectance accessory (back, in the sample compartment) and Ulbricht sphere (front);
(b) Agilent 4300 Handheld FTIR measurement with custom sample cup.

2.3. Wavelet Analysis

Mid-infrared spectra collected with handheld instruments may be expected to contain higher
noise levels, i.e., unsystematic high frequency variation across the signal, than those collected with
bench-top instruments due to smaller spot size, manual handling of the instrument and lower
energy throughput. To estimate the noise fraction in individual spectra, we employed wavelet analysis
to extract the high frequency components from the complete signal.

With the application of wavelets, spectra or signals can be decomposed into sets of
coefficients approximating shifted and scaled versions of a mother wavelet. In continuous wavelet
transforms (CWT), the analyzing wavelet is shifted over the full domain of the signal. At each position,
coefficients are calculated which represent the correlation between wavelet and the respective section
of the signal. CWT therefore provides many wavelet coefficients as a function of position and scale (a).
As scale (wavelet width) increases, the finer details of the signal get lost. In consequence, the CWT
coefficients at the smallest scale (a = 1) are a good estimate of the noise level in the spectra [26,27].

For the analysis of measured spectra, a great number of different mother wavelets may
be considered. Absorption features in the spectra are often similar to the Gaussian function or
a combination of multiple Gaussian functions, so we applied the Mexican hat wavelet, which is
proportional to the second derivative of the Gaussian probability density function. As mentioned above,
we used the decomposition at a = 1 to quantify noise contained in the spectra of the different
measurement series.

2.4. Partial Least Squares Modeling

The predictive power of the different measurement series was evaluated by calibrating
multivariate regression models for SOC, N, clay content, sand content and pH values based on
components (latent variables) that were extracted from the measured spectra by the non-linear
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iterative PLS algorithm. Values of SOC, N and clay were transformed beforehand by log10, pH values
were squared, to correct for skewness in the untransformed distributions. Transformed values could
be well approximated with normal distributions (Shapiro-Wilk test, p > 0.20). Final estimates were
re-transformed to the original data space. Values for sand content were not transformed, as the
statistical distribution of sand content was bimodal and a transformation was thus inappropriate.

To assess both the accuracy and the precision of calibrations with PLS regression, we carried out
1000 runs of repeated 10-fold cross-validation (CV) for each measured series and each soil parameter;
groups of samples used for CV were randomly defined. The optimal number of latent variables
(nopt l.V.) was chosen for each model by means of the root mean squared error of cross-validation
(RMSE) and the Akaike Information Criterion (AIC) [28], calculated according to Viscarra Rossel and
Behrens [6]:

AIC = n ln(RMSE) + 2p, (1)

with n as the number of soil samples used for calibration (n = 40 in our case) and p as the number of
latent variables used in the respective model. The maximum possible number of latent variables was
set to p = 8, the minimum AIC score then indicated the best model as a trade-off between accuracy
and model parsimony. All calculations were done using the freely available libPLS software coded in
MATLAB [29], which we modified for our specific purposes.

We used different metrics to judge accuracies obtained in the CV approaches; RMSE, the coefficient
of determination (r2) and the ratio of performance to deviation (RPD); RPD is defined as the ratio of
the standard deviation of chemically measured reference values to the RMSE obtained in the CV.

2.5. Identification of Spectral Key Variables

For the identification of spectral key variables—performed for each soil property and for each
measurement series of the Bruker and Agilent instruments—we used the competitive adaptive
reweighted sampling (CARS) method, which is described in detail by Li et al. [30].

CARS, combined with a regression approach such as PLS regression, aims at selecting key
variables in a computationally efficient procedure. A series of j sampling runs is performed,
each including two selection steps. An exponential function (based on j and the number of original
spectral variables as parameters) is used to define the number of spectral variables to be kept in the
first step, i.e., the spectral variables are sorted according to their regression coefficients and all variables
beyond the defined maximum number are eliminated. In the second step, n random sampling runs are
carried out to select another subset from those n variables that were kept beforehand, whereby the
selection probability of each variable again depends on its regression coefficient. In this step, only those
variables that were picked more than once (sampling with replacement) are retained. At the end of all
sampling runs, j models have been defined. From these models, the best is chosen using the minimum
RMSE in the CV and the spectral variables used in this final model are considered to be key variables.

For a robust identification of key variables, we varied the data subjected to CARS and performed
1000 repetitions. In each repetition, only a subset of the complete dataset was selected by random
sampling (covering 36 samples or 90% of the original sample set) and used in the procedure
described above. In all repetitions and sampling runs, the maximum number of latent variables
used in the regression approach was fixed to nopt l.V. found in the 10-fold CV approach carried out
with full spectrum PLS regression beforehand (as described in Section 2.4). At the end of all repetitions,
we analyzed how often each variable had been included in the total of all 1000 “best” models. Variables
selected with high frequency can be considered to be more robust to sample variation or noise [30],
so that we used these cumulated frequencies to compare selection patterns between the different
measurement series. For the described Monte Carlo CV CARS approach, based on a subset of training
samples with a large number of repetitions, we used the MATLAB function included in the libPLS
software package (“carspls_mccv”).
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3. Results

3.1. Spectral Data Quality

For all measurement series, we calculated mean, standard deviation and noise spectra, the latter
extracted from the wavelet analysis (Figure 3). For the Agilent instrument, the basic shape of the mean
spectra was very similar between the different measurement series, so only the mean and standard
deviation spectrum of the composite series Agilent #4 are illustrated, but the noise spectra of all
datasets are shown.

The recorded MIR spectra exhibited varying ranges of absorbance values. For Bruker, DRIFT spectra
ranged from 0.45 to 1.58 and DHR spectra from 0.28 to 1.46; Agilent spectra showed the greatest
minimum to maximum differences (Agilent #4: 0.20 to 1.62). Positions of maxima (Bruker DRIFT and
Agilent #4 814 cm−1, Bruker DHR 812 cm−1) and minima (3852 cm−1 for Bruker DRIFT, otherwise
4000 cm−1) coincided well. The shape of the measured spectra showed a good match especially
between Bruker DHR and the pooled Agilent (#4) series. In the case of the Bruker DRIFT spectra,
some features were different, in particular the shape of the feature between 1070 and 1280 cm−1

(i.e., the generally “w”-shaped silicate inversion band [31]), the feature peaked at around 1350 cm−1

(being less broad in the Bruker DRIFT than in the DHR and Agilent spectra) and a small noisy feature
at 2350 cm−1 (most likely due to atmospheric CO2 [32]). Moreover, the feature at 2920 cm−1 was more
pronounced in the Bruker DHR and Agilent spectra than in the Bruker DRIFT spectra (Figure 3a–c).

Figure 3. Characteristics of the measured spectra. (a–c) Mean, noise and standard deviation spectra for
Bruker (a,b) and composite Agilent (#4) (c) data (noise values multiplied by a factor of ten and with an
offset of 0.2 for clarity), (d) Noise spectra of all three individual Agilent measurement series (multiplied
by a factor of ten and with an offset of 0.6 (Agilent #2) and 1.2 (Agilent #3), respectively).

As an overall measure of spectral quality, we cumulated the extracted noise (in absorbance) for all
40 spectra and over all wavenumbers (652–4000 cm−1), which provided a ranking of Bruker DRIFT
spectra (cumulated noise = 156) < DHR (206) < Agilent #4 (211) < Agilent #1 (273) < Agilent #3 (275)
< Agilent #2 (304). Noisy regions differed between instrumentation and settings. Bruker DRIFT spectra,
for example, showed markedly more noise than DHR or Agilent spectra in the regions greater than
3550 cm−1, but generally less noise (with the exception of some pronounced peaks) in the region
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between 652 and 1400 cm−1 (Figure 3b). Agilent spectra were definitely noisier than Bruker DRIFT and
DHR spectra in the 652–850 cm−1 region (Figure 3c), so that the ranking concerning noise without this
spectral region (850–4000 cm−1) switched to Bruker DRIFT (cumulated noise = 121) < Agilent #4 (135)
< DHR (153) < Agilent #3 (175) < Agilent #1 (180) < Agilent #2 (190). The Agilent series (Agilent #1–#3)
revealed slight differences concerning noise level, but the general noise pattern kept very stable
(Figure 3c,d). The averaging of measured Agilent spectra to the composite series Agilent #4 was
beneficial in terms of a markedly reduced noise level.

3.2. PLS Calibration Results

Estimates of all soil variables reached, with the only exception of soil pH, r2 values ≥ 0.85
and RPD values > 2.50, each with the best spectral dataset provided in all four cases by the Bruker
instrument with integrated sphere measurements (Table 3). One of the Agilent series (Agilent #2)
provided the highest accuracies for pH, which were slightly inferior to those of the other variables
with r2 at 0.78 and RPD at 2.15. Predictive advantages of DHR spectra regarding the other datasets
were most pronounced for SOC (in terms of r2—0.85 compared to 0.80 for Agilent #3) and for sand
content (in terms of RPD—3.99 compared to 2.95 for Agilent #4).

For the Agilent measurements, the highest accuracies were obtained—depending on the soil
property—with different datasets. Accuracies were highest with Agilent #2 for N and pH, with Agilent #3
for SOC and with Agilent #4 for clay and sand contents. In general, differences of accuracies achieved
with Agilent data ranked first and second were small in all cases (Table 3). Results achieved with
Bruker DRIFT spectra were poorest for SOC and N. For the other variables DRIFT spectra ranked
fourth (clay, sand) and fifth (pH). Compared to DHR spectra, RMSE increased in all cases by more
than 20%.

Table 3. PLS regression results (averaged from 1000 runs of 10-fold CV with best results for each soil
property in bold).

DHR DRIFT Agilent #1 Agilent #2 Agilent #3 Agilent #4

SOC (%)

number l.V. a 5 7 7 5 6 5
r2 0.85 0.73 0.78 0.78 0.80 0.77
RMSE 0.16 0.22 0.19 0.19 0.19 0.20
RPD 2.58 1.92 2.16 2.14 2.21 2.05

N (%)

number l.V. a 5 7 7 4 6 4
r2 0.89 0.79 0.82 0.87 0.80 0.87
RMSE 0.015 0.022 0.019 0.017 0.021 0.017
RPD 3.08 2.16 2.39 2.78 2.24 2.72

Clay (%)

number l.V. a 7 8 8 8 5 5
r2 0.92 0.88 0.87 0.87 0.89 0.90
RMSE 1.61 1.96 2.03 2.02 1.86 1.77
RPD 3.48 2.86 2.77 2.79 3.03 3.17

Sand (%)

number l.V. a 5 7 5 4 7 4
r2 0.89 0.79 0.82 0.87 0.80 0.87
RMSE 6.25 9.19 9.65 9.44 9.13 8.43

RPD 3.99 2.71 2.58 2.64 2.74 2.95

pH

number l.V. a 8 8 7 7 7 6
r2 0.76 0.67 0.65 0.78 0.67 0.78
RMSE 0.34 0.41 0.41 0.32 0.40 0.32
RPD 2.03 1.68 1.67 2.15 1.71 2.14

a Number of latent variables.
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Distributions of RMSE values for each soil property from the 1000 CV runs also indicate that
DHR measurements yield the most robust estimations of SOC, N, clay and sand contents (Figure 4).
For these soil parameters, the interquartile ranges (IQR) of the RMSE values for the DHR series do not
overlap with the IQRs of the other measurement series, i.e., the third quartile of the DHR RMSE values
is lower than even the first quartile of RMSE values in all other cases. Ranking for the Agilent series
differed across soil properties; Agilent #2 and Agilent #4, however, each performed best for two soil
properties. The averaging of measured Agilent spectra to Agilent #4 provided more robust estimates
indicated by generally smaller interquartile RMSE ranges compared to Agilent #1–#3. The use of
Agilent #4 data was markedly more successful than using Bruker DRIFT spectra, as the upper quartile
of Agilent #4 RMSE values was lower than the lower quartile of Bruker DRIFT RMSE data in all
cases (Figure 4).

Figure 4. Distributions of RMSE values across repeated 10-fold CV PLS runs for SOC, N, clay content,
sand content and pH values for all measured series.

In summary, Bruker DHR measurements tended to yield the best calibration models both in
terms of predictive accuracy and precision. The Agilent #4 series showed similar robustness, whereas
Bruker DRIFT and the individual Agilent series #1–#3 provided much more variable calibration results.
While DRIFT measurements with the Agilent handheld instrument tended to allow better calibrations
than Bruker DRIFT, there was overall a larger difference in calibration results between DHR and DRIFT
measurements than across the DRIFT datasets collected with the bench-top and handheld instruments.

3.3. Key Wavenumbers and Relevant Spectral Regions

Based on the applied Monte Carlo CV approach with the CARS spectral variable
selection algorithm, we identified key wavenumbers and key spectral regions for each soil property
and each measurement series. For SOC and DHR measurements, we found key wavenumbers in the
X−H stretching region from 4000 to 2500 cm−1 and in the triple- and double-bond regions from 2500
to 1500 cm−1, but not in the fingerprint region (<1500 cm−1) (Figure 5, Table 4).



Sensors 2018, 18, 993 11 of 17

Most prominent selection peaks were found around 1650 cm−1, 2920 cm−1 and between 1918 and
1942 cm−1. These peaks did not match with those peaks that we found with Bruker DRIFT spectra.
There, a total of five regions at wavenumbers less than 1600 cm−1 were of high importance, and only
two regions at higher wavenumbers (2022–2048 cm−1, 3692–3696 cm−1) coincided at least in parts
with DHR key regions (Figure 5, Table 4).

Figure 5. Key wavenumbers for SOC calibrations: (a) selection frequencies found for wavenumbers of
the DHR measurement series (peaks labelled) overlaid with mean DHR spectrum; (b) heat map of SOC
selection frequencies for all measured series.

Agilent spectral data showed some differences in the obtained selection patterns across the four
series. Most markedly, we found three selection peaks in the fingerprint region for Agilent #3 data,
located around 1036, 1092 and 1240 cm−1 and all without a match in the other Agilent series. Agilent #2
data did not provide any peak in this region, while selection frequencies from Agilent #3 data were
markedly low in the X−H stretching region between 3000 and 4000 cm−1. All Agilent series provided
prominent peaks in the 1920–1930 cm−1 and in the 2918–2922 cm−1 region, Agilent #1, #3 and #4
matched with a peak at 2018–2038 cm−1. Agilent #4 data, obtained by pooling Agilent #1, #2 and #3,
provided the most parsimonious models with a mean number of only 35 selected spectral variables
per run. In comparison, the mean number of used spectral variables was 60, 57, 50 for Agilent #1–#3,
56 for Bruker DRIFT and 45 for DHR spectra (Figure 5). Heatmaps of selection frequencies (Figure 5)
and listed key regions (Table 4) indicate a closer match between Agilent #4 and Bruker DHR spectra
than between Bruker DRIFT and Bruker DHR spectra.

In line with the results obtained for SOC, the Agilent #4 series provided the most parsimonious
models also for N, pH and sand (but not for clay). Generally, the modeling of N and sand contents
made use of a low number of spectral variables compared to SOC, pH and clay contents (Figures 5 and 6).
Selection patterns demonstrated similarities between SOC and N. Absorbances at 2920 cm−1 and at
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1926–1928 cm−1 were identified as key spectral regions in DHR and Agilent spectra for the estimation
of both soil variables (Figures 5 and 6a, Table 4); absorbances at 1650–1652 cm−1 were found to be
relevant for SOC and N with DHR, at 2032–2040 cm−1 with Bruker DRIFT spectra (Table 4).

Table 4. Spectral key regions identified from Monte Carlo CV CARS runs.

4000–2500 cm−1 a 2498–1500 cm−1 b <1500 cm−1 c

SOC

DHR 2916–2924, 3586, 3692–3694
1594–1596, 1648–1652,
1670–1672, 1918–1948,
1978–1980, 2024–2026

−

DRIFT 3630, 3692–3696 1544–1554, 1582–1598,
2022–2048

652–662, 1256–1272,
1332–1348

Agilent #4 2912–2926 1926–1932, 1940, 2018–2044 −

N

DHR 2916–2918

1406, 1650–1652,
1676–1678, 1844–1848,
1916–1928, 1938–1942,
2042–2044

−

DRIFT − 1588–1596, 1928,
2032–2050 −

Agilent #4 2918–2922
1538–1540, 1612–1614,
1684, 1834–1846,
1916–1940

−

pH

DHR 2806, 2814, 3966–3974 1608–1614, 1730–1742 670, 704, 774, 888, 944–946,
1044, 1354–1356

DRIFT
2740–2744, 2760–2762, 3856,
3904–3906, 3932–3952,
3970–3978

1598–1602, 1722–1746 1350–1352

Agilent #4
2736, 2756, 2782, 3824–3826,
3860, 3890, 3906–3908, 3934,
3954–3956, 3976, 3982

1592–1610, 1730–1736 1344–1346

clay

DHR 3676, 3852–3868, 3926–3928 1632–1634, 1842–1850 658, 706, 734, 986–988, 1402

DRIFT 3644, 3666–3668 1874–1876, 2032–2064 680–682

Agilent #4 3678, 3698–3700, 3934, 3946,
3956, 3964, 3984–4000 1834–1840, 1924–1934 712

sand

DHR 3556–3560 2042–2082 670, 1000

DRIFT − 1598–1600, 1862–1870,
2044–2058 652–660, 1264–1276

Agilent #4 3568–3570, 3584–3588 1760, 2036–2066 660, 714, 810–816
a X–H stretching region; b triple- and double-bond regions; c fingerprint region.

Minor overlaps could also be found for SOC, clay and sand. For example, absorbances
at 2044–2048 cm−1 were relevant for all three constituents in the case of Bruker DRIFT spectra.
Further overlaps between key regions for clay and sand contents, however, were not evident. Also,
for Bruker DRIFT spectra, the spectral regions at 652–660 cm−1 and at 1264–1272 cm−1 were considered
to be relevant for SOC and sand (Table 4).

The spectral region between 1926–1932 cm−1 was highly important for SOC and clay when
considering Agilent #4 spectra (Table 4). Among the considered soil variables, pH values were
outstanding concerning their spectral selection pattern. Spectral key regions did not show overlaps
with key regions of other soil variables. In all measurement series, spectral variables in the region
between 800 and 1400 cm−1 were irrelevant for estimating pH values and thus neglected in the
selection procedure (Figure 6b), while this region showed prominent peaks for all other soil variables
as described above and also indicated by Figures 5 and 6a,c,d.
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Figure 6. Heatmaps of wavenumber selection frequencies for (a) N, (b) pH, (c) clay content and
(d) sand content provided by the applied Monte Carlo CV approach with the CARS spectral variable
selection algorithm.

4. Discussion

Although we found different noise levels from one instrumental configuration to the other
(and between the different measurement series with the Agilent instrument) we could not identify
a direct relationship between spectra quality and obtained estimation accuracies. For example,
the Agilent #2 series with a relatively high noise level succeeded over Agilent #1 and #3 data for
estimating N and pH values; Bruker DRIFT spectra, characterized by a low noise level between 650
and 3550 cm−1, provided the poorest estimates for SOC and N. This is in line with the findings of
Soriano-Disla et al. [18], who compared different MIR instruments (reference laboratory and handheld
instruments) and also stated that the quality of the spectra did not play a major role for the prediction of
soil properties. Beyond noise, we found some minor differences in the shape of the spectra, especially
between DRIFT spectra on the one hand and Bruker DHR and Agilent spectra on the other hand.
This seemed to be more relevant than noise, especially in the case of sensitive regions; for example,
the feature at 2920 cm−1, which is in the case of missing carbonates diagnostic to aliphatic CH and
thus directly related to organic matter in soils [33], was less pronounced in the Bruker DRIFT spectra.
Accordingly, this region was less frequently selected with these DRIFT spectra than with DHR or
Agilent DRIFT spectra for the modeling of SOC and N.

For the studied soil properties, further typical features exist in the MIR region that may be used
for qualitative or quantitative approaches, but only some of these diagnostic features can be identified
in soils without incineration, chemical extraction or the application of fractionation techniques [31].
The clay fraction is most markedly linked to the region between 3600 and 3700 cm−1 (usually with a
sharp peak at 3620 cm−1 caused by hydroxyl stretching [34]). According to this, key wavenumbers for
clay contents were found for all datasets in this spectral region. Other known clay mineral features such
as those centered between 1000 and 1100 cm−1 (Si−O stretching frequencies) [35] were not evident
as key regions, independent from the considered instrumental setup. Quartz and feldspars may be
used as spectrally active constituents to quantify the sand fraction [36]. Quartz can be detected by the
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“w”-shaped silicate band and by a typical doublet at 800 and 780 cm−1 [37,38], feldspar features are
located at 600, 750 or 950 cm−1 [9]. All these features located at wavenumbers less than 1300 cm−1 did
not correspond to one of the identified key regions (neither for clay nor for sand) although, for example,
the “w”-shaped silicate band was markedly pronounced in all measured spectra. The region below
1000 cm−1, however, is a mixture of organic and mineral bands and thus may be better resolved by a
subtraction of the ash soil spectrum from the untreated soil spectrum [39].

Important organic matter features are located at 2920 cm−1 (as described above),
at 1740–1698 cm−1 (C=O groups in carboxylic acids, aldehydes and ketones), at 1640–1600 cm−1 (amide
I band) and at 1575–1400 cm−1 (amide II band) (see compilation in Vohland et al. [40]). The region
between 1740 and 1600 cm−1, which can be used to indicate hydrophilic organic components [41],
was identified as a key region for SOC (with Bruker DHR spectra) and N (Bruker DHR and
Agilent spectra). The amide II band was found to be relevant for SOC when using Bruker DRIFT spectra.
For all instrumental configurations, absorbances at 2024–2026 cm−1 were identified as being relevant
for the quantification of SOC, but a clear physical interpretation is missing. This region is, possibly
linked to the silicate region between 1790 and 2000 cm−1, typically with three characteristic peaks
(Figure 3a–c). Absorbances in this region are often (negatively) correlated with SOC and N [31], and we
found this region to be a key spectral region for both constituents (on Bruker DHR and Agilent spectra,
on Bruker DRIFT spectra only for N).

Similarity of the spectra and a good agreement of physically evident spectral key regions indicate
a similar applicability of Bruker DHR and Agilent spectra for the quantification of both SOC and N
and suggest a different performance of Bruker DRIFT spectra. This corresponds to the results obtained
in the 10-fold CV approach, with decreasing accuracies for both soil variables ranked Bruker DHR >
Agilent > Bruker DRIFT spectra (Table 3).

Results of the calibration approach crucially depend on the representativeness of both the
chemically analyzed and the spectrally measured subsamples. Especially when modeling soil variables
with a narrow concentration range, errors of the chemical reference method may affect estimation
results markedly [18]. For the representativeness of the spectral measurements, Agilent DRIFT
measurements were affected by the small spot diameter (2 mm) compared to Bruker DRIFT (6 mm)
and DHR (20 mm) measurements. It is thus highly recommendable to repeat measurements with
the Agilent device at different subsamples and to pool these data to one dataset, as done in the case
of the Agilent #4 data. Results indicate that this improved spectra quality with an overall reduced
noise level, resulted in more robust estimation models (lower variability of obtained RMSE values) and
induced parsimony with respect to the selected spectral variables with a more distinct discrimination
of important and unimportant ones.

As far as we know, this study is the first to test the Agilent 4300 Handheld FTIR in a
direct comparison with a bench-top spectrometer. Soriano-Disla et al. [18], however, tested two
other predecessor Agilent handheld FTIR devices (Agilent 4100 ExoScan, Agilent 4200 FlexScan),
also operated with a DRIFT accessory, and compared them to a Frontier spectrometer (Perkin Elmer,
Waltham, MA, USA) also combined with a DRIFT accessory as a bench-top reference instrument.
In the calibration of SOC, pH, N, sand and clay they found only small differences between the
different instruments with a maximum for N obtained with the portable FlexScan instrument (r2 = 0.75,
RPD = 1.98) in comparison to the reference Frontier spectrometer (r2 = 0.70, RPD = 1.83). Across all
studied properties (n = 17) the FlexScan performed best (with again small differences). Based on these
results it was concluded that a portable MIR instrumentation can provide similar performance to
bench-top instruments so that there is a high potential for in-field applications. Our study is in line with
these results and supports this conclusion for the Agilent 4300 instrument, although obtained accuracies
were inferior to the “best case” configuration realized with Bruker DHR measurements (highly sensitive
DLaTGS detector with a high signal-to-noise ratio (minimum value > 6000:1), integrating sphere to
measure hemispherical reflectances, 2 × 200 scans per sample, 20 mm spot diameter). In the direct
comparison using a DRIFT accessory, at least the composite data of the Agilent 4300 instrument



Sensors 2018, 18, 993 15 of 17

(Agilent #4 with 3 × 2 × 64 scans per sample) provided generally higher estimation accuracies for the
studied soil properties than the Bruker DRIFT series, despite slightly noisier spectra.

5. Conclusions

Our findings show that handheld MIR spectrometers, in particular the Agilent 4300 Handheld
FTIR tested in this study, can record soil spectra of comparable quality to bench-top instruments.
Multivariate calibrations for various soil properties based on bi-directional DRIFT measurements with
the handheld instrument were as good as or slightly better than the results achieved with DRIFT
measurements from the Bruker instrument. Directional hemispherical reflectance measurements with
an integrating sphere, however, yielded the best results and thus may be considered a reference
method for stand-alone lab applications in soil spectroscopy. Since our study covered a comparably
homogeneous set of agricultural soil samples from a single soil region, future research efforts to cover
a broader range of soil types derived from more diverse parent materials and under different land use
practices will be important to further generalize our findings.

The wavelet analysis of the very high frequency components of the MIR spectra suggests that the
contamination of spectral data with minor measurement noise has little influence on the accuracy of
multivariate calibrations. Accordingly, an increase in the integration time for individual measurements
beyond the tested 64 co-added scans may be of limited practical use for on-site applications.
In comparison, repeated measurements on different soil sub-samples appear more promising to
derive representative spectra and stable calibrations.

We are currently in the process of investigating the performance of the Agilent 4300 Handheld
FTIR instruments for on-site spectral data acquisition. For on-site applications, it will be important
to consider that MIR spectroscopy is also impacted by additional variability in soil moisture and
more pronounced soil sample heterogeneity compared to dried and crushed samples analyzed in
the laboratory.
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