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Abstract: 

. Inherently conducting polymers have been of great interest to scientists since the initial 

discovery of polymers with metal type conductivities and this is currently one of the most active 

areas of research in polymer science and engineering. Conducting polymers are attractive ma-

terials for use in a variety of applications that require materials which are both electrically con-

ducting and mechanically compliant. It is known that poly(3,4-ethylenedioxythiophene), often 

abbreviated as PEDOT, is relatively stable compared to other conducting polymers. The elec-

tropolymerization of 3,4-ethylenedioxythiophene (EDOT) is usually carried out in organic sol-

vents due to the low solubility of the monomer in water. However, since organic solvents are 

often harmful to health and uneconomical compared to water, there is a growing interest in the 

preparation of PEDOT films in aqueous media. In the present study, the most important elec-

trodeposition methods for the preparation of PEDOT films in surfactant free aqueous media are 

summarized. It is obvious, that the stability of polymer films is of great importance for their 

practical application. For this reason, results of recent studies on the electrochemical stability 

and degradation properties of poly(3,4-ethylenedioxythiophene) films electrodeposited from 

aqueous solutions are summarized, with particular emphasis on the structural changes induced 

by overoxidation and oxidative (electrochemical) degradation. Experimental techniques suita-

ble for monitoring the degradation process have been discussed and the morphological changes 

in PEDOT films during overoxidation have been analyzed. Overoxidation mechanisms pro-

posed in the literature have been surveyed. 
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Introduction 
 

Intrinsically conducting organic polymers have attracted great interest due to their very 

good electrical conductivity and good environmental stability, combining the advantages of 

organic polymers and the electronic properties of semiconductors. Polymers can be made to 

conduct if alternating single and double bonds link their respective carbon atoms. Here, elec-

trons can be introduced via reduction of the polymer chain, or removed via the oxidation of the 

polymer chain. It is known that demand for electrically conducting polymers as used in the 

electronics industry has in the past been met by using high loadings of metal or other conductive 

powders (e.g. Au, Ag, Cu, Ni and graphite) with the polymer matrix [1]. There are, however, a 

number of disadvantages to this approach, including high cost and deterioration in other prop-

erties of the polymer. 

Intrinsically conducting organic polymers are attractive materials for use in a variety of 

applications that require materials which are both electrically conducting and mechanically 

compliant, i.e. in energy conversion/storage, optoelectronics, coatings, sensing applications and 

supplement the quest for powerful yet small/thin and flexible devices [2-15]. Obviously, in all 

these applications the long term stability of the polymer is of particular concern. This stability 

can be assessed in terms of the property of interest, such as: mechanical elasticity, conductivity, 

electrochemical activity, etc. A main characteristic feature of conducting polymers is the ability 

to undergo reversible redox transformations which are accompanied by the movement of “do-

pant” ions (or counterions). In the so called p-doped state, the main chain of the conducting 

polymer is oxidized, and the dopant ions are introduced for stabilizing the charge along the 

polymer backbone, i.e. for keeping the electron neutrality of the whole molecule. Due to the 

low stability of n-doping states the most investigations of conducting polymers are focused on 

the p-doping processes, where delocalized cation-radicals (“polarons”) and dications (“bipolar-

ons”) play the role of charge carriers within the polymer film. The positive polaron with positive 

charge (formed after oxidation of chain fragments) and the negative polaron with negative 

charge (formed after reduction of chain fragments) are usually denoted as P+ and P , respec-

tively. The bipolaron is a charge carrier that possesses double charges by coupling of two P+ or 
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two P  on a conjugated polymer main chain. Bipolarons have no spin. The “oxidation” of the 

polymer is usually considered to be reversible, while “overoxidation” can be defined as an ir-

reversible electrochemical process which leads to excessive oxidation of polymer fragments 

(with formation of new oxidation centers, states) and is accompanied by gradual loss of elec-

troactivity.  

It should be noted here that the nature of the “doping” in conducting polymers is differ-

ent from that of the doping of crystalline inorganic semiconductors, since in the latter case 

doping is realized by the introduction of impurities into a semiconductor crystal, the dopant 

species occupies positions within the lattice of the host material and the dopant is integrated 

into the lattice structure. The number of outer electrons define the type of doping. E.g. two of 

the most important materials Si can be doped with, are boron (3 valence electrons) and phos-

phorus (5 valence electrons). Other materials are aluminum, indium (3-valent) and arsenic, an-

timony (5-valent), i.e. elements with outer shell electrons one more or one less than Si. Elements 

with 3 valence electrons are used for p-type doping, 5-valued elements for n-doping.  

Conducting polymers such as polyanilines, polypyrroles and polythiophenes have been 

studied intensively during the last decades. It has been found that poly(3,4-ethylenedioxythio-

phene) [14,16], often abbreviated as PEDOT, is relatively stable compared to other conducting 

polymers. The conjugated polymer backbone, consisting of alternating C-C double bonds, pro-

vides for -orbital overlap along the molecule. PEDOT can be doped with many anions, includ-

ing macromolecular polyanions such as poly(styrene sulfonate) (PSS). Previous studies have 

shown that PEDOT is electroactive in aqueous solutions [17-19], and exhibits a relatively high 

conductivity. However, although the problem of degradation and stability of organic conducting 

polymers is an important “real-life” problem in practical applications and it has been repeatedly 

discussed in the literature, there are not many papers dealing with the stability of PEDOT-mod-

ified electrodes. In most of these studies, voltammetric techniques such as cyclic voltammetry 

were used to investigate the electrochemical behavior of PEDOT films. For example, it has 

been reported [20-24] that at sufficiently positive electrode potentials, degradation of the poly-

mer occurs. That is, when the positive potential limit of the cyclic voltammogram (CV) is ex-

tended to the region in which the “overoxidation” of the PEDOT film takes place, an oxidation 

peak (without a corresponding reduction peak) appears in the cyclic voltammogram. It was also 

shown [21-23] that PEDOT films in modified electrodes undergo structural changes during the 

overoxidation process.  

The possible stages involved in the overoxidation/degradation process are the following: 

1) Stress generation in the PEDOT film during overoxidation [25]. 2) Crack formation due to 
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internal stresses. 3) After the formation of the line cracks, the film stress is partially released. 

4) The products of the degradation of the polymer can leave the polymer layer. 5) The partial 

delamination of the polymer layer leads to the exposure of the underlying metal substrate to the 

electrolyte solution.  

Besides morphological changes, overoxidation can also affect the charge structure of 

the polymer film. Poly(3,4-ethylenedioxythiophene) is a redox polymer that incorporates coun-

terions from the electrolyte solution to maintain electroneutrality; thus its charging processes 

involve a detectable counter-ion flux leaving the film [26]. It should be emphasized here that 

the polymer film still present on the substrate after overoxidation remains electroactive, and its 

internal structure may be an interesting subject for further studies, since according to literature 

reports conducting polymers in different overoxidation states show unique features useful for 

analytical, sensing and biomedical applications [27-30]. For example, (over)oxidized PEDOT 

films were successfully used for sensing perchlorate [31], and overoxidized poly(3,4-ethylene-

dioxythiophene) film-modified screen-printed carbon electrodes exhibited superior sensitivity 

and selectivity to dopamine [32]. However, the basis for the observed selectivity of overox-

idized polymer films is still not entirely clear [15,23,33].  

As can be seen from the above discussion, it is not easy to give a general definition of 

“electrochemical degradation of conductive polymers” due to the complexity of the phenome-

non involving several parallel processes and the large amount of parameters which must be 

considered. On the other hand, as a rule, the electrochemical degradation of polymer modified 

electrodes is strongly associated with overoxidation. That is why, although the two terms "elec-

trochemical oxidative degradation" and "overoxidation" do not have exactly the same meaning 

they are frequently used as synonyms. 

In this review recent studies on the electrochemical stability and degradation properties 

of poly(3,4-ethylenedioxythiophene) films are surveyed, with particular emphasis on the struc-

tural changes induced by overoxidation and electrochemical degradation. The most important 

electrodeposition methods for the preparation of PEDOT films in aqueous media are also sum-

marized, and techniques suitable for monitoring the degradation process are discussed.  

The electrochemical synthesis of PEDOT  

Poly(3,4-ethylenedioxythiophene) can be synthesized both by electrochemical and 

chemical methods [15,34]. The electropolymerization of 3,4-ethylenedioxythiophene (EDOT) 

is usually carried out in organic solvents such as acetonitrile [35-39] or propylene carbonate 
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[36,40] due to the low solubility of the monomer in water. Nevertheless, since organic solvents 

are often harmful to health and uneconomical compared to water, there is a growing interest in 

the electropolymerization of PEDOT films in aqueous media. This is sometimes achieved by 

the application of surfactants that can prevent the aggregation of EDOT molecules in aqueous 

solutions. The most often used surfactants are poly(sodium 4-styrenesulphonate) (NaPSS) and 

sodium dodecyl sulphate (SDS), however the electrodeposition of PEDOT films may also be 

carried out in aqueous media that do not contain any surface active agent, i.e. when the aqueous 

solution contains only the monomer and an inorganic salt. There are several papers that reported 

the electropolymerization of PEDOT in absence of any surfactants or macromolecules (in most 

cases only for comparison of the films prepared with and without surfactant) but only a few of 

these studies deal specifically with the dependence of the film structure on the deposition meth-

ods and parameters [11,17,41-43]. In this section some of the most common “direct” electro-

chemical deposition techniques (i.e. the methods that can be used for the deposition of PEDOT 

in surfactant free aqueous media) are summarized. 

Deposition in surfactant free aqueous solutions by using potentiostatic methods 

Du and Wang [44] prepared PEDOT films by potentiostatic deposition on a 2 mm di-

ameter Pt disk from a 0.01M EDOT + 0.1 M LiClO4 aqueous solution under constant stirring 

(in order to maintain the same hydrodynamic conditions). The potential was varied between 0.8 

and 1.5 V vs. KCl-saturated calomel electrode (SCE), and the same charges (0.2 C) were passed 

at the different synthesis potentials. The capacitance of the film exhibited a minimum, while 

the film resistance and the deposition time (i.e., the time required for the passing of 0.2 C 

charge) exhibited a maximum at 1.2 V. Over 1.1 V deposition potential overoxidation of PE-

DOT takes place parallel to the EDOT oxidation and polymerization. 

Potentiostatic electropolymerization of PEDOT on gold can be sensitively followed us-

ing the electrochemical quartz crystal microbalance (EQCM) and by spectroelectrochemistry 

[45]. According to [45] the PEDOT films were deposited from a 3 mM aqueous EDOT solution 

containing 0.3 M LiClO4 as supporting electrolyte at different electrode potentials (0.75 V, 

0.80 V, 0.85 V and 0.90 V vs. Ag / AgCl / 3 M KCl). The electrolysis time was 360 s. The ap-

plied potentials were chosen carefully in order to avoid the overoxidation of the polymer. At 

0.75 V vs. Ag / AgCl / 3 M KCl, there was no frequency change of the EQCM, indicating that 

no deposition occurred at this potential. At electrode potentials more positive than 0.80 V, the 

absolute value of the frequency shift monotonically increased (i.e. the resonant frequency of 

the QCM sensor decreased) with the positive shift of the potential. 
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Lupu et. al. [46] deposited PEDOT potentiostatically and using sinusoidal voltage per-

turbation from 0.01 M EDOT and 0.1 M LiClO4 containing solution (the electrolysis time was 

300 s). The DC bias was fixed at 0.95 V vs. SCE. The amplitudes of the applied AC perturba-

tions were 5 and 50 mV. In case of the 5 mV perturbation the properties of the film were similar 

to those of PEDOT prepared by a regular potentiostatic method. In case of 50 mV amplitude 

the porosity of the film became higher. The advantage of the sinusoidal method is that it allows 

the estimation of electrochemical parameters, such as charge transfer resistance and exchange 

current during the polymerization process. 

The oligomers occluded in electrochemically synthesized PEDOT were investigated by 

Ventosa et al. [47]. The films were grown on different substrates potentiostatically by applying 

an anodic potential of +1.00 V vs. Ag / AgCl / KCl (3 M) for 250 s in 0.003 M EDOT + 0.2 M 

LiClO4 aqueous solution. Both spectroelectrochemical and scanning electrochemical micros-

copy (SECM) measurements showed that in a 0.2 M LiClO4 solution the oligomer release 

started at 0.70 V. From the mass spectroscopy results it can be concluded that the most stable 

oligomeric forms are the tetramer and the hexamer and only traces of the longest oligomeric 

compounds are released to solution.  

Deposition in surfactant free aqueous solutions by potentiodynamic methods 

PEDOT films have been deposited on indium tin oxide (ITO) by using a potentiody-

namic method (cyclic voltammetry) from 0.1 M KNO3 + 0.01 M EDOT solution in different 

potential ranges [48]. The negative limit of the CVs was 0.4 V (vs. SCE), the total charge den-

sity was 0.17 C/cm2. The structure of the film changed by increasing the positive potential limit: 

the globules grew larger and many globules became well separated, leading to an increased 

roughness. The capacitance of films prepared with the application of the positive potential limit 

of 1.4 V was less than that of films polymerized using potential limits of 1.05 or 1.2 V. These 

findings are related to the overoxidation of the PEDOT films. The microstructure – which is 

based on lamellas and nanosheets – does not change with increasing oxidation limit. 

The effect of the solubilizing agent during potentiodynamic and potentiostatic deposi-

tion was investigated as well [42]. The solution used for the deposition contained 10.0 mM 

EDOT, 0.5 M NaNO3 and different solubilizing agents. Voltammetric curves were recorded 

between 0.0 V and 1.0 V (vs. Ag/AgCl/3 M NaCl) at 100 mV/s polarization speed, and poten-

tiostatic deposition was performed at 1.0 V (up to charge density 6.25 mC/cm2). It was con-

cluded that anodic solubilizing agents favor polymerization by lowering the oxidation potential 

of EDOT and by eliminating the induction period. The films had longer conjugation length, 
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showed higher transparency and increased conductivity compared to films prepared without 

surfactant addition. Cationic surfactants increased the oxidation potential and exhibited slow 

polarization kinetics. 

Deposition in surfactant free aqueous solutions by using galvanostatic methods 

In Refs. [21-24] Au | PEDOT films were prepared from 0.01 mol·dm-3 ethylenedioxy-

thiophene (EDOT)/0.1 mol·dm-3 Na2SO4 solution at a constant current density of 0.2 mA·cm-2 

for 900 s, 1800 s or 7200 s. The thickness of the film can be controlled by changing the depo-

sition time. The structure of the PEDOT film was globular, cauliflower-like. 

Glassy carbon | PEDOT films were synthesized by Zanfrognini et.al. [49] from a 0.01 M 

EDOT / 0.1 M LiClO4 solution by applying a constant current density of 0.4 mA·cm-2 for 20 s. 

The chronopotentiogram (E - t transients) exhibited a maximum potential of +0.92 V, later the 

potential was stable around +0.90 V vs. Ag / AgCl / 3 M KCl reference.  

King et. al. [41] deposited PEDOT on different substrates (Au and Pd sputtered glass, 

as well as ITO on glass and Pt/Ir balls) and in the presence of various counterions. The applied 

preparation method involved a galvanostatic electrolysis at a current density of 0.5 mA/cm2 for 

12 min from solutions containing 0.01 M EDOT and 0.01 M of the studied counterion. They 

characterized the structure of PEDOT films deposited from aqueous poly(styrene sulfonate), 

chloride, perchlorate, PBS: phosphate buffered solution containing 0.001 M KH2PO4, 0.15 M 

NaCl and 0.0057 M Na2HPO4, para-toluenesulfonate, heparin, glutamate, hyaluronic acid, bo-

vine serum albumine, poly(d-lysine), and biotin solutions, and found that the selection of coun-

ter-ions for PEDOT deposition affects both the electrical properties and the morphology of the 

obtained film. 

Bobacka et. al. have reported the galvanostatic deposition of PEDOT on glassy carbon 

[11] and Pt [17]. They used a solution that contained 0.01 M EDOT and 0.1 M supporting elec-

trolyte (either KCl, NaCl or NaPSS with an average molar mass of 7000). A glassy carbon rod 

was used as counter electrode in both cases. The reference electrode was either 

Hg / Hg2Cl2 / 3 M KCl [11] or Ag / AgCl / 3 M KCl [17]. In each experiment, the current den-

sity was kept constant (j = 0.2 mA·cm-2) while the deposition time was varied between 71 and 

1071 s. 

Electrochemical and structural characterization of overoxidized PEDOT 

films 
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Cyclic voltammetry 

Cyclic voltammetry (CV) is one of the standard techniques used for characterization of 

polymer modified electrodes. As mentioned in the introduction it is an effective tool also for 

the investigation of the electrochemistry of PEDOT. It has been found that when the positive 

potential limit of the CV is extended into the region in which the overoxidation of the polymer 

film takes place, an oxidation peak (without a corresponding reduction peak) appears [20], but 

only minor changes can be observed in the shape of the cyclic voltammograms recorded in the 

“stability region” before and after overoxidation. The influence of the electropolymerisation 

potential on the properties of PEDOT films obtained in aqueous solutions has been studied in 

[44,45]. It has been concluded in [48] that strong overoxidation of the PEDOT film takes place 

when the electropolymerisation potential is more positive than +1.10 V vs. SCE, and the extent 

of overoxidation is smaller when the potential ranges from +0.80 to +1.10 V.  

 

 

 

Figure 1   Cyclic voltammograms of PEDOT films electrodeposited on gold-on-glass (a) and plati-

num-on-glass strips (b) recorded in c = 0.1 mol·dm-3 H2SO4 solution at different sweep rates. 

1: ν = 10 mVs-1; 2:  ν = 20 mVs-1; 3: ν = 50 mVs-1; 4:  ν = 100 mVs-1; Geometric electrode area: 

2.0 cm2. E: electrode potential, I: current [15]. 

 

Overoxidation of PEDOT films prepared electrochemically under “normal” conditions 

has been investigated in several studies [15,21-24]. A series of cyclic voltammograms of pris-

tine Au|PEDOT|0.1 M sulfuric acid (aq.) and Pt|PEDOT|0.1 M sulfuric acid (aq.) electrodes 

recorded at different sweep rates (ν = 10, 20, 50, 100 mVs-1) are shown in Figure 1 (geometric 

surface area of the electrode: 2.0 cm2). The rectangular-like shape of the CV curves indicates 

capacitive behavior of the electrodes (Figure 1a and Figure 1b). The charge associated with the 
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charging/discharging process is approximately the same for both electrodes [22], i.e. between 

–0.3 and 0.8 V vs. KCl-saturated calomel electrode (SCE) the oxidation-reduction process of 

the PEDOT films is reversible. It is known from published data [15,21] that irreversible oxida-

tion of the PEDOT film starts at or above 0.8 V vs. SCE. This means that at potentials more 

positive than 0.8 V vs. SCE irreversible degradation of the polymer layer occurs as it can be 

seen in Figure 2, where a series of cyclic voltammetric curves recorded for Au|PE-

DOT|0.1 M sulfuric acid (aq.) (Figure 2a) and Pt|PEDOT|0.1 M sulfuric acid (aq.) (Figure 2b) 

electrodes at a sweep rate of ν = 50 mV s-1 are shown [22].  

 

 

 

Figure 2   The series of cyclic voltammetric curves recorded according to the potential programs 

indicated by the saw-tooth like inserts (sweep rate: ν = 50 mV s-1 ). One “narrow-range” CV (curve 

1) taken immediately before and one (curve 5) taken immediately after the 3 cycles (curves 2-4) 

recorded in the potential range ‒300 mV vs. SCE ― 1200 mV vs. SCE (a,b) and ‒300 mV vs. 

SCE ― 1500 mV vs. SCE (c,d), respectively, are presented. (a): Au | PEDOT | 0.1 M sulfuric 

acid (aq.); (b): Pt | PEDOT | 0.1 M sulfuric acid (aq.); (c): Au | PEDOT | 0.1 M sulfuric acid (aq.); 

(d): Pt | PEDOT | 0.1 M sulfuric acid (aq.). Geometric electrode area: 2.0 cm2. E: electrode poten-

tial, I: current [15]. 

 

The potential programs applied to the electrodes are given in the inserts. After “moder-

ate” (or “mild”) overoxidation (up to 1.2 V vs. SCE) there are only small differences between 

the voltammograms recorded in the 0.3 V to 0.8 V potential range before and after overoxi-

dation (curves 1 and 5 in Figures 2a and 2b). Both in the cases of Au|PEDOT and Pt|PEDOT 
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the shapes of the cyclic voltammograms change considerably if the positive limit of the elec-

trode potential is extended to 1.5 V vs. SCE (“strong” overoxidation, curves 2-4 in Figures 2c 

and 2d). In case of Au|PEDOT a broad oxidation peak at about 1.30-1.35 V with no correspond-

ing reduction peak can be observed in the first cycle. The voltammetric behavior of Pt|PEDOT 

in the potential range of -0.3 to 1.5 V vs. SCE is similar to that of Au|PEDOT, however, no 

distinct peak appears on the voltammograms. As it can be seen from Figures 2c and 2d, the 

effects of overoxidation on the oxidation current are common for both electrodes: the peak 

current decreases with the number of scanning cycles (curves 2-4). This quite rapid decrease of 

the oxidation current with the number of cycles and the absence of the reduction peak suggest 

that the oxidation process lead to irreversible changes in the polymer film. Indeed, the cyclic 

voltammograms recorded before and after overoxidation (curves 1 and 5 in Figures 2c and 2d) 

are similar in shape and show typical capacitive behavior in the “narrow” potential range 

( 0.3 V to 0.8 V vs. SCE), but the redox capacity of the (over)oxidized polymer film is consid-

erably smaller than that of the freshly prepared film. 

Electrochemical-mechanical properties of the PEDOT films 

According to experimental results, during oxidation or reduction processes the mechan-

ical properties of conductive polymers may change significantly [50,51]. E.g. by using a mi-

cromechanical cantilever-based sensor considerable stress changes have been detected in do-

decylbenzenesulfonate-doped polypyrrole films during potential cyclization [52]. The “bending 

cantilever”  or “electrochemical bending beam” method [53-56] can be effectively used in elec-

trochemical-mechanical experiments, since the changes of the stress in a thin film (gf) or other 

conducting layer on one side of an insulator strip (cantilever) in contact with an electrolyte 

solution can be estimated from the changes of the radius of curvature of the strip. If the potential 

of the electrode changes, electrochemical processes resulting in the change of gf induces a bend-

ing moment and the strip bends (the scheme of the experimental setup is similar to that pre-

sented in Figure 1 in the chapter entitled “Interface stress measurements in an electrochemical 

environment” of this Encyclopedia). The change of gf can be obtained by an expression based 

on a generalized form of Stoney’s equation [25,53,57,58] 

  Rkg 1if   [1] 

where ki depends on the design of the electrode, and R is the radius of curvature of the cantilever. 

The change in the curvature of the cantilever, Δ(1/R) = Δgf /ki  can be calculated, if the changes 

of the deflection angle Δθ of a laser beam mirrored by the metal layer on the plate are measured 
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using an appropriate experimental setup. If the deflection of the cantilever is small, the follow-

ing approximate equation can be derived [53,59-61]: 

 
hln

b

hn

θ

R as,as, 22

1 












 , [2] 

where h is the distance between the level of the solution in the cell and the reflection point of 

the laser beam (measured e.g. with the help of a cathetometer); l is the distance between the 

electrode and the position sensitive photo detector (PSD), b is the change of the position of 

the light spot on the PSD, and ns,a is the refractive index of the solution with respect to air.  

 

 

 

Figure 3   (a) The potential program applied to the Au | PEDOT | 0.1 M sulphuric acid electrode. 

Sweep rate: ν = 50 mV s-1. (b) The voltdeflectograms recorded in time intervals “1” - “5” (see 

Fig. 6a). E: electrode potential, R: radius of curvature of the cantilever (Film thickness: d ≈ 1.4 µm) 

[15]. 

 

As discussed above, between –0.3 and 0.8 V vs. SCE the oxidation-reduction process 

of the PEDOT films is reversible, but at potentials E > 0.8 V vs. SCE irreversible degradation 

of the polymer layer occurs. In ref. [24] a series of voltdeflectograms ( (1/R) vs. E curves)  has 
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been recorded for a Au | PEDOT | 0.1 M sulfuric acid (aq.) electrode (geometric surface area: 

4.0 cm2) at a sweep rate of ν = 50 mV s-1. Some of these curves are shown in Figure 3b. (Volt-

deflectograms for the Pt | PEDOT | 0.1 M sulfuric acid (aq) electrode can be found in ref. [22].) 

The potential program applied to the electrode is given in Figure 3a. The corresponding volt-

ammograms showed capacitive behavior if the potential limit is kept below 0.8 V. If the polar-

ization potential exceeded this critical value an oxidation peek without corresponding reduction 

peek appeared (“overoxidation cycles”). The shapes of the  (1/R) vs. E curves before and after 

moderate oxidation were similar, but the change in 1/R (between minimum and maximum) was 

slightly greater in the case of the pristine film.  

After extending the positive potential limit up to 1.5 V vs. NaCl-saturated calomel elec-

trode (SSCE), the shape of the (1/R) vs. E curves changed dramatically (curves 4 and 5 in Fig-

ure 3b) and begins to resemble more and more that of the (1/R) vs. E curve for bare Au 

[21,22,25]. 

SEM micrographs and X-ray diffractograms of pristine and overoxidized PEDOT layers 

In Figure 4 scanning electron microscope (SEM) images together with X-ray diffracto-

grams of freshly prepared PEDOT films (deposited on gold) are presented [23,24]. One can see 

in the secondary electron (SE) SEM images, that well-separated globules (or cauliflower-like 

particles) are present on the top of the polymer layer (Figure 4a/l, i.e. the SEM image on the 

left hand side of Figure 4a, see also refs. [15,21,22]). The backscattered electron (BSE) micro-

graph taken from the same area (which characterizes a thicker layer compared to SE) shows 

that the globules are attached to an underlying smoother polymer layer (Figure 4a/r). The X-

ray diffraction (XRD) pattern indicates that the as-prepared sample is highly amorphous 

(Fig. 4a). 

In Figure 4b X-ray diffractogram and SEM images of the polymer film after moderate 

overoxidation (after the completion of 3 potential cycles up to 1.2 V vs. SSCE) can be seen. 

The most striking difference between the micrograph shown in Figure 4b/l and that of the 

freshly prepared sample in Figure 4a/l is the appearance of narrow cracks or crevices in the 

SEM image of the oxidized film. The cracks resulted in bright spots (“islands“) in the backscat-

tered SEM image (Figure 4b/r). The XRD spectrum is still characteristic for amorphous state 

but small peaks appear indicating the presence of some crystalline material. After further oxi-

dation the XRD peaks corresponding to the crystalline polymer are growing (Figure 4c), the 

SEM images show interconnected crevices (Figures. 4c/l-c/r). 
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Figure 4   (a): X-ray diffractogram of the freshly prepared PEDOT film. (a/l): Secondary electron 

SEM image. (a/r): The corresponding backscattered SEM image taken from the same area. The 

length of the vertical black bar left to the images corresponds to 10 μm. (b): X-ray diffractogram of 

the oxidized PEDOT film after after moderate overoxidation (recorded at the end of time interval 

“T1” in Fig. 6a). (b/l): Secondary electron SEM image. (b/r): The corresponding backscattered SEM 

image taken from the same area. (X-ray diffractogram and SEM micrographs were recorded at the 

end of time interval “T1” in Fig. 6a). The length of the vertical black bar left to the images corre-

sponds to 5 µm. (c): X-ray diffractogram of the oxidized PEDOT film at the end of time interval 

“T2” in Fig. 6a. (c/l): Secondary electron SEM image. (c/r): The corresponding backscattered SEM 

image taken from the same area. The length of the vertical black bar left to the images corresponds 

to 10 µm. (d): X-ray diffractogram of the oxidized PEDOT film after strong overoxidation (recorded 

at the end of time interval “T3” in Fig. 6a). (d/l): Secondary electron SEM image. (d/r): The corre-

sponding backscattered SEM image taken from the same area. The length of the vertical black bar 

left to the images corresponds to 30 µm [15]. 

 

On the other hand, well-separated X-ray diffraction peaks can be observed after the 

completion of 3 potential cycles up to 1.5 V vs. SSCE (i.e. after strong overoxidation) (Fig-

ure 4d). The diffraction peaks of crystalline PEDOT were indexed on the basis of published 

data [62,63]. These works identified this phase as orthorhombic structure. According to Fig-

ures 4b, 4c and 4d the diffraction peaks of PEDOT became sharper and more intensive after the 
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electrochemical treatment. This indicates that besides the degradation of the PEDOT film its 

crystallinity gradually increased with increasing the number of oxidation cycles. After strong 

overoxidation the cauliflower-like structure can still be identified in the SEM micrographs, but 

the film forms islands separated by cracks on the surface of the substrate (Figure 4d/l). Accord-

ing to the backscattered SEM micrographs (Figure 4d/r) the crevices of about 2-3 m width 

form a widespread network. Energy dispersive X-ray (EDX) composition analysis proved that 

only Au is present at the bottom of the crevices [21-24]. 

Electrochemical impedance spectroscopy (EIS) – impedance measurements 

Unfortunately, there are only few studies in the literature dealing directly with the im-

pedance of overoxidized PEDOT films, only some tentative or qualitative interpretations of 

such impedance spectra can be found in recent studies and reviews [15,21,22,24]. For instance, 

impedance spectra of freshly prepared and overoxidized Au/PEDOT in 0.5 M H2SO4 solution 

are presented in [15]. In Figure 5 impedance spectra (complex plane plots) of freshly prepared 

Au/PEDOT in 0.5 M H2SO4 solution at different electrode potentials are shown (tf  0.7 μm, 

geometric area  1 cm2). In the frequency range 0.1 Hz – 10 kHz and at electrode potentials 

ranging from 0.1 V to 0.7 V vs. SCE the impedance spectra indicate an almost purely capacitive 

behavior (the “low frequency capacity” of the film is CL  2.9 mF·cm-2 at 0.1 V vs. SCE and 

CL  2.7 mF·cm-2 at 0.4 V vs. SCE). However, at electrode potentials E > 0.7 V vs. SCE the 

medium/low frequency “arc” (see the insert in Figure 5) indicates the presence of an interfacial 

charge transfer process, which can most probably be attributed to the slow (over)oxidation of 

the PEDOT film. The impedances of freshly prepared electrodes at medium and low frequen-

cies ( < 50 Hz) can be well approximated in terms of a constant phase element (CPE): 

   α
ω

B
RωZ


 i

1
)( u , [3] 

where  is the angular frequency, Ru is the uncompensated ohmic resistance, B and  are the 

CPE parameters, and i is the imaginary unit. The values of  are close to unity. At higher fre-

quencies a small capacitive arc can be identified in the complex plane plot which can be ob-

served more clearly in the spectra recorded after overoxidation, i.e. after repetitive cycling of 

the electrode potential between –0.3 and 1.5 V vs. SCE. On the other hand, it has been found 

that for thin PEDOT films in very clean solutions the CPE parameter  is close to unity which 

indicates a nearly perfect capacitive behavior.  
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Figure 5   Impedance spectra (complex plane plots) of freshly prepared Au/PEDOT in 0.5 M aque-

ous H2SO4 solution at different electrode potentials. : E = 0.10 V vs. SCE; ○: E = 0.40 V vs. SCE; 

: E = 0.70 V vs. SCE; : E = 0.80 V vs. SCE. Adapted from [21]. 

 

It should be noted here, that although the theory of the impedance method for an electrode with 

diffusion restricted to a thin layer is well established [64], in the case of polymer-modified 

electrodes an ‘ideal’ response, i.e., a separate Randles circuit behavior at high frequencies, a 

Warburg section at intermediate frequencies, and a purely capacitive behavior due to the redox 

capacitance at low frequencies can rarely be observed. 

As it can be seen from Figure 6, the impedance spectra of overoxidized PEDOT on gold 

differ from those measured for freshly prepared Au/PEDOT [15]. In this experiment the film 

was oxidized by cycling the potential between -0.4 V and 1.5 V vs. SCE. The most interesting 

feature is the appearance of an arc (or a “depressed semicircle”) at high frequencies in the com-

plex plane impedance plot. The “low frequency capacity” of the degraded film is about 

2 mF·cm-2 at 0.35 V vs. SCE. The increase of the charge transfer resistance with the level of 

degradation is in accordance with the results for polypyrrole on Pt published in [65]. The de-

creasing capacitance and the increasing charge transfer resistance suggest that during overoxi-

dation the electrochemical activity of the film decreases and the charge transfer process at the 

metal/film interface becomes more hindered than in the case of pristine films. On the other 

hand, the time evolution of the impedance spectra is a remarkable feature of the electrodes with 

overoxidized PEDOT films [66]. According to this observation, the charge transfer resistance 
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(Rct) at the (electronically conductive) substrate/polymer film interface decreases continuously 

over several hours when the potential is held in the “stability region” after overoxidation of the 

film. The results imply that a “healing process” may occur at the film/substrate interface. A 

better understanding of this effect may have an impact on practical applications. 

 

 

 

Figure 6    a) Successive impedance diagrams of the Au | PEDOT| 0.1 M H2SO4 at E= 0.4 V vs. 

SSCE recorded after overoxidation; b) High frequency part of the Argand diagrams. The solid lines 

are to guide the eye only: not curve fits. Adapted from [66]. 

 

Suggested overoxidation mechanisms 

Degradation or the lack of electrochemical stability severely limits the operational life-

time of devices based on conducting polymers. Although basic studies of the properties of PE-

DOT have been pursued since the 1990’s and the electrochemical properties of PEDOT are 

continuously under investigation, the number of mechanistic studies dealing with the anodic 

degradation of PEDOT is very limited and a thorough kinetic-mechanistic study of the overox-

idation of PEDOT has not been published yet. Nevertheless, the oxidative degradation of poly-

thiophenes in general was relatively widely studied, and this may provide an insight into the 

overoxidation mechanism of PEDOT as well. 
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Electrochemical studies accompanied by electron microprobe analysis as well as NMR 

and IR spectroscopic investigatios [67] revealed that the first (reversible) stage of anodic poly-

thiophene oxidation is often accompanied by the substitution of nucleophiles on the 3rd or 4th 

position of the thiophene units. The nucleophiles are either solvents or counter ions (e.g., water, 

hydroxide, methanol or halides); the resulting polymers are still conductive and electroactive, 

with a new optical gap induced by the substitution [68,69]. However, the proposed reaction 

pathways and oxidation mechanisms are describing the oxidation of poly-3-methylthiophene 

and poly-thiophene and not that of PEDOT where the 3 and 4 position of the ring is blocked by 

carbon bonds what may lead to different reaction schemes.  

On the other hand, it has been reported [70] that by strong (over-)oxidation, polythio-

phenes are irreversibly transformed to a non-conducting state, and the voltammograms of pol-

ythiophene films in contact with wet acetonitrile solutions exhibit an irreversible anodic peak 

at sufficiently positive electrode potentials. It has been shown by IR spectroscopy [71] that at 

this potential range the thiophenic sulphur of polythiophene is oxidized, resulting in the for-

mation of SO or SO2 groups. According to the proposed mechanism (Figure 7) the oxidation of 

the thiophene unit (i.e. the sulphur in the thiophene ring) is followed by an oxidative SO2 elim-

ination and the formation of carbonyl groups at the 2nd, 3rd and 5th positions on the thiophene 

rings. The electrical conductivity of the polythiophene film gradually decreases due to an inter-

ruption of conjugation routes by the formed carbonyl groups. Further oxidation may lead to the 

cleavage of C—C bonds and the formation of terminal carboxylic groups. It has been suggested 

[69] that the above mechanism describing the overoxidation of polythiophenes in general 

should also be valid for the case of PEDOT in particular. On the basis of results of Fourier-

transformed infrared and X-ray photoelectron spectroscopy of pristine and over-oxidized PE-

DOT:PSS, it was hypothesized that the presence of ethylene-dioxy groups does not create fun-

damental differences between the overoxidation mechanism of PEDOT and the scenario de-

scribed in [71] for polythiophene. The results of cyclic voltammetry confirmed that the anodic 

onset potential of the overoxidation of PEDOT depends strongly on the pH. At pH > 10 where 

the amount of OH– ions in the electrolyte solution becomes more significant, PEDOT films can 

be more easily overoxidized than at more acidic pH values [69]. This indicates that the amount 

of counterions (nucleophiles) in the solution may also play a significant role in the overoxida-

tion process.  

Nevertheless, further research is needed to conclusively clarify these points and to elu-

cidate the mechanism of the overoxidation process. 
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Figure 7    Mechanism of the overoxidation of polythiophene. Step (1) proceeds reversibly (dop-

ing/dedoping), while steps (2) and (3) are irreversible. A sequence of two further 2e– steps, (4) and 

(5), leads then to the elimination of SO2, initiated by a 2,5-hydroxylation. Thereafter, 2,5-diketones 

are formed in step (6) and a hydroxylation in the 3-position follows in step (7). The mesomer of the 

formed enol yields a vicinal 2,3-diketon, the C—C bond of which is easily cleaved in the last anodic 

step (8) to yield two carboxylic groups. Altogether the reaction involves two 1e– steps and five 2e– 

steps [15]. 

 

 

Acknowledgement: Support from the Hungarian Scientific Research Fund (OTKA) under Grant Agreement num-

ber K 109036 is acknowledged. 

 

 

Nomenclature 

Symbols and Units 

B   CPE parameter 
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E   electrode potential 

gf    film stress (Pa) 

i   imaginary unit 

I   current 

Im(Z)   imaginary part of the impedance 

j   current density 

ns,a    refractive index of the solution with respect to air 

R    radius of curvature of the cantilever 

Rct    charge transfer resistance 

Re(Z)   real part of the impedance 

Ru    uncompensated ohmic resistance 

t   time 

Z   electrode impedance (Ω) 

    CPE parameter (exponent) 

ν   sweep rate (mV s-1) 

Δθ   deflection angle  

    angular frequency 

 

Abbreviations and Acronyms 

AC   alternating current 

BSE   backscattered electron 

CPE   constant phase element 

CV   cyclic voltammetry, cyclic voltammogram 

DC   direct current 

EDOT   3,4-ethylenedioxythiophene 

EIS   electrochemical impedance spectroscopy 

EQCM   electrochemical quartz crystal microbalance 

IR   infrared 

ITO   indium tin oxide 

NMR   nuclear magnetic resonance 

PEDOT  poly(3,4-ethylenedioxythiophene)  

PSD    position sensitive (photo)detector 

PSS   polystyrenesulfonic acid 
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SCE   KCl-saturated calomel electrode 

SDS   sodium dodecyl sulphate 

SE   secondary electron  

SECM   scanning electrochemical microscopy 

SEM    scanning electron microscope 

SSCE   NaCl-saturated calomel electrode 

STM   scanning tunneling microscope 

XRD   X-ray diffraction 
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