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Abstract. A sparse grid surrogate model using hierarchical B-spline basis functions

is used to approximate the objective function in an optimization-based inversion al-

gorithm. The B-spline basis provides a smooth interpolant of the objective function

and the gradient of the interpolant is readily available in closed-form. The latter is

used in a gradient-based minimum search algorithm that results in the approximate

solution of the inverse problem. The method is computationally more efficient than

using gradient-free direct search methods, as illustrated by an example drawn from

eddy-current nondestructive testing.
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1. Introduction

Surrogate models can facilitate the solution of inverse problems related to electromag-

netic nondestructive evaluation. The benefit from a surrogate model is the cheap approx-

imation of the usually heavy electromagnetic simulation. In this way, the model-based

inversion—that relies on several subsequent evaluations of the forward model—can be

significantly sped up.

Most surrogate modeling approaches consist in the interpolation of the input-output

function based on its pre-calculated samples (training data or database). Various sam-

pling and interpolation techniques have been applied in the context of electromagnetic

nondestructive testing (NdT). The adaptive mesh-databases combined with linear [1],

[2] or radial basis function interpolation [3] have been shown to apply well as surrogate

models. Later, to cope with the curse-of-dimensionality (i.e., the exponential increase of

storage and computational needs of the surrogate model with increasing number of input

parameters), sparse grid surrogate models have been introduced. Traditionally, piecewise

linear basis functions were used for the interpolation on sparse grids [4]. The efficiency

of the method in the context of computational electromagnetics has been demonstrated,

e.g., in [5]. In eddy-current nondestructive testing (EC-NdT), the inverse problem has

also been targeted with sparse grids. A Monte Carlo sampling was built on the surrogate

in [6], to jointly perform model selection and optimisation-based inversion. The idea of

sparse grids in EC-NdT inversion is flashed also in other contributions, e.g., [7].

A bottleneck of piecewise linear interpolation (which is common with sparse grids)

is the lack of continuous derivatives of the interpolant with respect to the input param-
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eters. This hinders the use of gradient-based algorithms of inversion through the opti-

mization of a misfit function. This is the main motivation for using hierarchical B-splines

as basis functions, e.g., in [8]. This technique yields a smooth interpolant of which the

gradient is continuous and can be analytically expressed.

In the present work, the sparse grid surrogate model with hierarchical B-spline basis

functions is outlined (Sec. 2) and its use for optimization-based inversion is presented

(Sec. 3). Finally, a numerical example drawn from EC-NdT is discussed (Sec. 4).

2. Sparse grid interpolation with hierarchical B-spline basis functions

Let us consider a flaw model (e.g., a crack or void) with N parameters, each having lower

and upper bounds. The region of interest in terms of parameters x = [x1, . . . ,xN ] is thus

an N-dimensional space. Let us assume that the allowed domain of the parameters—

say, the input space—is the N-dimensional unit-hypercube [0,1]N (this is possible in

most practical cases by some appropriate transformation of the parameters). The output

signal (e.g., a surface scan of impedance variation of a probe coil) corresponding to the

parameter vector x is denoted by y = f(x). The vector-vector function f represents the

NdT forward problem as an input-output function, and f is usually evaluated by means

of numerical simulation, involving a brute-force method such as the finite element or the

moment method. To reduce the computational burden associated with the evaluation of

f, one seeks for an approximation f̂ ≈ f, i.e., the surrogate model of the original problem.

To this end, sparse grid interpolation is proposed, which is briefly summarized as:

1. definition of a hierarchical set of basis functions in 1-dimension (1-D);

2. generation of a set of hierarchical N-D basis functions as tensor product of the

1-D bases;

3. truncation of the set of N-D basis functions such that the resulting set is “sparse”

in a certain sense.

Let us denote the set of 1-D basis functions at level � by

Ψ�(x) =
{

ψ
(�)
i (x)

∣∣ i = 1,2, . . . ,m
(1)
�

}
(1)

where � = 0,1,2, . . . ,d, with d being the depth of the hierarchical interpolation. The

sparse tensor product [4] of N number of such 1-D bases at its level � is given by

Φ�(x) =

{
Ψ�1

(x1)⊗Ψ�2
(x2)⊗·· ·⊗Ψ�N

(xN)
∣∣∣ N

∑
i=1

�i = �

}
. (2)

A linear truncation is used herein, i.e., all N-D basis functions involved in a depth=d

interpolation satisfy the linear constraint for the level indices ∑N
i=1 �i ≤ d. With this sparse

hierarchical basis, the interpolant f̂ has the form of

f̂(x) =
d

∑
�=0

m
(N)
�

∑
i=1

c
(�)
i φ

(�)
i (x), (3)
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Figure 1. Hierarchical B-splines (ψ
(�)
i (x)) of order 3. Level 0 (- - -), level 1 (· · · ), level 2 (- · -) and level 3 (—)

basis functions.

where c
(�)
i and φ

(�)
i (x) are the i-th vectorial coefficient and the related basis function at

level �, the latter is an element of Φ�(x) in (2), and m
(N)
� is the number of basis functions

at level � in an N-D sparse grid, respectively.

Linear (“hat”) basis functions ψ
(�)
i (x) are commonly used with sparse grids. In the

present work, hierarchical B-spline basis functions are applied, and similarly to [8], 3rd

order B-splines have been chosen. This choice ensures the continuity of the 2nd order

derivatives of interpolant (3). The 3rd order cardinal B-spline is defined in the interval

0 ≤ x ≤ 4 and it is expressed as

b(3)(x) =

⎧⎪⎪⎨
⎪⎪⎩

1/4x3, 0 ≤ x < 1;

−3/4x3 + 3x2 − 3x+ 1, 1 ≤ x < 2;
3/4x3 − 6x2 + 15x− 11, 2 ≤ x < 3;

−1/4x3 + 3x2 − 12x+ 16, 3 ≤ x ≤ 4.

(4)

In our implementation, the level 0 basis function is chosen as constant (ψ
(1)
1 (x) = 1) and

all other hierarchical basis functions (�≥ 1) are derived from a cardinal B-spline (4) via

an affine transformation of the input variable, as illustrated in Fig. 1.

To determine the coefficients c
(�)
i in (3), the equality f̂(xk) = f(xk) is enforced at n

number of control points (xk, k = 1,2, . . . ,n). These points are chosen as the center points

of the corresponding basis functions (i.e., where φ
(�)
i (x) = 1 hold, for all � ≥ 1, and by

definition, it is 1/2[1,1, . . . ,1] for φ
(0)
1 (x)). The number of control points is thus equal to

the cardinality of the sparse basis (2), and the location of the set of these control points

(nodes) forms the so-called sparse grid. In 2-D, the distribution of the sparse grid nodes

is illustrated in Fig. 2, along with the contour lines of the sparse grid interpolant of the

well-known Branin test function [9].

The sparse grid interpolation can cope with the curse-of-dimensionality in the fol-

lowing sense. The number of grid nodes n in a sparse grid with depth d in dimension

N is in the order O{K(logK)N−1}, where K = 2d + 1 being the number of hierarchical

basis functions per dimension. However, the increase of n is much faster when a clas-

sical full grid is used, herein O{KN} applies [4]. The numerical example presented in

Sec. 4 involves N = 4 dimensions, for which the node numbers of sparse and full grids
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Figure 2. Contour lines of the interpolant of the Branin test function by means of a depth=3 sparse grid with

hierarchical B-spline basis functions, along with the grid nodes.

Table 1. Node numbers of sparse and full grids in N = 4 dimension, in function of the depth d.

d 0 1 2 3 4 5 6

n (sparse) 1 9 41 137 401 1105 2929

n (full) 1 81 625 6561 83521 1185921 17850625

are compared in Table 1 as an illustration of the gain benefited from sparse grids. In spite

of the large reduction of node numbers, the interpolation accuracy of sparse grids is only

slightly deteriorated compared to full grids, as detailed in [4].

3. Inversion using the sparse grid surrogate model

Once the sparse grid surrogate model (3) is available, and hierarchical B-splines are

used as basis functions therein, one can solve the inverse problem by means of opti-

mizing a misfit function, as it follows. Let us assume that the output y of the numeri-

cal simulation f(x) (as already mentioned in Sec. 2) is a real row vector of M elements:

y = [y1,y2, . . . ,yM]. In the case of complex output (e.g., complex impedance variation in

EC-NdT), one can always introduce the real output vector as y := [Re{y}, Im{y}]. The

measured data vector is denoted by ỹ. Let us define the quadratic misfit function as the

squared norm of the discrepancy between simulated and measured data:

u(x) = ‖ỹ− y‖2 ≡ [ỹ− y][ỹ− y]T (5)

The regularized inverse problem then consists in solving the constrained optimization

problem

x′ = argmin
x∈[0,1]N

u(x) (6)

that yields the solution x′. In order to reduce the computational burden, one approxi-

mates y = f(x) by ŷ = f̂(x), and the approximate misfit function û(x) = ‖ỹ− ŷ‖2 is to

be minimized according to (6). Since f̂(x) is based on a sparse grid interpolation with

hierarchical B-spline basis functions, its gradient
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∇f̂(x) =

⎡
⎢⎣

∂ ŷ1/∂x1 ∂ ŷ2/∂x1 · · · ∂ ŷM/∂x1

...
. . .

...

∂ ŷ1/∂xN ∂ ŷ2/∂xN · · · ∂ ŷM/∂xN

⎤
⎥⎦ (7)

can be easily expressed in closed form based on (3). Therefore, one can also write the

gradient of the quadratic approximate misfit function in closed form (see, e.g., [10]) as

∇û(x) = 2[ỹ− f̂(x)][∇f̂(x)]T. (8)

This gradient (8) can be used in the gradient-based solution of the optimization prob-

lem (6). In order that one can choose among the large variety of classical unconstrained

optimization algorithms, the constrained problem (6) has to be re-formulated by using

some nonlinear transformation of the optimization variable x. Herein a new variable

ξ = [ξ1,ξ2, . . . ,ξN ] is introduced such that

xi = (arctanξi)/π + 1/2, xi ∈ [0,1], ξi ∈ (−∞,∞), i = 1,2, . . . ,N, (9)

and the optimization is performed with respect to ξ in an unconstrained domain:

ξ ′ = argmin
ξ∈RN

u(x(ξ )). (10)

The gradient-based local optimization strategies unfortunately suffer from the pos-

sibility of stalling in a local minimum and thus miss the global minimum. This risk is

reduced when one runs the algorithm with different initial guesses. However, this was

not the case in the numerical example which is presented in the next section.

4. Numerical example

4.1. Configuration

Let us consider the eddy-current testing arrangement shown in Fig. 3. A homogeneous,

non-ferromagnetic plate is considered as specimen. The conductivity is σ = 106 S/m and

the thickness is t = 1.55mm. The other dimensions of the plate are assumed to be infinite.

The coil is an air-cored probe (inner and outer diameters: 2 mm and 3.25 mm; height:

2 mm; no. of turns: 328; lift-off h: 0.303 mm), driven with a time-harmonic current with

frequency of 300 kHz. The variation of the coil impedance is observed at regularly spaced

coil positions:

xc = {−15 : 1 : 15}mm and yc = {−5 : 1 : 5}mm, (11)

that is, 31×11= 341 complex impedance variations are available in the surface scan.

A rectangular-shaped defect (with zero conductivity) is present within the plate, with

sides parallel to the x, y and z axes; the defect is centered on the origin of the xy plane. The

bounds given in Table 2 apply for the 4 geometrical parameters of the defect. The input

domain is non-rectangular but narrowed by a linear inequality constrain for d and l. This
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Table 2. Parameter ranges in the single narrow crack example.

parameter range

length a [4, 22]mm

width b [0.001, 0.3]mm

depth d [10, 100]% (of plate thickness)

ligament l [0, t −d]

l

d

a

b

coil

x

y

z

t

y
h

coil

Figure 3. Sketch of the configuration.

is taken into account when transforming the input domain to the [0,1]N hypercube, on

which the sparse grid and inversion algorithms are performed, as already seen in Sec. 2.

The electromagnetic simulation is based on an integral equation formulation, imple-

mented in the CIVA software [11].

4.2. Test of the forward interpolation

The interpolation error is defined as ε(x) = ‖ f̂ (x)− f(x)‖ at each point x. The overall

interpolation performance is characterized by the maximal and root mean-squared (rms)

interpolation error, both are approximated based on a finite number of test samples x j

( j = 1,2, . . . ,J):

εmax = max
j

ε(x j), εrms =

√
1

J
∑

j

ε(x j)2 (12)

In this numerical test, 4000 random test samples are used. In order to facilitate the in-

terpretation of the error, the normalized (dimensionless) interpolation error is presented,

with a normalizing factor that is chosen as max
j

‖f(x j)‖. The change of the normalized

error with respect to the depth of the sparse grid interpolation is shown in Fig. 4. For

reference, linear basis functions [5] have also been used. In terms of interpolation accu-

racy, the linear basis slightly outperforms the B-splines. Yet, the B-splines are better in

optimization-based inversion schemes, as shown in the next section.

4.3. Test of the inversion algorithm

As summarized in Table 3, the output signal associated with two randomly chosen de-

fects (denoted as “true”) has been calculated. The inversion procedure detailed in Sec. 3

resulted in the reconstructed parameters denoted as “grad”. For comparison, a similar

optimization-based inversion has been performed using the sparse grid with linear basis

functions (the same as presented in the previous section). Due to the lack of continuous
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Figure 4. Normalized interpolation error in the numerical example.

Table 3. Results of the inversion in the 1st (left) and 2nd (right) test cases. The “true” parameters correspond

to the defect to be reconstructed, and the gradient-based (“grad”) and simplex optimisation-based (“direct”)

inversion methods yielded the parameters as given in the tables. Depth=6 sparse grid is used in all cases.

a b d l

true 16.04 0.290 0.258 0.413

grad 16.30 0.012 0.474 0.324

direct 20.42 0.118 0.348 0.389

a b d l

true 15.10 0.157 0.525 0.942

grad 14.96 0.188 0.507 0.957

direct 16.20 0.137 0.478 0.850

gradient of the interpolant, a simplex optimization (referred to as “direct”) method has

been applied with the linear basis. According to Table 3, both approaches found reliable

solutions, except for parameter b, which is the width of the defect and it is well-known

to have only a weak influence on the impedance change. This measurement setup thus

has limited capacity in reconstructing b.

The main advantage of the B-spline based scheme becomes clear when looking at the

evolution of the iterative optimization routines in Fig. 5. In both examples, the gradient

method converged much faster to a better local minimum than the simplex method.

Implementation has been made in Matlab, with the functions fminunc (a quasi-

Newton method) and fminsearch (a simplex method for direct search).

5. Conclusion

The use of B-spline basis functions for interpolation on sparse grids has been found to

be an efficient tool when performing optimization-based inversion using the sparse grid

surrogate model. The gradient of the approximate misfit function is continuous, giving

rise to gradient methods. Spare grids per se have previously proven a good performance

in NdT inversion; and the present contribution is an extension of this solid framework.

Future work will include the expression the Hessian of the misfit function to use

second order optimization methods. Furthermore, one will study the case when the gra-

dient of the forward model f is available at hand (e.g., via the adjoint problem), and it

can be used to fit the surrogate model not only to f but to ∇f as well. Considerations on

the adaptive generation of the sparse grid in combination with B-spline basis functions

will also be taken.
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Figure 5. Performance of the inversion with gradient-based (“grad”) and simplex optimisation-based (“di-

rect”) inversion methods: minimum misfit function found with respect to iteration number.
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