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Abstract. The global sensitivity analysis of electromagnetic nondestructive evalu-

ation (NDE) by means of Sobol’ indices are considered in this work. To reduce the

computational burden, a sparse grid surrogate model is used. The latter can simply

replace the true simulator to some extent, but it can also be used to numerically

evaluate the integrals defining the Sobol’ indices. In most of the NDE setups, the

output is not a scalar quantity but functional data (e.g., a surface scan); a method

is presented to take this into account. The sparse grid based sensitivity analysis is

compared to classical techniques via examples drawn from electromagnetic NDE.
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1. Introduction

To characterize the uncertainty of the output of a simulation model due to its uncertain

input parameters, Sobol’ indices are commonly used. However, the calculation of the

Sobol’ indices can be computationally demanding, especially in the case when a heavy

simulator is considered and/or the number of input parameters is high. The application

of surrogate models provides a way to reduce this computational burden. Polynomial

Chaos Expansion (PCE) supplies an efficient, low-cost technique to compute the Sobol’

indices. Recently, the use of sparse grids (SGs) in electromagnetic nondestructive eval-

uation (ENDE) has been proposed [1]. SG can be used both as an approximation of the

model (e.g., for Monte Carlo method) and as a numerical quadrature to evaluate inte-

grals involved in the calculation of Sobol’ indices. The surrogate model-based sensitivity

analysis in the context of ENDE is considered, e.g., in [2]. The present work aims at (i)

comparing different surrogate model based approaches of Sobol’ index calculation for

ENDE problems and (ii) extending the formulations to the case when the output consists

of functional data, being typical in ENDE (e.g., surface scan of an eddy-current probe).
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2. Sensitivity Analysis

In this section a brief overview is given on the purpose of the sensitivity analysis, par-

ticularly with respect to the method of Sobol’ indices as well as the possibilities of its

numerical calculation.

Suppose that we have a mathematical model y = f (xxx) as a multivariate, square inte-

grable function over a domain defined by a set of independent variables, xxx = (x1, . . . ,xn).
In general the aim of sensitivity analysis is the quantification of how the uncertainty of

the model output is affected by the uncertain input parameters. The black-box approach

is commonly used, i.e., one relies only on certain number of input samples and the cor-

responding output ones. This approach provides the flexibility of applications in wide

range of industrial and scientific fields.

2.1. Sobol’ indices

The technique of Sobol’ indices is a variance-based sensitivity analysis method. After

its introduction in [3], by now it has become a widely used approach in several fields. A

detailed presentation is given in, e.g., [4]. A brief summary is given below, such that the

novelty of the present work can be clearly pointed out.

Without the loss of generality we can assume that all input variables are uniformly

and independently distributed in the unit hypercube Dxxx = [0,1]n. The key idea is to de-

compose f (xxx) into the sum of subfunctions of increasing dimension, such that

f (xxx) = f0 +
n

∑
i=1

fi(xi)+
n

∑
1≤i< j≤n

fi j(xi,x j)+ · · ·+ f1,2,...,n(x1,x2, . . . ,xn) (1)

with f0 being the expected value of f (xxx) and the integral of the subfunctions with re-

spect to any of their arguments is zero, i.e., the subfunctions are pairwise orthogonal.

This Sobol-decomposition is shown to be uniquely exist in [3], and the subfunctions are

defined in a recursive manner:

f0 =
∫

Dxxx

f (xxx)dxxx (2a)

fi(xi) =

∫ 1

0
· · ·

∫ 1

0
f (xxx)dxxx∼i− f0 (2b)

fi j(xi,x j) =

∫ 1

0
· · ·

∫ 1

0
f (xxx)dxxx∼i, j− f0− fi(xi)− f j(x j) (2c)

where x∼i is a set without xi. In addition the variance of f (xxx) can be partitioned into the

sum of sub-variances:

D = ∑
vvv⊆xxx\{0}

Dvvv, (3)

with Dvvv denoting the variance of the subfunction described by a group of variables

vvv = (xi1 ,xi2 , . . . ,xis). Each sub-variance can be considered as the contribution of a group
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of variables to the total variance. The measure of their importance, namely the Sobol’

indices thus can be defined as

Svvv = Dvvv

/
D. (4)

The sum of all possible indices is 1, providing us a simple interpretation of their meaning.

Groups consist of only one variable yield the 1st order indices. The 2nd order ones mean

the effects caused by the interaction of two parameters without their 1st order effects;

higher order indices can be analogously defined. Traditionally, the 1st order indices are

estimated by Monte Carlo formulas:

f̂0 =
M

∑
k=1

f (xxx(k)) (5a)

D̂ =
M

∑
k=1

f (xxx(k))2− f̂0
2

(5b)

D̂i =
M

∑
k=1

f (x
(k)
i ,xxx

(k)
∼i ) f (x

(k)
i ,xxx′

(k)
∼i )− f̂0

2
(5c)

where xxx(k) is the k-th representation of the M samples and xxx′
(k)
∼i denotes a sample inde-

pendent from xxx
(k)
∼i

2.2. Extension of Sobol’ indices

In the original framework of Sobol’ indices, the output is a scalar function and the vari-

ables have to be independent. In certain cases this can be sufficient (e.g., scalar-output

indices for POD studies), however, several NDE related applications cannot be directly

treated due to these limitations. For example, vector output functions occur when a sur-

face scan of impedance variation is considered or geometric constraints apply for the

defect parameters, making them dependent on each other. Therefore, the original defini-

tion needs to be extended and generalized regarding the above cases, which is the main

contribution of this work.

2.2.1. Multiple output functions

Supposing we have a multiple output function F(xxx) =
(
F1(xxx),F2(xxx), . . . ,FP(xxx)

)
, a natural

extension of Sobol’ indices is taking the average of the previously calculated indices of

the component functions, i.e.,

S
avg
i =

1

P

P

∑
j=1

S
(i)
Fj
. (6)

This method has its drawback by not taking into account the vectorial nature of the

output and the correlation between the component functions. A more suitable solution

requires the definition of global indices to the entire functional output. A method with
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this consideration has recently been introduced in [5]. Hereby we give another, simpler

approach to extend the 1st order indices, relying on an equivalent stochastic definition:

Si = Varxi
[Exxx∼i

[ f (xxx)|xi]]
/

Var [ f (xxx)] . (7)

In 1 dimension (1-D), variance can be considered as the expected value of a squared error

function, defined by the deviation of f (xxx) from its own expected value. In N-D, variance

can be defined analogously with the error being a vector and the 2-norm is used as a

metric of distance instead of absolute value:

Dvec = E
[
‖ h ‖2

2

]
= E

[
‖ F(xxx)−F0 ‖

2
2

]
, (8)

where F0 denotes the vectorial expected value of F(xxx). This leads us the definition of

vectorial Sobol’ indices:

Svec
i = Varxi

[Exxx∼i
[F(xxx)|xi]]

/
Var [F(xxx)] = Dvec

i

/
Dvec. (9)

Monte Carlo estimators are also extended to vectorial outputs as

F̂0 =
1

M

M

∑
k=1

F(xxx(k)) (10a)

D̂vec =
1

M

M

∑
k=1

‖ F(xxx(k)) ‖2
2 − ‖ F̂0 ‖

2
2 (10b)

D̂vec
i =

1

M

M

∑
k=1

F(x
(k)
i ,xxx

(k)
∼i )•F(x

(k)
i ,xxx

′(k)
∼i )− ‖ F̂0 ‖

2
2 (10c)

with • denoting the scalar multiplication. Though the squared Euclidean norm fits well

for our purpose, we note that this choice is not obvious. In the case of a sparse output

signal—which is typical, e.g., when a temporal echo is recorded in an ultrasonic testing

method—other norms (such as the maximum norm) might be preferred. One may also

consider an appropriate pre-processing of the signal before using the Euclidean norm.

2.2.2. Dependent variables

A method of sensitivity analysis over non-rectangular domain has recently been studied

in [6]. Herein we introduce a method based on the Rosenblatt transform (RT) proposed

in [7]. Let us denote with xxx∗ a permutation of xxx and with Fi(x
∗
i |vvv) being the conditional

cumulative distribution function of x∗i with respect to a subset vvv ⊆ xxx∗∼i. It is known that

the joint probability density function of xxx∗ can be decomposed as follows:

p(xxx∗) = p(x∗1)p(x∗2|x
∗
1)p(x∗3|x

∗
1,x

∗
2) . . . p(x∗n|xxx

∗
∼n). (11)

Based on (11), Rosenblatt transform provides a bijective mapping to the unit hypercube

U∼ [0,1]n:

F1(x
∗
1) = u1, F2(x

∗
2|x
∗
1) = u2, . . . , Fn(x

∗
n|xxx

∗
∼n) = un. (12)
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There are n! different transforms due to the permutations of xxx, however, the results of

interest narrow into two special cases concerning xi. In the case of xi = x∗1, the transform

is performed via the marginal distribution function of xi, hence contains the effect from

the constraints as well, while in the case of xi = x∗n, these effects are excluded due to the

fact that Fi is conditional to all other variables. Therefore the authors in [7] call the 1st

order Sobol’ indices of xi gained from these special transforms as full and individual in-

dices, respectively. These indices characterize the uncertainty contribution of dependent

variables.

3. Surrogate Models

Performing sensitivity analysis usually requires the modelling of the examined configu-

ration in many settings of the input parameters in order to get the proper number of sam-

ples to Monte Carlo simulation. At each sample the electromagnetic model is evaluated

(e.g., finite-element model, integral equation model), which might lead to a very long

simulation. To reduce the computational burden due to the “curse of dimensionality”,

surrogate models are used as low-cost approximations of the true simulator, usually con-

structed as a linear combination of a set of orthonormal multivariate basis functions. In

general a set of orthonormal univariate basis functions ΨΨΨ(x) = {Ψ1(x),Ψ2(x), . . . ,Ψl(x)}
is created in the first step, then the multivariate ones are built as their tensor product:

ΦΦΦ(xxx) = ΨΨΨ(x1)⊗ΨΨΨ(x2)⊗·· ·⊗ΨΨΨ(xn). (13)

This set can be truncated to a set of lower cardinality, yielding the surrogate model as

f (xxx)≈ f̂ (xxx) = ∑
i∈A

αiΦi(xxx) (14)

with A being an index set. Basically, the differences between the numerous data-fit

models are the strategy behind the construction of the univariate basis, the truncation

scheme and the estimation of the coefficients. Herein two commonly used methods are

briefly summarized: the Polynomial Chaos Expansion (PCE) and the Sparse Grid (SG)

interpolation.

Polynomial Chaos Expansion. The PCE provides approximation in a stochastic frame-

work of f (xxx) by choosing the basis functions to be orthonormal with respect to the joint

probability density function of xxx, e.g., Legendre-polynomials for variables uniformly dis-

tributed in ]−1,1[, Hermite-polynomials for Gaussian distributions, etc. [4] The trunca-

tion might be performed by giving a limit on the highest occurring polynomial degree.

The coefficients are traditionally calculated from random input and output samples by

the ordinary least-squares method:

α̂αα ≈ arg min E

⎡
⎣( f (xxx)− ∑

i∈A

αiΦi(xxx)

)2
⎤
⎦ . (15)

There is strong link between Sobol’ decomposition and PCE due to the uniqueness of

the former one and the orthogonality of the basis functions. The variance of f (xxx) is
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(b) EC-NdT example.

Figure 1. Sketch of the configurations. MFL parameters: a1,2 ∈ [0.6,1.2]mm and d1,2 ∈ [0.2,1.6]mm. EC-NdT

parameters: t =(1.25±0.01)mm, σ =(1±0.01)MS/m, h=(0.5±0.05)mm, a∈ [2, 10]mm, d ∈ [0.125, 1]mm

and l ∈ [0.125, 1.125]mm.

partitioned into the sum of the square of the coefficients, providing a convenient way to

evaluate the sub-variances and the Sobol’ indices.

Sparse grid interpolation. SG interpolation (detailed in [1], [8]) is based on the eval-

uation of the original model at specific points, calling them the supporting nodes. The

basis functions have a hierarchical structure of level-by-level, each of them belongs to

a supporting node x
(i)
l . Their tensor product results in a multivariate basis that can be

truncated by, e.g., a linear constraint on the sum of the levels: ∑n
i=1 li = l. In the case of

linear (“hat”) basis functions, the interpolant at depth d equals to the sum of interpolant

from the previous depth and the linear combination of the multivariate functions at level

d:

f̂ (xxx)≈ f̂d(xxx) = f̂d−1(xxx)+
md

∑
i=1

Φ
(i)
d (xxx)

[
f (xxx

(i)
d )− f̂d−1(xxx

(i)
d )

]
︸ ︷︷ ︸

v
(i)
d

(16)

with f̂0(xxx) = Φ
(1)
0 (xxx) f (xxx

(1)
0 ) and xxx

(i)
d denoting the vector of 1-D nodes belonging to the

1-D functions of Φ
(i)
d . The coefficients v

(i)
d are equal to the difference between f (xxx) and

f̂d−1(xxx) at the nodes xxx
(i)
d . The SG provides a surrogate model to generate Monte Carlo

samples, however, it can be used as numerical quadrature to directly evaluate the integrals

in (2), similarly to PCE [9].

4. Numerical examples

Magnetic Flux Leakage NdT (4-parameter model). A ferromagnetic plate of thickness

t = 2 mm and μr = 100 is corrupted by grooves infinitely perpendicular to the x-axis.

The grooves are described by 4 parameter-cubic splines, with parameters uniformly dis-

tributed as given in the caption of Fig. 1. A homogeneous Hx0 = 1A/m magnetic field is

imposed in the x direction. The distortion field (ΔHx) is measured at 51 equidistant points

on the top of the surface. The depths of the grooves were found to be more important pa-

rameters compared to their widths (Fig. 2a). Good correlation between the vectorial and
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Figure 2. Results of the MFL example.
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(b) Convergence of the setup parameters while d, l, a

are kept at their mean value.

Figure 3. Results of the EC-NdT example.

averaging method can be observed. Direct methods equally resulted in the same outcome

as MC-based calculation (Fig. 2b).

Eddy-Current NdT (3+3 parameter model). An infinite, non-ferromagnetic, conductive

plate with a thickness t and conductivity σ is investigated as shown in Fig. 1b. The plate

includes an ideal crack described by 3 parameters from which d and l are dependent

ones due to the d + l ≤ t constraint. A coil with time-harmonic excitation of 150 kHz

is scanning over the surface at a lift-off h. The change of its impedance is measured at

297 test points of the grid (x,y) ∈ {−2 : 0.5 : 2}× {−8 : 0.5 : 8}mm. A single model

evaluation needs 15 seconds by the integral equation simulation [10], thus a SG model

was built to reduce computation time. A cross-validation was also performed to ensure its

accuracy; RMS-error of 4 % with depth=5, below 0.1 % with depth=7 was achieved. Due

to the complex nature of the output vector, it had to be transformed to a 594-element real-

valued vector as F(xxx)⇒ [Re{F(xxx)}; Im{F(xxx)}]. The sensitivity analysis was performed

by dividing the parameters into two groups: defect parameters (a,d, l) and parameters of

the measurement setup (h, t,σ ).
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The depth of the crack was repeatedly found to be the most important defect pa-

rameter as both its individual and full index are the highest ones (Fig. 3a). The lift-off

h exceeds out of the setup parameters, while the conductivity has almost no effect. The

convergence study confirmed that the number of required samples need to be close to the

order of millions (Fig. 3b).

5. Summary

The proposed extension of the Sobol’ indices is found to be an appropriate technique to

characterize the effect of uncertain parameters on a complete line/surface scan. To some

extent, dependent uncertain input parameters can also be treated. The presented tools are

shown to apply well to various NdT examples, the conclusions coincide with the physical

expectations. Future work will include further reduction of the required sample number

by means of PCE coefficients.
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