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Abstract. In this paper we present recursive formulas to com-
pute the �ne spectrum and generative spectrum of all varieties of
monounary algebras. Hence, an asymptotic or log-asymptotic es-
timation for the number of n-generated and n-element algebras
is given in every variety of monounary algebras. These results
provide in�nitely many examples of spectra with di�erent orders
of magnitude that are asymptotically bigger than any polynomial
and smaller than any exponential function.

1. Introduction

For a variety of algebras V let gV(n) denote the number of n-generated
algebras in V , and let fV(n) denote the number of n-element algebras
in V up to isomorphism. The sequences (gV(n))n∈N and (fV(n))n∈N are
called the generative spectrum and the �ne spectrum of V , respectively.
For a detailed introduction into generative- and �ne spectra, see [BI05].
It is of general interest to understand the asymptotic behaviour of these
sequences for certain varieties of algebras, as it is often strongly related
to the algebraic properties of the structures in the variety. For example,
a �nitely generated variety V of groups is nilpotent if and only if gV(n)
is at most polynomial, and a �nite ring R generates a variety with at
most exponential generative spectrum if and only if the square of the
Jacobson radical of R is trivial [BI05]. The in�nite counterpart of our
problems is widely investigated in model theory. The famous Vaught
conjecture says that the cardinality of the set of non-isomorphic models
of any �rst-order theory in a countable language is either countable or
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continuum. In [HSV94, HV91] the conjecture is veri�ed for varieties of
algebras. Their in�nite methods obviously do not apply in the �nite
world.
A monounary algebra, A = (A;u) is an algebra with a single unary

operation u. The function u de�nes a directed graph on A. Let GA =
(A;E), the vertex set is A and the edges are E = {(a, u(a)) | a ∈ A}.
In GA every vertex has out-degree 1, and every directed graph G with
all vertices having out-degree 1 de�nes a monounary algebra on its
vertex set, where u(a) is the single vertex such that (a, u(a)) is an edge
in G. Hence, a monounary algebra can be identi�ed with a directed
graph, where each vertex has out-degree 1.
The theory of monounary algebras is well-developed, for a recent

monograph see [JSP09]. Every variety of monounary algebras can be
de�ned by a single identity. The variety Vk,d is de�ned by the equation
uk+d(x) = uk(x), and the variety Vk is de�ned by the equation uk(x) =
uk(y), where u0 = id, u1 = u, and in general un+1 = u ◦ un. The goal
of the present paper is to obtain a recursive formula for the generative
spectrum and �ne spectrum of all the varieties Vk,d and Vk, and to
determine the log-asymptotic behaviour of these sequences. In some
cases, we can even determine the asymptotic behaviour or provide an
explicit formula for the �ne- and generative spectra. The main results
are presented in Theorems 5.1, 5.2, 6.1, 6.3.
In [HKUP+11] a formula was obtained for the number of n-element

monounary algebras. LetMn and Cn denote the number of monounary
algebras and connected monounary algebras, respectively. It was shown
in [HKUP+11] that logαCn ∼ logαMn ∼ n for a constant α ≈ 2.95576.
In our terminology, this result shows the log-asymptotic behaviour of
the �ne spectrum of the variety V0,0, the class of all monounary alge-
bras. In [BI05], several results were proven about the growth rate of
the generative spectrum of varieties. In many cases, the spectrum is
at most polynomial (e.g., pure sets, vector spaces over �nite �elds) or
at least exponential (e.g., Boolean algebras, semilattices). The vari-
ety V2 is mentioned in [BI05] as an interesting example for a locally
�nite variety whose generative spectrum is bigger than any polynomial
and smaller than any exponential function. It was explicitly calculated
there that the number of non-isomorphic n-generated algebras in V2
is bigger than p(n) and smaller than (n + 1)2p(n), where p(n) is the
number of partitions of n. An asymptotic formula for the �ne spectrum
of V2 and the log-asymptotic behaviour of the �ne spectrum of Vk were
determined in [PPPrS13] for all k.
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2. Description of the varieties

2.1. Monounary algebras as directed graphs. Throughout the pa-
per every monounary algebra is �nite, and we identify the monounary
algebra (A;u) with the directed graph GA. This identi�cation gives
rise to a number of notions. The algebra (A;u) is connected if the
graph GA is connected as an undirected graph. More generally, the
connected components of (A;u) are the connected components of GA

as an undirected graph. In every connected component, there is a
smallest (nonempty) subalgebra of (A;u), that is a directed circle in
GA. If the length of the circle is d, then the connected component can
be partitioned into d rooted trees such that the edges are directed to-
wards the root. The roots are the vertices of the circle, and an element
a in the connected component is in the rooted tree with root r if and
only if r is the �rst element of the circle in the sequence (uk(a))∞k=0.

2.2. Varieties of monounary algebras. The notion of an equational
class goes back to Birkho� [Bir48], who has shown that a class of alge-
bras can be de�ned by a set of equations if and only if the class is closed
under taking homomorphic images, subalgebras and (possibly in�nite)
direct products. Such classes are also called varieties. All varieties of
monounary algebras were classi�ed by Jacobs and Schwabauer [JS64].
According to their result, every variety of monounary algebras can be
de�ned by a single equation.

• The varieties Vk,d are de�ned by the equation uk(x) = uk+d(x),
for k ≥ 0, d ≥ 1. An algebra (A;u) is in Vk,d if and only if
for every connected component B of (A;u) we have that the
length of the circle in GB divides d and every rooted tree in the
partition of GB is of depth at most k. In order to avoid multiple
indices, we denote the generative- and �ne spectra of Vk,d by
gk,d and fk,d, respectively. The log-asymptotic behaviour of the
sequences gk,d and fk,d are determined in Sections 5 and 6.
• The class of all monounary algebras is V0,0 de�ned by the equa-
tion x = x. As there are in�nitely many n-generated algebras in
V0,0 for all n, the generative spectrum of this variety is not de-
�ned. The log-asymptotic behaviour of the �ne spectrum of V0,0
was computed in [HKUP+11], namely log f0,0(n) ∼ (logα)n,
where α ≈ 2.95576.
• The varieties Vk are de�ned by the equation uk(x) = uk(y),
for k ≥ 1. The classes Vk consist of connected monounary
algebras. If (A;u) ∈ Vk, then the circle of (A;u) is a loop, i.e.,
a single vertex r with u(r) = r. Thus GA is a rooted tree with
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root r. This leads to the following combinatorial description:
(A;u) ∈ Vk if and only if GA is a rooted tree of depth at most
k. In particular, the number of n-element algebras fk(n) in Vk
equals to the number of n-element rooted trees of depth at most
k. The log-asymptotic behaviour of the sequences (fk(n))n∈N
were determined in [PPPrS13]. The log-asymptotic behaviour
of the generative spectrum (gk(n))n∈N can be computed in a
similar fashion. The detailed computation and the results are
presented in Sections 5 and 6.
• V0 consists of the isomorphism type of the one-element alge-
bra, and it is de�ned by the equation x = y. The problem of
computing the generative spectrum and �ne spectrum of V0 is
trivial.

For the �ner classi�cation of pseudovarieties of monounary algebras
cf. [JS12].

3. Generating functions

De�nition 3.1. Throughout the paper log denotes the natural log-
arithm function, and Lm denotes the m-fold iterated logarithm func-
tion, namely Lm(x) = log log . . . log x. The exponential function ex is
denoted by exp(x). The number of positive divisors of n is denoted by
τ(n).

De�nition 3.2.

• For k ≥ 0, fk(n) is the number of n-element algebras in Vk,
which equals to the number of n-element rooted trees of depth
at most k. The generating function of the sequence (fk(n))∞n=1

is denoted by Fk(x) =
∞∑
n=1

fk(n)xn.

• For k ≥ 0, g∗k(n) is the number of rooted trees of depth at
most k with n leaves. Note that the rooted tree that consists
of a single vertex has one leaf. The generating function of the

sequence (g∗k(n))∞n=1 is denoted by G∗k(x) =
∞∑
n=1

g∗k(n)xn.

• For k ≥ 0, gk(n) is the number of rooted trees of depth at
most k with at most n leaves, which equals to the number of
n-generated algebras in Vk. The generating function of the se-

quence (gk(n))∞n=1 is denoted by Gk(x) =
∞∑
n=1

gk(n)xn.

• For k ≥ 0, d ≥ 0, fk,d,con(n) is the number of connected n-
element algebras in Vk,d, which equals to the number of n-
element digraphs with a directed circle of length dividing d,
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such that by omitting the edges of the circle the graph is par-
titioned into rooted trees of depth at most k, and the edges of
each tree are directed towards the root. The generating func-
tion of the sequence (fk,d,con(n))∞n=1 is denoted by Fk,d,con(x) =
∞∑
n=1

fk,d,con(n)xn.

• For k ≥ 0, d ≥ 0, fk,d(n) is the number of n-element algebras
in Vk,d. The generating function of the sequence (fk,d(n))∞n=1 is

denoted by Fk,d(x) =
∞∑
n=1

fk,d(n)xn.

• For k ≥ 0, d ≥ 0, g∗k,d,con(n) is the number of connected n-
generated but not (n − 1)-generated algebras in Vk,d, which
equals to the number of digraphs with n leaves, containing a
directed circle of length dividing d, such that by omitting the
edges of the circle the graph is partitioned into rooted trees
of depth at most k, and the edges of each tree are directed
towards the root. The generating function of the sequence

(g∗k,d,con(n))∞n=1 is denoted by G∗k,d,con(x) =
∞∑
n=1

g∗k,d,con(n)xn.

• For k ≥ 0, d ≥ 0, g∗k,d(n) is the number of n-generated but not
(n − 1)-generated algebras in Vk,d. The generating function of

the sequence (g∗k,d(n))∞n=1 is denoted byG
∗
k,d(x) =

∞∑
n=1

g∗k,d,con(n)xn.

• For k ≥ 0, d ≥ 0, gk,d(n) is the number of n-generated algebras
in Vk,d . The generating function of the sequence (gk,d(n))∞n=1 is

denoted by Gk,d(x) =
∞∑
n=1

gk,d,con(n)xn.

There are several recurrence formulas for the sequences de�ned in
De�nition 3.2, which we use to obtain the asymptotic estimations. All
of these formulas can be written up in terms of the power series of the
sequences.

Lemma 3.3. The power series de�ned in De�nition 3.2 satisfy the

following formulas.

(1) Fk+1(x) = x exp(
∞∑
m=1

1
m
Fk(x

m)).

(2) G∗k+1(x) = exp(
∞∑
m=1

1
m
G∗k(x

m)) + x− 1.

(3) Fk,1,con(x) = Fk(x).
(4) 1

d
(Fk,1,con(x))d ≤ Fk,d,con(x) ≤

∑
t|d

(Fk,1,con(x))t coe�cient-wise.
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(5) Fk,d(x) = exp(
∞∑
m=1

1
m
Fk,d,con(xm))− 1.

(6) G∗k,1,con(x) = G∗k(x).

(7) 1
d
(G∗k,1,con(x))d ≤ G∗k,d,con(x) ≤

∑
t|d

(G∗k,1,con(x))t coe�cient-wise.

(8) G∗k,d(x) = exp(
∞∑
m=1

1
m
G∗k,d,con(xm))− 1.

Proof. Item 1. is shown in [PPPrS13], see Theorem 2.2. The proof of
item 2. is analogous.
Items 3. and 6. are straightforward from De�nitions 3.2.
The proofs of items 5. and 8. are based on a similar argument, thus

we only show item 5. For 1 ≤ i ≤ n let µi be the number of i-element
connected components in the algebra (A;u). Up to isomorphism, (A;u)
is determined by the isomorphism types of its connected components.
There are

(
fk,d,con(j)+µj−1

µj

)
ways to choose µj connected algebras in

Vk,d of size j. Thus fk,d(n) =
∑∑
iµi=n

n∏
j=1

(
fk,d,con(j)+µj−1

µj

)
. According

to the generalised binomial theorem, for every |x| < 1 we have that

(1−xj)−fk,d,con(j) =
∞∑

µj=0

(−fk,d,con(j)
µj

)
·(−xj)µj =

∞∑
µj=0

(
fk,d,con(j)+µj−1

µj

)
xjµj .

Thus for n ≥ 1, fk,d(n) equals to the n-th coe�cient in the power se-

ries
∞∏
j=1

(1 − xj)−fk,d,con(j), and for n = 0 we have fk,d(0) = 0 and the

constant term of the power series
∞∏
j=1

(1 − xj)−fk,d,con(j) is 1. Hence,

Fk,d(x) =
∞∏
j=1

(1−xj)−fk,d,con(j)− 1 = exp(
∞∑
j=1

log(1−xj)−fk,d,con(j))− 1 =

exp(
∞∑
j=1

fk,d,con(j)(− log(1 − xj))) − 1. By replacing − log(1 − x) with

its Taylor series we obtain Fk,d(x) = exp(
∞∑
j=1

fk,d,con(j)
∞∑
m=1

1
m
xjm)−1 =

exp(
∞∑
m=1

1
m
Fk,d,con(xm))− 1.

Finally, the proofs of items 4. and 7. are similar, thus we only show
item 4. Let (A;u) be a connected algebra in Vk,d such that the length
of its circle is t. Then t|d. Let r1, . . . , rt be an enumeration of the ele-
ments of the circle of (A;u) such that u(r1) = r2, . . . , u(rt) = r1. This
enumeration depends on the choice of r1. By omitting the edges of the
circle of (A;u), we obtain a partition of GA into t rooted trees of depth
at most k. The isomorphism type of the rooted tree with root ri is
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denoted by xi. Let us assign the t-tuple (x1, . . . , xt) to (A;u). Depend-
ing on the choice of r1, it might be possible to assign more than one
tuple to (A;u). As there are t ways to choose r1 with t|d, the number
of tuples assigned to an algebra in Vk,d is at most d. Up to isomor-
phism, the algebra (A;u) is uniquely determined by any of its assigned
tuples. For t|d let Sk,t(n) be the set of tuples (x1, . . . , xt) of isomor-
phism types of rooted trees with n elements altogether and of depth
at most k. Let sk,t(n) = |Sk,t(n)|. Every tuple in Sk,t(n) is assigned to
an n-element algebra in Vk,d. Hence, the above argument shows that
1
d
sk,d(n) ≤ fk,d,con(n) ≤

∑
t|d
sk,t(n). The number of tuples (x1, . . . , xt) ∈

Sk,t(n) such that a rooted tree with isomorphism type xi has µi vertices

is
t∏
i=1

fk,1,con(µi). Thus sk,t(n) =
∑

µ1+···+µt=n

t∏
i=1

fk,1,con(µi), which is the

n-th coe�cient in the power series (Fk,1,con(x))t.
�

The techniques used in Lemma 3.3 can be found in [FS09]. The
following theorem is from [PPPrS13]. Although in [PPPrS13] these
assertions were only shown for speci�c values of the parameters, the
proof works in full generality without any modi�cation.

Theorem 3.4. Let (an)n∈N, (bn)n∈N be sequences of positive integers,

and let A(x) =
∞∑
n=1

a(n)xn and B(x) =
∞∑
n=1

b(n)xn be the generating

functions of these sequences. Assume that B(x) = exp(
∞∑
m=1

1
m
A(xm)).

(1) If log an ∼ C
√
n for some C > 0, then log bn ∼ C2

4
n

logn
.

(2) For k ≥ 1, if log an ∼ C n
Lk(n)

for some C > 0, then log bn ∼
C n
Lk+1(n)

.

4. Auxiliary computations

Lemma 4.1. Let K,C ∈ R+, s ∈ R. Let an ∼ Kns exp(C
√
n), and

let bn =
n∑
i=1

ai. Then bn ∼ 2K
C
ns+1/2 exp(C

√
n).

Proof. As an → ∞, we have that bn ∼
n∑
i=1

Kis exp(C
√
i). The mono-

tonicity of the function K√
x

exp(C
√
x) and the fact that 2K

C
exp(C

√
x)

is a primitive function of K√
x

exp(C
√
x) imply that

n∑
i=1

K√
i
exp(C

√
i) ∼

2K
C

exp(C
√
n).
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Let n0 = n−2n2/3+n1/3. Then
∑
i≤n0

K√
i
exp(C

√
i) ∼ 2K

C
exp(C

√
n) exp(−Cn1/6) =

o(an). Similarly,
∑
i≤n0

ai = o(an). Thus according to the monotonicity

of ns, and by using ns ∼ ns0, we obtain that bn ∼
∑

n0<i≤n
Kis exp(C

√
i) ∼

ns+1/2
∑

n0<i≤n

K√
i
exp(C

√
i) ∼ ns+1/2

n∑
i=1

K√
i
exp(C

√
i) ∼ 2K

C
ns+1/2 exp(C

√
n).

�

Lemma 4.2. Let d ∈ N. Then max
n1+···+nd=n

d∑
i=1

√
ni ∼

√
dn as n→∞.

Proof. According to Jensen's inequality,
d∑
i=1

√
ni ≤ d

√
n
d

=
√
dn. The

upper bound is sharp when all the ni are equal. This might not be
possible, since n may not be divisible by d, but if we write up n as the
sum of d numbers such that any two have di�erence at most 1, then the
value obtained has the same asymptotic behaviour

√
dn as n→∞. �

Lemma 4.3. Let d ∈ N, k ≥ 1. Let (h(n))n∈N be a sequence such that

h(n) ∼ C n
Lk(n)

for some C > 0. Then max
n1+···+nd=n

d∑
i=1

h(ni) ∼ C n
Lk(n)

as

n→∞.

Proof. Let ε > 0. By calculating the derivative and the second deriva-
tive of the function x

Lk(x)
, it can be shown that there exists a positive

constant xk such that hk is positive, strictly monotone increasing and
strictly concave on (xk,∞). Moreover, assume that xk is large enough

so that | h(n)
Cn/Lk(n)

− 1| < ε for all xk ≤ n. Let Mk = max(1, max
i∈[1,xk]

h(i)).

Let n > d(xk + 1) be arbitrary. Let n1 ≥ n2 ≥ · · · ≥ nd be such that
d∑
i=1

ni = n. As n > d(xk +1), there exists a 1 ≤ t ≤ d such that ni > xk

if and only if i ≤ t. We give an upper bound for
d∑
i=1

h(ni).

By using the trivial estimation h(ni) ≤ M for i > t, we have
d∑
i=1

h(ni) ≤ dM +
t∑
i=1

h(ni) ≤ dM +
t∑
i=1

(1 + ε)C ni
Lk(ni)

. Thus accord-

ing to Jensen's inequality
d∑
i=1

h(ni) ≤ dM + (1 + ε)C
t∑
i=1

ni
Lk(ni)

≤ dM +

(1 + ε)Ct(1
t

t∑
i=1

ni
Lk(ni)

) ≤ dM + (1 + ε)Ct n/t
Lk(n/t)

= dM + (1 + ε)C n
Lk(n/t)

.
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As the ni were arbitrary, we have that max
n1+···+nd=n

(
d∑
i=1

h(ni)) ≤ dM +

(1 + ε)C n
Lk(n/t)

∼ (1 + ε)C n
Lk(n)

. A similar lower bound can be shown

by setting all the ni so that the di�erence of any two of them is at most
1. The lower estimation that we obtain this way is asymptotically (1−

ε)C n
Lk(n)

. As ε > 0 was arbitrary, we have that max
n1+···+nd=n

(
d∑
i=1

h(ni)) ∼

C n
Lk(n)

.

�

Lemma 4.4. Let τ ∈ N, and let 1 = d1, d2, . . . , dτ be natural numbers.

For n ∈ N let wd1,...,dτ (n) be the number of tuples (α1, . . . , ατ ) of non-

negative integers such that α1d1+· · ·+ατdτ = n. Then w1(n) = 1 for all

n ∈ N and for τ ≥ 2 we have wd1,...,dτ (n) = 1
(τ−1)!d1d2···dτ n

τ−1 +O(nτ−2).

Proof. We prove the statement by induction on τ . By de�nition, w1(n) =
1 for all n ∈ N. Let τ = 2. Then we have b n

d2
c+ 1 choices for α2, and

α1 is uniquely determined by α2. Thus w1,d2(n) = b n
d2
c+1 = n

d2
+O(1).

Assume that τ ≥ 3, and that the assertion is true for (τ − 1). We
show that the statement holds for τ . By rearranging the terms of
α1d1 + · · · + ατdτ = n we obtain α1d1 + · · · + ατ−1dτ−1 = n − ατdτ .
Thus

wd1,...,dτ (n) =

bn/dτ c∑
ατ=0

wd1,...,dτ−1(n− ατdτ ) =

=

bn/dτ c∑
ατ=0

1

(τ − 2)!d1d2 · · · dτ−1
(n− ατdτ )τ−2 +O(nτ−2) =

=
dτ−2τ

(τ − 2)!d1d2 · · · dτ−1

bn/dτ c∑
ατ=0

(
n

dτ
− ατ )τ−2 +O(nτ−2) =

=
dτ−2τ

(τ − 2)!d1d2 · · · dτ−1

bn/dτ c∫
ατ=0

(
n

dτ
− ατ )τ−2 dατ +O(nτ−2) =

=
dτ−2τ

(τ − 2)!d1d2 · · · dτ−1
(
n

dτ
)τ−1/(τ − 1) +O(nτ−2) =

=
1

(τ − 1)!d1d2 · · · dτ
nτ−1 +O(nτ−2)

�
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The following sequence of lemmas are used to determine the log-
asymptotic behaviour of the generative- and �ne spectra of V1,d for
d ≥ 2.

Lemma 4.5. Let a, b ∈ N. Then
1∫
0

xa(1− x)b dx = a!·b!
(a+b+1)!

.

Proof. The expression
1∫
0

xa(1− x)b dx is clearly symmetric in a and b.

If b = 0, then
1∫
0

xa dx = 1
a+1

holds, and by symmetry, the formula is

also true when a = 0.

By the rule of partial integration, we obtain b−1
a+1

1∫
0

xa(1 − x)b dx =

1∫
0

xa+1(1 − x)b−1 dx. Hence, the above formula is equivalent for pairs

(a, b) and (a′, b′) if a+ b = a′ + b′. �

Lemma 4.6. Let m > 0, i ∈ N+. For t ≥ 0 de�ne S1,m(t) = tm, and
let

Si+1,m(t) =

t∫
0

Si,m(x)(t− x)m dx

for all integers i ≥ 2. Then

Si,m(t) =
(m!)i

((m+ 1) · i− 1)!
· t(m+1)·i−1

Proof. Induction on i with m �xed; the initial step i = 1 holds by
de�nition. Assume that the formula is true for i ≥ 1, and let us show
it for i + 1. By using the induction hypothesis, the integral form of

Si,m(t) transforms to Si+1,m(t) =
t∫
0

Si,m(x)(t− x)m dx =
t∫
0

(m!)i

((m+1)·i−1)! ·

x(m+1)·i−1(t− x)m dx. By applying the linear substitution y = x/t and
Lemma 4.5 we obtain

Si+1,m(t) =
(m!)i

((m+ 1) · i− 1)!
·t(m+1)·i−1+m+1

1∫
0

y(m+1)·i−1(1−y)m dy =

=
(m!)i

((m+ 1) · i− 1)!
· 1

(m+ 1) · (i+ 1)− 1
·m! · ((m+ 1) · i− 1)!

(m · (i+ 1) + i− 1)!
·t(m+1)·(i+1)−1 =

=
(m!)i+1

((m+ 1) · (i+ 1)− 1)!
· t(m+1)·(i+1)−1
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�

Lemma 4.7. Let K,m > 0, i, n ∈ N+. Assume that log n ≤ i ≤ n
m+2
m+3 .

Then

log

(
max
i

(
Ki

i!

(m!)i

((m+ 1) · i− 1)!
· n(m+1)·i−1

))
= (m+2)· m+2

√
K ·m!

(m+ 1)m+1
·n

m+1
m+2 +O(log n)

Proof. By Stirling's formula, we have

log

(
max
i

(
Ki

i!

(m!)i

((m+ 1) · i− 1)!
· n(m+1)·i−1

))
=

= max
i

(i logK − i log i+ i+ i logm!− log((m+ 1) · i− 1)!+

((m+ 1) · i− 1) log n+O(log i)) =

= max
i

(i·(logK−log i+1+logm!)−((m+1)·i−1) log((m+1)·i−1)+

+ ((m+ 1) · i− 1) + ((m+ 1) · i− 1) log n) +O(log n) =

= max
i

(i · (logK − log i+ 1 + logm!)− (m+ 1) · i log((m+ 1) · i)+

+ (m+ 1) · i+ (m+ 1) · i · log n) +O(log n) =

= max
i

(i ·(logK− log i+1+logm!−(m+1) log(m+1)−(m+1) log i+

(m+ 1) + (m+ 1) log n)) +O(log n) =

= max
i

(i·(logK+m+2+logm!−(m+1) log(m+1)−(m+2) log i+(m+1) log n))+O(log n)

We seek the maximum of the expression over the whole interval [log n, n
m+3
m+4 ];

the error this leads to has order of magnitude O(log n), as it is appar-
ent from the derivative of the function we calculate now. So let u(x) =
x·(logK+m+2+logm!−(m+1) log(m+1)−(m+2) log x+(m+1) log n),
then the derivative is u′(x) = logK+logm!−(m+1) log(m+1)−(m+
2) log x+ (m+ 1) log n. The equation u′(x) = 0 has a unique solution,

that is where u(x) attains its maximum, namely x0 = m+2

√
K·m!

(m+1)m+1 ·

n
m+1
m+2 . Note that u(x) = x(m + 2 + u′(x)), thus u(x0) = (m + 2)x0,

which is equivalent to the statement of the lemma. �

Lemma 4.8. Let K,m > 0, i, n ∈ N+, 0 ≤ i ≤ n. Then

log

(
max
i

(
Ki

i!
·

∑
r1+···+ri=n

i∏
j=1

rmj

))
= (m+2)· m+2

√
K ·m!

(m+ 1)m+1
·n

m+1
m+2 +o

(
n
m+1
m+3

)
Proof. If i < log n or i > n

m+2
m+3 then Σi,m(n) := Ki

i!
·

∑
r1+···+ri=n

i∏
j=1

rmj is

o
(
n
m+1
m+3

)
by standard estimations.
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For log n ≤ i ≤ n
m+2
m+3 we switch the sum

∑
r1+···+ri=n

i∏
j=1

rmj to the inte-

gral Si,m(n). This produces an error of order of magnitude o
(
n
m+1
m+3

)
as

Si,m(n− i) ≤ Σi,m(n) ≤ Si,m(n+ i), and because (n+O(n
m+2
m+3 ))

m+1
m+2 =

n
m+1
m+2 + o

(
n
m+1
m+3

)
. The assertion then follows from Lemma 4.7. �

5. Fine spectra

5.1. The �ne spectrum of the varieties Vk. In [PPPrS13] recur-
sive formulas and asymptotic estimations were given for the number
of n-element rooted trees of depth k. Those results directly imply the
following.

Theorem 5.1. The sequences fk(n) satisfy the following asymptotic

formulas.

(1) f1(n) = 1 for all n ∈ N.
(2) f2(n) ∼ 1

4
√
3n

exp(π
√

2
3

√
n).

(3) log fk(n) ∼ π2

6
· n
Lk−2(n)

for k > 2.

5.2. The �ne spectrum of the varieties Vk,d.

Theorem 5.2. The sequences fk,d(n) satisfy the following asymptotic

formulas.

(1) log f0,0(n) ∼ (logα)n, where α ≈ 2.95576.
(2) f0,1(n) = 1 for all n ∈ N.
(3) f0,d(n) ∼ 1

(τ(d)−1)!dτ(d)/2 · n
τ(d)−1 for d ≥ 2.

(4) f1,1(n) = p(n) ∼ 1
4
√
3n

exp(π
√

2
3

√
n).

(5) log f1,d(n) ∼ (d+1)· d+1
√
ζ(d)

d
· n

d
d+1 for d ≥ 2, where ζ is the Rie-

mann zeta function.

(6) log f2,d(n) ∼ π2d
6
· n
logn

for d ≥ 1.

(7) log fk,d(n) ∼ π2

6
· n
Lk−1(n)

for k ≥ 3, d ≥ 1.

Proof. For the proof of item 1. see [HKUP+11].
Item 2. is straightforward from the de�nition of f0,1(n).
For item 3., let 1 = d1, . . . , dτ(d) be the positive divisors of d. An

n-element algebra (A;u) in V0,d consists of disjoint circles with size in
{d1, . . . , dτ(d)}. Let us denote the number of circles in (A;u) of size di
by αi. Then the isomorphism type of (A;u) is uniquely determined by
the tuple (α1, . . . , ατ(d)). According to Lemma 4.4 the number of such
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tuples is 1
(τ(d)−1)!d1···dτ(d)

nτ(d)−1 + O(nτ(d)−2) = 1
(τ(d)−1)!dτ(d)/2n

τ(d)−1 +

O(nτ(d)−2).
For item 4., observe that an n-element algebra (A;u) is in V1,1 if and

only if it is the disjoint union of rooted trees of depth at most 1 with n
vertices altogether, such that the edges are directed towards the root.
A rooted tree with depth at most 1 is up to isomorphism uniquely
determined by its size. Thus (A;u) is up to isomorphism uniquely
determined by the partition of n corresponding to the multi-set of the
sizes of the rooted trees.
We show item 5. The number of n-element directed, connected uni-

cyclic graphs with cycle length d is asymptotically 1
d

(
n−1
d−1

)
. Thus the

number of n-element directed, connected unicyclic graphs with cycle
length dividing d is asymptotically

∑
t|d

1
t

(
n−1
t−1

)
= (1 + O( 1

n
)) 1
d!
nd−1. Let

an =
∑
m|n

1
m
f1,d,con( n

m
). Then f1,d(n) ≤ [xn] exp(

∞∑
r=1

arx
r), and

an ≤
(

1 +O

(
1

n

))∑
m|n

1

d!

1

m

( n
m

)d−1
≤

≤
(

1 +O

(
1

n

))
1

d!
nd−1

∞∑
m=1

(
1

m

)d
=

(
1 +O

(
1

n

))
ζ(d)

d!
nd−1

Hence, by using the �fth item of Lemma 3.3, we have that Lemma 4.8
(with K = ζ(d)

d!
, m = d− 1) yields the asymptotical upper estimation

log

(
[xn] exp

(
∞∑
r=1

ζ(d)

d!
rd−1xr

))
∼ (d+ 1) ·

d+1

√
ζ(d)
d!
· (d− 1)!

dd
·n

d
d+1 =

=
(d+ 1) · d+1

√
ζ(d)

d
· n

d
d+1

for log f1,d(n). The lower estimation can be obtained in a similar fash-

ion. Let ε > 0 be �xed, and choose k ∈ N such that
k∑

m=1

(
1
m

)d ≥ ζ(d)−ε.

The only di�erence in the calculation compared to the upper estima-
tion is that the inequality (1 − ε) ζ(d)

d!
nd−1 ≤ an does not hold for suf-

�ciently large n, although for given ε, it is �often� true. The reason
is that there are arbitrarily large numbers n with few divisors (e.g.,

primes), and for such an n we have
∑
m|n

(
1
m

)d
< ζ(d) − ε. So instead

of [xn] exp

(
∞∑
r=1

arx
r

)
, it is better to compute [xn] exp

(
1

1−x

∞∑
r=1

arx
r

)
,
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to even out the numbers with few divisors. This modi�cation clearly
has no e�ect on the log-asymptotics, and as every number is close
to a number n that is divisible by the �rst k numbers, we obtain
a power series in the exponential whose n-th coe�cient is asymp-
totically bigger than (1 − ε) ζ(d)

d!
nd−1. Hence, the lower estimation

(d+1) · d+1

√
(1−ε) ζ(d)

d!
·(d−1)!

dd
·n

d
d+1 ≤ log f1,d(n) holds for all ε > 0 for su�-

ciently large n, which simpli�es to
(d+1)· d+1

√
(1−ε)ζ(d)

d
· n

d
d+1 ≤ log f1,d(n)

for large enough n.
We proceed with item 6. According to Lemma 3.3 item 3. and Theo-

rem 5.1, f2,1,con(n) = f2(n) ∼ 1
4n
√
3

exp(π
√

2n
3

). By Lemma 3.3 item 3.

we have 1
d

∑
µ1+···+µd=n

d∏
i=1

f2(µi) ≤ f2,d,con(n) ≤
∑
t|d

∑
µ1+···+µt=n

t∏
i=1

f2(µi).

Asymptotically there are at most nd terms in both the lower- and up-
per estimations, and according to Lemma 4.2 the logarithm of every
term can be estimated by

log( max
µ1+···+µt=n

t∏
i=1

f2(µi)) ≤

≤ (1 + o(1)) log( max
µ1+···+µt=n

t∏
i=1

1

4µi
√

3
exp(π

√
2µi
3

)) =

= O(t log n) + (1 + o(1))π

√
2

3
max

µ1+···+µt=n

t∑
i=1

√
µi ≤

≤ O(t log n) + (1 + o(1))π

√
2

3

√
tn ≤

≤ O(d log n) + (1 + o(1))π

√
2

3

√
dn ∼ π

√
2

3

√
dn

Moreover, according to Lemma 4.2 the estimation is sharp when
t = d and the di�erence between any two of the ni is at most 1. Such
a term appears in both the lower- and upper estimations. As log nd

is negligible to π
√

2
3

√
dn, it makes no di�erence in the log-asymptotic

estimations if we calculate with the biggest term or the sum of the
terms. Hence, both the lower- and upper estimations we obtained for

log f2,d,con(n) are asymptotically π
√

2
3

√
d
√
n, and consequently, so is

log f2,d,con(n). By Lemma 3.3 item 5. and Theorem 3.4 item 1. we

have that log f2,d(n) ∼ π2d
6
· n
logn

.
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Finally, we show item 7. From Lemma 3.3 item 3. and Theo-
rem 5.1 we obtain log fk,1,con(n) = log fk(n) ∼ π2

6
· n
Lk−2(n)

. According

to Lemma 3.3 item 3. we have 1
d

∑
µ1+···+µd=n

d∏
i=1

fk(µi) ≤ fk,d,con(n) ≤

∑
t|d

∑
µ1+···+µt=n

t∏
i=1

fk(µi). Asymptotically there are at most nd terms in

both the lower- and upper estimations, which will be a negligible factor.
According to Lemma 4.3 the logarithm of every term can be estimated

from above by log( max
µ1+···+µt=n

t∏
i=1

fk(µi)) = max
µ1+···+µt=n

t∑
i=1

log fk(µi) ≤

(1+o(1)) max
µ1+···+µt=n

t∑
i=1

π2

6
· µi
Lk−2(µi)

≤ (1+o(1))π
2

6
· n
Lk−2(n)

∼ π2

6
· n
Lk−2(n)

.

Moreover, according to Lemma 4.2 the estimation is sharp when t = d
and the di�erence between any two of the ni is at most 1. Such a
term appears in both the lower- and upper estimations. Hence, both
the lower- and upper estimations we obtained for log fk,d,con(n) are

asymptotically π2

6
· n
Lk−2(n)

, and consequently, so is log fk,d,con(n). By

Lemma 3.3 item 5. and Theorem 3.4 item 2. we have that log fk,d(n) ∼
π2

6
· n
Lk−1(n)

.

�

6. Generative spectra

6.1. The generative spectrum of the varieties Vk.

Theorem 6.1. The sequences gk(n) satisfy the following asymptotic

formulas.

(1) g1(n) = n for all n ∈ N.
(2) g2(n) ∼

√
3

2π2 exp(π
√

2
3

√
n).

(3) log gk(n) ∼ π2

6
· n
Lk−2(n)

for k > 2.

Proof. Item 1. holds by de�nition.
For item 2., we �rst give an asymptotic estimation for g∗2(n). If (A;u)

is an n-generated, but not (n − 1)-generated algebra in V2, then GA

is a rooted tree of depth at most 2 with n leaves. Let two leaves x
and y be equivalent if u(x) = u(y). Leaves x such that u(x) is the
root form an equivalence class of (n − i) elements, the others form
a partition of an i-element set. The isomorphism type of (A;u) is
uniquely determined by the number i and the partition of the i-element
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set. Thus g∗2(n) =
n∑
i=1

p(i). According to the Hardy-Ramanujan for-

mula, p(n) ∼ 1
4
√
3n

exp(π
√

2
3

√
n). By Lemma 4.1 we obtain g∗2(n) ∼

1
2
√
2π
√
n

exp(π
√

2
3

√
n). Hence, g2(n) =

n∑
i=1

g∗2(i) ∼
√
3

2π2 exp(π
√

2
3

√
n) by

Lemma 4.1.
Finally, for item 3. it is enough to show that log g∗k(n) ∼ π2

6
· n
Lk−2(n)

for k > 2. We prove this estimation by induction on k. By Lemma 3.3
item 2. and Theorem 3.4 item 1., we obtain the result for k = 3.
Assume that the statement is true for some k ≥ 3. Then by Lemma 3.3
item 2. and Theorem 3.4 item 2., the assertion holds for k+ 1, as well.

�

Corollary 6.2. The sequences g∗k(n) satisfy the following asymptotic

formulas.

(1) g∗2(n) ∼ 1
2
√
2π
√
n

exp(π
√

2
3

√
n).

(2) log g∗k(n) ∼ π2

6
· n
Lk−2(n)

for k > 2.

6.2. The generative spectrum of the varieties Vk,d.
Theorem 6.3. The sequences gk,d(n) satisfy the following asymptotic

formulas.

(1) g0,d(n) =
(
τ(d)+n

n

)
− 1 ∼ 1

τ(d)!
nτ(d) for d ≥ 1.

(2) g1,1(n) ∼
√
3

2π2 exp(π
√

2
3

√
n).

(3) log g1,d(n) ∼ (d+1)· d+1
√
ζ(d)

d
· n

d
d+1 for d ≥ 2, where ζ is the Rie-

mann zeta function.

(4) log g2,d(n) ∼ π2d
6
· n
logn

for d ≥ 1.

(5) log gk,d(n) ∼ π2

6
· n
Lk−1(n)

for k ≥ 3, d ≥ 1.

Proof. For item 1. observe that an algebra (A;u) in V0,d is n-generated
if and only if (A;u) consists of at most n disjoint circles. The length of a
circle can be any divisor of d. Thus up to isomorphism (A;u) is uniquely
determined by the multi-set of i numbers, with i ≤ n, consisting of the
sizes of the circles in (A;u), and these i numbers can be chosen from a

τ(d)-element set. Hence, g0,d(n) =
n∑
i=1

(
τ(d)+i−1

i

)
=
(
τ(d)+n

n

)
− 1.

For item 2. observe that there is a bijection between V2 and V1,1:
if we omit the root of an algebra in V2 then we obtain an algebra in
V1,1. Moreover, this bijection maps n-generated algebras in V2 to n-
generated algebras in V1,1. Thus g1,1(n) = g2(n), and we are done by
Theorem 6.1 item 2.
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The proof of item 3. is analogous to that of Theorem 5.2 item 5.
For items 4. and 5. it is enough to show that log g∗2,d(n) ∼ π2d

6
· n
logn

for d ≥ 1 and log g∗k,d(n) ∼ π2

6
· n
Lk−1(n)

for k ≥ 3, d ≥ 1. By comparing

Theorem 5.1 and Corollary 6.2 we obtain that log fk(n) ∼ log g∗k(n) for
k ≥ 2. In the statement of Lemma 3.3 items 3., 4. and 5. are analogous
to items 6., 7. and 8. Hence, the proofs of the desired log-asymptotic
estimations log g∗2,d(n) ∼ π2d

6
· n
logn

for d ≥ 1 and log g∗k,d(n) ∼ π2

6
· n
Lk−1(n)

for k ≥ 3, d ≥ 1 are also analogous to the proofs of items 6. and 7. of
Theorem 5.2. �
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