THE FINE- AND GENERATIVE SPECTRA OF
VARIETIES OF MONOUNARY ALGEBRAS

KAMILLA KATAI-URBAN, ANDRAS PONGRACZ, AND CSABA SZABO

ABSTRACT. In this paper we present recursive formulas to com-
pute the fine spectrum and generative spectrum of all varieties of
monounary algebras. Hence, an asymptotic or log-asymptotic es-
timation for the number of n-generated and n-element algebras
is given in every variety of monounary algebras. These results
provide infinitely many examples of spectra with different orders
of magnitude that are asymptotically bigger than any polynomial
and smaller than any exponential function.

1. INTRODUCTION

For a variety of algebras V let gy,(n) denote the number of n-generated
algebras in V, and let fy,(n) denote the number of n-element algebras
in V up to isomorphism. The sequences (gy(n))nen and (fy(n))nen are
called the generative spectrum and the fine spectrum of V), respectively.
For a detailed introduction into generative- and fine spectra, see [BI05].
It is of general interest to understand the asymptotic behaviour of these
sequences for certain varieties of algebras, as it is often strongly related
to the algebraic properties of the structures in the variety. For example,
a finitely generated variety V of groups is nilpotent if and only if gy (n)
is at most polynomial, and a finite ring R generates a variety with at
most exponential generative spectrum if and only if the square of the
Jacobson radical of R is trivial [BI0O5]. The infinite counterpart of our
problems is widely investigated in model theory. The famous Vaught
conjecture says that the cardinality of the set of non-isomorphic models
of any first-order theory in a countable language is either countable or
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continuum. In [HSV94, HV91| the conjecture is verified for varieties of
algebras. Their infinite methods obviously do not apply in the finite
world.

A monounary algebra, A4 = (A4;u) is an algebra with a single unary
operation u. The function u defines a directed graph on A. Let G4 =
(A; E), the vertex set is A and the edges are F = {(a,u(a)) | a € A}.
In G 4 every vertex has out-degree 1, and every directed graph G with
all vertices having out-degree 1 defines a monounary algebra on its
vertex set, where u(a) is the single vertex such that (a,u(a)) is an edge
in G. Hence, a monounary algebra can be identified with a directed
graph, where each vertex has out-degree 1.

The theory of monounary algebras is well-developed, for a recent
monograph see [JSP09|. Every variety of monounary algebras can be
defined by a single identity. The variety Vj 4 is defined by the equation
uFt?(z) = uF(z), and the variety V, is defined by the equation u*(z) =
u®(y), where u® = id, u! = u, and in general u"*! = u o u™. The goal
of the present paper is to obtain a recursive formula for the generative
spectrum and fine spectrum of all the varieties Vi 4 and Vj, and to
determine the log-asymptotic behaviour of these sequences. In some
cases, we can even determine the asymptotic behaviour or provide an
explicit formula for the fine- and generative spectra. The main results
are presented in Theorems 5.1, 5.2, 6.1, 6.3.

In [HKUP*11] a formula was obtained for the number of n-element
monounary algebras. Let M,, and C), denote the number of monounary
algebras and connected monounary algebras, respectively. It was shown
in [HKUP™11] that log,, C,, ~ log, M,, ~ n for a constant « ~ 2.95576.
In our terminology, this result shows the log-asymptotic behaviour of
the fine spectrum of the variety Vy, the class of all monounary alge-
bras. In [BI05|, several results were proven about the growth rate of
the generative spectrum of varieties. In many cases, the spectrum is
at most polynomial (e.g., pure sets, vector spaces over finite fields) or
at least exponential (e.g., Boolean algebras, semilattices). The vari-
ety V, is mentioned in [BI05| as an interesting example for a locally
finite variety whose generative spectrum is bigger than any polynomial
and smaller than any exponential function. It was explicitly calculated
there that the number of non-isomorphic n-generated algebras in V
is bigger than p(n) and smaller than (n + 1)?p(n), where p(n) is the
number of partitions of n. An asymptotic formula for the fine spectrum
of V5 and the log-asymptotic behaviour of the fine spectrum of V}, were
determined in [PPPrS13] for all k.
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2. DESCRIPTION OF THE VARIETIES

2.1. Monounary algebras as directed graphs. Throughout the pa-
per every monounary algebra is finite, and we identify the monounary
algebra (A;u) with the directed graph G 4. This identification gives
rise to a number of notions. The algebra (A;u) is connected if the
graph G4 is connected as an undirected graph. More generally, the
connected components of (A;u) are the connected components of G4
as an undirected graph. In every connected component, there is a
smallest (nonempty) subalgebra of (A;u), that is a directed circle in
G 4. If the length of the circle is d, then the connected component can
be partitioned into d rooted trees such that the edges are directed to-
wards the root. The roots are the vertices of the circle, and an element
a in the connected component is in the rooted tree with root r if and
only if r is the first element of the circle in the sequence (u*(a))?2,.

2.2. Varieties of monounary algebras. The notion of an equational
class goes back to Birkhoff |[Bir48|, who has shown that a class of alge-
bras can be defined by a set of equations if and only if the class is closed
under taking homomorphic images, subalgebras and (possibly infinite)
direct products. Such classes are also called varieties. All varieties of
monounary algebras were classified by Jacobs and Schwabauer [JS64].
According to their result, every variety of monounary algebras can be
defined by a single equation.

e The varieties V4 are defined by the equation u*(z) = u*+9(z),
for K > 0,d > 1. An algebra (A;u) is in Vy 4 if and only if
for every connected component B of (A;u) we have that the
length of the circle in G5 divides d and every rooted tree in the
partition of G'g is of depth at most k. In order to avoid multiple
indices, we denote the generative- and fine spectra of Vj 4 by
gr.a and fr 4, respectively. The log-asymptotic behaviour of the
sequences ¢ q and fi ¢ are determined in Sections 5 and 6.

e The class of all monounary algebras is Vo defined by the equa-
tion = x. As there are infinitely many n-generated algebras in
Voo for all n, the generative spectrum of this variety is not de-
fined. The log-asymptotic behaviour of the fine spectrum of Vo
was computed in [HKUP*11], namely log foo(n) ~ (loga)n,
where a &~ 2.95576.

e The varieties V, are defined by the equation u*(x) = u*(y),
for £ > 1. The classes V) consist of connected monounary
algebras. If (A;u) € Vy, then the circle of (A;u) is a loop, i.e.,
a single vertex r with u(r) = r. Thus G4 is a rooted tree with
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root r. This leads to the following combinatorial description:
(A;u) € Vg if and only if G4 is a rooted tree of depth at most
k. In particular, the number of n-element algebras fi(n) in Vg
equals to the number of n-element rooted trees of depth at most
k. The log-asymptotic behaviour of the sequences (fx(n))nen
were determined in [PPPrS13|. The log-asymptotic behaviour
of the generative spectrum (gr(n)),en can be computed in a
similar fashion. The detailed computation and the results are
presented in Sections 5 and 6.

e ), consists of the isomorphism type of the one-element alge-
bra, and it is defined by the equation z = y. The problem of
computing the generative spectrum and fine spectrum of V) is
trivial.

For the finer classification of pseudovarieties of monounary algebras
cf. [JS12].

3. GENERATING FUNCTIONS

Definition 3.1. Throughout the paper log denotes the natural log-
arithm function, and L,, denotes the m-fold iterated logarithm func-
tion, namely L,,(x) = loglog...logz. The exponential function e” is
denoted by exp(z). The number of positive divisors of n is denoted by

T(n).
Definition 3.2.

e For k£ > 0, fr(n) is the number of n-element algebras in Vy,
which equals to the number of n-element rooted trees of depth
at most k. The generating function of the sequence (fx(n))s°

n=1
is denoted by Fj(x) = > fr(n)a™.
n=1

e For k > 0, gf(n) is the number of rooted trees of depth at
most k with n leaves. Note that the rooted tree that consists
of a single vertex has one leaf. The generating function of the

oo

sequence (g5 (n))>; is denoted by Gi(z) = > gi(n)z™.
n=1

n=1

e For £ > 0, gr(n) is the number of rooted trees of depth at
most k with at most n leaves, which equals to the number of
n-generated algebras in V. The generating function of the se-
quence (gx(n))s2, is denoted by Gi(z) = > gr(n)x™.

n=1

e For k > 0,d > 0, fracon(n) is the number of connected n-
element algebras in V4, which equals to the number of n-
element digraphs with a directed circle of length dividing d,
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such that by omitting the edges of the circle the graph is par-
titioned into rooted trees of depth at most k&, and the edges of
each tree are directed towards the root. The generating func-
tion of the sequence (fxa.con(n))o>, is denoted by Fi gcon(z) =

00
Z fk,d,con (n)xn
n=1

e For k > 0,d > 0, fra4(n) is the number of n-element algebras

in Vi 4. The generating function of the sequence (fxq(n))52; is

n=1
denoted by Fyq4(x) = > fra(n)z™.
n=1

e For k > 0,d > 0, gj 4con(n) is the number of connected n-

generated but not (n — 1)-generated algebras in Vj 4, which
equals to the number of digraphs with n leaves, containing a
directed circle of length dividing d, such that by omitting the
edges of the circle the graph is partitioned into rooted trees
of depth at most k, and the edges of each tree are directed
towards the root. The generating function of the sequence

(glt:,d,con<n))%O=1 is denoted by Gz,d,con(x) = Zl glt:,d,con(”)xn‘

e For k > 0,d > 0, g; 4(n) is the number of n-generated but not

(n — 1)-generated algebras in Vi 4. The generating function of

the sequence (gf, 4(n))s, is denoted by G} 4(2) = > gk g.con()2".
n=1

o For £k >0,d >0, grq(n) is the number of n-generated algebras

in Vi 4 . The generating function of the sequence (gx 4(n))r2, is

denoted by Gra(z) = > gr.dcon(n)x™
n=1

There are several recurrence formulas for the sequences defined in
Definition 3.2, which we use to obtain the asymptotic estimations. All
of these formulas can be written up in terms of the power series of the
sequences.

Lemma 3.3. The power series defined in Definition 3.2 satisfy the
following formulas.

(1) Fn(@) = wexp( 3 LFila™)

1

(2) Giy(2) = exp( 3 AGH™) 4 - 1.

(

3
4

m=1

(3) Fiicon(x) = Fi(x).

) Ll—i(Fm,C(,n(x))d < Fraeon(T) < S (Fracon(®)) coefficient-wise.
td
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(5) Fra(z) = exp( Z Fidcon(z™)) — 1.
(6) Gircon(®) = Z( )-

(7) é( z,l,con< ))d < kdcon(x) S %(Gz,l,con(x))t coeﬁcient—wise.
t

(8) Grale )—eXp(Z Ghdcon(®™)) = 1.

Proof. Ttem 1. is shown in [PPPrS13|, see Theorem 2.2. The proof of
item 2. is analogous.

Items 3. and 6. are straightforward from Definitions 3.2.

The proofs of items 5. and 8. are based on a similar argument, thus
we only show item 5. For 1 <7 < n let u; be the number of i-element
connected components in the algebra (A; ). Up to isomorphism, (A;u)
is determined by the isomorphism types of its connected components.

There are (f’“d’“’“/(j_)*“j*l) ways to choose p; connected algebras in
J

Via of size j. Thus fra(n) = > H (f"d“’“ 3T ). According

Zl.ul n j=1
to the generalised binomial theorem, for every |z| < 1 we have that
[e.e] [e.e]

i\ — j - con. j i c .con‘+ i—1 j 1

(1_33]) fr,d,con(d) — Z ( fk,alll.,j (J)),(_xj)ﬂa _ Z (fk,d, ffj) Hj ):L.juJ.

;=0 Hi=0

Thus for n > 1, fi4(n) equals to the n-th coefficient in the power se-

ries [[ (1 — 27) fracon() and for n = 0 we have f;4(0) = 0 and the
=1

oo
constant term of the power series [](1 — 7) fracn(@) is 1. Hence,

j=1
Fk,d(‘r) — H (]_ — xj>_fk’,d,con(j) _ 1 — exp(z 10g<1 — xj>_fk',d,con(j)) _ 1 —
= =
exp( Y. fracon(j)(—log(l —27))) — 1. By replacing —log(1 — ) with
i=1
its Taylor series we obtain Fj 4(z) = exp(> fracon(j) 2 =2™)—1 =
j=1 m=1

eXP(E + Frdcon(2™)) — 1.

Fmally, the proofs of items 4. and 7. are similar, thus we only show
item 4. Let (A;u) be a connected algebra in V4 such that the length
of its circle is t. Then t|d. Let rq,...,r; be an enumeration of the ele-
ments of the circle of (A;u) such that u(ry) = ro,...,u(ry) = . This
enumeration depends on the choice of 1. By omitting the edges of the
circle of (A;u), we obtain a partition of G 4 into ¢ rooted trees of depth
at most k. The isomorphism type of the rooted tree with root r; is
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denoted by x;. Let us assign the t-tuple (z1,...,2;) to (4;u). Depend-
ing on the choice of rq, it might be possible to assign more than one
tuple to (A;u). As there are ¢ ways to choose r; with t|d, the number
of tuples assigned to an algebra in V4 is at most d. Up to isomor-
phism, the algebra (A;u) is uniquely determined by any of its assigned
tuples. For t|d let Sy .(n) be the set of tuples (z1,...,x;) of isomor-
phism types of rooted trees with n elements altogether and of depth
at most k. Let sp¢(n) = |Sg+(n)|. Every tuple in Sy ,(n) is assigned to
an n-element algebra in Vj 4. Hence, the above argument shows that
és;@d(n) < frdeon(n) <> sg(n). The number of tuples (z1,...,2¢) €

td
Sk.+(n) such that a rooted tree with isomorphism type z; has p; vertices
t t
is TT frpcon(ps). Thus spe(n) = > T feicon(pti), which is the
=1 p1+tpur=ni=1

n-th coefficient in the power series (Fj 1 con())"
U

The techniques used in Lemma 3.3 can be found in [FS09]. The
following theorem is from [PPPrS13]. Although in [PPPrS13] these

assertions were only shown for specific values of the parameters, the
proof works in full generality without any modification.

Theorem 3.4. Let (ap)nen, (bn)nen be sequences of positive integers,
and let A(z) = > a(n)a™ and B(x) = > b(n)z™ be the generating
n=1 n=1
Junctions of these sequences. Assume that B(x) = exp( ), =A(z™)).
m=1
C? n

1 logn
for some C > 0, then logb, ~

(1) Ifloga, ~ Cy/n for some C > 0, then logb,, ~
(2) For k > 1, if loga, ~

_n_
Ligy1(n)”

L(n

4. AUXILIARY COMPUTATIONS
Lemma 4.1. Let K,C € RT, s € R. Let a, ~ Kn®*exp(Cy/n), and
let b, = Y a;. Then b, ~ 2n*t1/2exp(Cy/n).

i=1

Proof. As a, — oo, we have that b, ~ > K4°exp(C+/4). The mono-
i=1

tonicity of the function % exp(Cy/x) and the fact that 25 exp(C'y/)

is a primitive function of L= exp(C\/_ ) imply that Z 7 exp(CVi) ~

& exp(Cy/n).
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Let ng = n—2n?/34n'/3. Then ; % exp(CVi) ~ 2E exp(Cy/n) exp(—Cn!/%) =
i<ng
o(ay). Similarly, > a; = o(a,). Thus according to the monotonicity
1<no
of n®, and by using n® ~ ng, we obtain that b, ~ > Ki®exp(CV/i) ~

no<i<n

nst1/2 > \[exp(C’\/—') ~ p5H1/2 2 K exp(C\/_) 2K nst1/2 exp(C'v/n).

no<i<n
[

Lemma 4.2. Let d € N. Then  max Z Vi ~ Vdn as n — oo.

ni+--+ng= n,;

d
Proof. According to Jensen’s inequality, > \/n; < d\/g = Vdn. The
=1

iz
upper bound is sharp when all the n; are equal. This might not be
possible, since n may not be divisible by d, but if we write up n as the
sum of d numbers such that any two have difference at most 1, then the
value obtained has the same asymptotic behaviour vdn as n — co. O

Lemma 4.3. Let d € N,k > 1. Let (h(n))nen be a sequence such that
h(n) ~ Cglt for some C > 0. Then — max Z h(n;) ~ CLiy os

ni+--+ng= n,;
n — OQ.

Proof. Let ¢ > 0. By calculating the derivative and the second deriva-
tive of the function #(z), it can be shown that there exists a positive
constant xy such that hy is positive, strictly monotone increasing and

strictly concave on (zy,00). Moreover, assume that zj is large enough

so that |Cn];(£3(n) — 1] < e for all z <n. Let M} = max(l, zén[laji] h(1)).

Let n > d(x + 1) be arbitrary. Let n; > ny > --- > ny be such that
d

Z n; =n. Asn > d(z;+ 1), there exists a 1 <t < d such that n; > zj

if and only if i < ¢. We give an upper bound for Z h(n;).

By using the trivial estimation h(n;) < M for ¢ > t, we have

d t t
Zh(nz) < dM + Zh(nz) < dM + Z(l +¢)Cg - Thus accord-

ing to Jensen’s inequality 21 h(n;) <dM + (1+¢)C Z Ty < dM +

t
(1+e)CHG 3 giy) < M+ (1+9)Ctgli = dM + (1 +6)O—Lk(’ZL -
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d
As the n; were arbitrary, we have that max (> h(n;)) < dM +
1

nit-Ang=n ;—
(1+ E)C#n/t) ~ (14 5)0#(71). A similar lower bound can be shown
by setting all the n; so that the difference of any two of them is at most

1. The lower estimation that we obtain this way is asymptotically (1 —
d

5)CL;EH). As € > 0 was arbitrary, we have that n1+@i§d:n( 1 h(n;)) ~
n

i=

Ly(n)"

4

Lemma 4.4. Let T € N, and let 1 = d;,d>, ..., d, be natural numbers.
ar(n) be the number of tuples (ay,...,a;) of non-

.....

77777

Proof. We prove the statement by induction on 7. By definition, wy(n)
1 for all m € N. Let 7 = 2. Then we have | ;-] + 1 choices for as, and
a is uniquely determined by ap. Thus wig,(n) = [ 1] +1= £ +0(1).

Assume that 7 > 3, and that the assertion is true for (7 —1). We
show that the statement holds for 7. By rearranging the terms of
oard; + -+ + ard, = n we obtain aydy + - + a,_1d—1 = n — a.d,.
Thus

In/d. |
Wy, ... ar(N) = Z Way...dar—1 (N — ardy) =
ar=0
In/d. | :
N — ard; T2 @) T2y —
;0 (7_2)!d1d2---d771(n a,d.) "2+ 0(n?)
- In/d- |
dr—2 n
= T Z (_ _ aT>7'72 4 O<n‘r—2) _
(7 —2)ldidy -+ - dry 24
dT_2 [n/dr]
T n - -
- (7_2)'d1d2d 1 / (d__a'r) QdO{T—f_O(TL 2) =
ar=0
7> n

- (1 —2)ldydy -+ dy_y (dT>T_1/(T — 1) +0(n?) =
1

_ T—1 T—2
S oD T

O
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The following sequence of lemmas are used to determine the log-
asymptotic behaviour of the generative- and fine spectra of V; 4 for
d> 2.

1
Lemma 4.5. Let a,b € N. Then Ofx“(l — ) dr = (a—igi!l)!'

1

Proof. The expression [ z*(1 — z)? dz is clearly symmetric in a and b.
0

1

If b =0, then [2* dx = a—}rl holds, and by symmetry, the formula is
0

also true when a = 0.

1
By the rule of partial integration, we obtain % [zl —2)b do =
0

1
[ 2%t (1 — 2)*~! dx. Hence, the above formula is equivalent for pairs
0
(a,b) and (a/,0') ifa+b=d +1. O

Lemma 4.6. Let m > 0, i € N*. Fort > 0 define Si,,(t) = t™, and
let

Siim(t) = / Sim()(t — 2)™ da

for all integers 1 > 2. Then
(m!) i
Sim t) = _t(m+1)z 1
m{l) (m+1)-i—1)!
Proof. Induction on ¢ with m fixed; the initial step ¢ = 1 holds by
definition. Assume that the formula is true for ¢« > 1, and let us show
it for + + 1. By using the induction hypothesis, the integral form of
t

¢ t .
Sim(t) transforms to Sit1m(t) = [ Sim(z)(t —2)" dz = [ # :
0 0

pm+Di=1(¢ — )™ dx. By applying the linear substitution y = 2/t and
Lemma 4.5 we obtain
1

)!.t(m+1)~i—1+m+1/y(m+1)-i—1(1_y)m dy —
0

(ml)’
(m+1)-i—1

Si—i—l,m(t) -

T (m+ D) i—D) (m+1)-(i+1)—1 (m-(G+1)+i—1)
(m!)i+t

T (m+D)-(i+1) - 1)

. pmA1)-(i+1)—1
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U
m+2

Lemma 4.7. Let K,m > 0, i,n € N*. Assume that logn < i < nm+3,
Then

K' (m!) - K -m! m1
1 Loy (mA41)-i—-1 _ ). mt2f 7 T 1
og (max( T =D n (m+2) (s -nm+2+0(logn)

Proof. By Stirling’s formula, we have

IOg max (m ) . n(m+1)-2—1 —
Al ((m+1)-i—1)!
= max(ilog K —ilogi+i+ilogm! —log((m+1)-71— 1)+

(m+1)-i—1)logn+ O(logi)) =
= max( (log K —logi+14logm!)—((m+1)-i—1)log((m-+1)-i—1)+

+((m+1)-i—1)+((m+1)-i—1)logn) + O(logn) =
= max(i - (log K —logi+ 1+ logm!) — (m+ 1) -ilog((m +1) - i)+
+(m+1)-i+(m+1)-i-logn)+ O(logn) =
= max( (log K —logi+1+logm!—(m+1)log(m+1)—(m+1)logi+
(m+1)+ (m+1)logn)) + O(logn) =
= max( -(log K+m+2+log m!—(m+1) log(m+1)—(m+2) logi+(m+1) logn))+0O(logn)

We seek the maximum of the expression over the whole interval [log n, n%ﬁ],
the error this leads to has order of magnitude O(logn), as it is appar-
ent from the derivative of the function we calculate now. So let u(z) =
z-(log K+m+2+logm!—(m+1) log(m+1)—(m+2) log z+(m+1) log n),
then the derivative is v/(z) = log K +logm!— (m+1)log(m+1)— (m+
2)log x 4+ (m + 1) logn. The equation «'(x) = 0 has a unique solution,

that is where u(x) attains its maximum, namely xo = mh?/% .

nw+z. Note that u(z) = x(m + 2 + v/ (x)), thus u(xg) = (m + 2)xo,
which is equivalent to the statement of the lemma. O

Lemma 4.8. Let K,m >0, i,n € NT,0<7<n. Then

Ki K . m' m—+41 m+1
- . mt2f 7 mmi2 m
log (mzax ( F " EM njl_[lr )) (m+2)- ™% (m+ 1) nm+2 40 (n +3)

Proof. If i < logn or i > nts then Sim(n) =& % H i

1!
ri+-+r;=n ]

0 (n%> by standard estimations.
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For logn < i < nm+3 we switch the sum > H 7" to the inte-
ri+-tri=n j=1
m—+1
gral S; ,(n). This produces an error of order of magnitude o (n=+3 ) as

Sim(n — i) < Lim(n) < Sim(n+ 1), and because (n+ O(nmis))niz =
n% +o0 (n%> The assertion then follows from Lemma 4.7. O

5. FINE SPECTRA

5.1. The fine spectrum of the varieties V. In [PPPrS13| recur-
sive formulas and asymptotic estimations were given for the number
of n-element rooted trees of depth k. Those results directly imply the
following.

Theorem 5.1. The sequences fr(n) satisfy the following asymptotic
formulas.

(1) fi(n) =1 for alln € N.
(2) foln) ~ sz exp(my [2v/m).
(3) log fx(n) ~ %2 . #Q(H) for k > 2.

5.2. The fine spectrum of the varieties V) 4.

Theorem 5.2. The sequences fiq(n) satisfy the following asymptotic
formulas.

(1) log foo(n) ~ (loga)n, where o = 2.95576.
foi(n) =1 for a,ll n e N

(2) foa(n) =
(3) foa(n) ~ W T D=L for d > 2.
(1) fri(n) = p(n) ~ - exp( wﬁm.

(5)

Cd+1/
5) log f1.4a(n) ~ M A for d > 2, where ( is the Rie-

mann zeta function.
2
(6) log foa(n) ~ =2 - Toen Jor d = 1.
(7) log fra(n) ~ % - = for k>3,d > 1.

6

Proof. For the proof of item 1. see [HKUP*11].

Item 2. is straightforward from the definition of fy(n).

For item 3., let 1 = dy,...,d, () be the positive divisors of d. An
n-element algebra (A;u) in V4 consists of disjoint circles with size in
{di,...,d-@a} Let us denote the number of circles in (A;u) of size d;
by «;. Then the isomorphism type of (A;u) is uniquely determined by
the tuple (ay,...,ar(q)). According to Lemma 4.4 the number of such
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: 1 r(d)—-2\ _ 1 r(d)—1
tuples is F@-Dldi—dy g ¥ L+ O™ = r@-Dar@rz" (@=1

O(nT(d)—Q).

For item 4., observe that an n-element algebra (A;u) is in V; ; if and
only if it is the disjoint union of rooted trees of depth at most 1 with n
vertices altogether, such that the edges are directed towards the root.
A rooted tree with depth at most 1 is up to isomorphism uniquely
determined by its size. Thus (A;u) is up to isomorphism uniquely
determined by the partition of n corresponding to the multi-set of the
sizes of the rooted trees.

We show item 5. The number of n-element directed, connected uni-
cyclic graphs with cycle length d is asymptotically d(” 1) Thus the
number of n-element directed, connected unicyclic graphs with cycle
length dividing d is asymptotically Z{; 1) = 1+ 0(2))2nd1t. Let

t

Z L f) yeon(Z). Then f14(n) < [n]exp(gjl a,a"), and
an < (1+0(%)) ;, ! (ﬁ)dl <
(o) T - o)

m=1
Hence, by using the fifth item of Lemma 3.3, we have that Lemma 4.8

(with K = El,), m = d — 1) yields the asymptotical upper estimation

log( eXP(ZCdI dlr))N(d+1)_ %w.nd-kl:
_ (d_|_ 1). d+1/C(d) 'ni

d+1
d
for log f1 4(n). The lower estimation can be obtained in a similar fash-

k
ion. Let € > 0 be fixed, and choose k& € N such that ) (%)d > ((d)—
m=1

The only difference in the calculation compared to the upper estima-
tion is that the inequality (1 — 5)%7’#_1 < a,, does not hold for suf-
ficiently large n, although for given e, it is “often” true. The reason
is that there are arbitrarily large numbers n with few divisors (e.g.,

primes), and for such an n we have ) (%)d < ((d) —e. So instead

mln

of [z"] exp (Z a,x ), it is better to compute [z"] exp ( Z a,x ),
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to even out the numbers with few divisors. This modification clearly
has no effect on the log-asymptotics, and as every number is close
to a number n that is divisible by the first & numbers, we obtain
a power series in the exponential whose n-th coefficient is asymp-

totically bigger than (1 — 5)%7151*1. Hence, the lower estimation

oD g1y d
(d+1)- "/ S @D 025 < og fy a(n) holds for all & > 0 for suffi-

LA o(d)
ciently large n, which simplifies to (@+1) d(l UG <log f1.4(n)
for large enough n.
We proceed with item 6. According to Lemma 3.3 item 3. and Theo-

rem 5.1, fo1con(n) = f2( ) ~ ﬁg eXp(m/Q—”). By Lemma 3.3 item 3.

i X Hf2(ﬂz) < faden(n) <35 Y HfZ(,ul)

P11+t pg=n i= tld p1t-tue=ni=
Asymptotically there are at most n¢ terms in both the lower- and up-
per estimations, and according to Lemma 4.2 the logarithm of every
term can be estimated by

we have

log(  max Hf2 i) <

Pt pe=n

t

1 24
<(1 1)1 =
< vottyost, mas TT otz etmy /%0

= - <
Oftlogn) + (1 + o<1>>7rf o nZ fi <

< O(tlogn) + (1 + o<1))W\/;\/% <

< O(dlogn) + (1+ 0(1))7r\/g\/d_n ~ ﬂ\/g\/d_n

Moreover, according to Lemma 4.2 the estimation is sharp when
t = d and the difference between any two of the n; is at most 1. Such
a term appears in both the lower- and upper estimations. As logn?

is negligible to 7 dn, it makes no difference in the log-asymptotic

3
estimations if we calculate with the biggest term or the sum of the

terms. Hence, both the lower- and upper estimations we obtained for
log f2.4.con(n) are asymptotically W\/g\/a\/ﬁ, and consequently, so is
log f2.4.con(n). By Lemma 3.3 item 5. and Theorem 3.4 item 1. we

have that log fo4(n) ~ % : 1ogn~
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Finally, we show item 7. From Lemma 3.3 item 3. and Theo-

rem 5.1 we obtain log fx 1 con(n) = log fr(n) ~ %2 . #Q(n) According

d
to Lemma 3.3 item 3. we have é > IT fe(is) < fracon(n) <

p1t+tpg=ni=1

Y H fx(u;). Asymptotically there are at most n¢ terms in
tld p1t-Fpr=ni=
both the lower- and upper estimations, which will be a negligible factor.

According to Lemma 4.3 the logarithm of every term can be estimated
t t
from above by log( max H fe(pi)) = max Y log fr(p) <
u1+ HFpr= 1t pr=n

2 2
(14+0(1)) o B nz = S v < (140(1))% - T ™ 5 T
Moreover, accordlng to Lemma 4 2 the estimation is sharp when ¢ = d
and the difference between any two of the n; is at most 1. Such a
term appears in both the lower- and upper estimations. Hence, both

the lower- and upper estimations we obtained for log fi 4con(n) are

asymptotically %2 CIo
Lemma 3.3 item 5. and Theorem 3.4 item 2. we have that log fi 4(n) ~

TI'2 n

6 Lp_i(n)”

%, and consequently, so is log fi 4.con(n). By

O

6. GENERATIVE SPECTRA

6.1. The generative spectrum of the varieties V.

Theorem 6.1. The sequences gi(n) satisfy the following asymptotic
formulas.

(1) ¢g1(n) =n for all n € N.
(2) g2(n) ~ 33 exp(m ﬁm
(3) log gr(n) ~ %2 . m for k> 2.

Proof. Ttem 1. holds by definition.

For item 2., we first give an asymptotic estimation for g5(n). If (4;u)
is an n-generated, but not (n — 1)-generated algebra in Vs, then G4
is a rooted tree of depth at most 2 with n leaves. Let two leaves x
and y be equivalent if u(z) = u(y). Leaves x such that u(z) is the
root form an equivalence class of (n — i) elements, the others form
a partition of an i-element set. The isomorphism type of (A;u) is
uniquely determined by the number ¢ and the partition of the i-element
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set. Thus g;(n) = > p(i). According to the Hardy-Ramanujan for-
i=1

mula, p(n) ~ ﬁexp(w\/g\/ﬁ). By Lemma 4.1 we obtain g5(n) ~
—Qﬁ;\/ﬁ exp(ﬂ\/g\/ﬁ). Hence, g»(n) = ZQQ( ~ B exp(m \/7\/_

Lemma 4.1.

Finally, for item 3. it is enough to show that log g;(n) ~ %2 o)
for £ > 2. We prove this estimation by induction on k. By Lemma 3.3
item 2. and Theorem 3.4 item 1., we obtain the result for £k = 3.
Assume that the statement is true for some £ > 3. Then by Lemma 3.3

item 2. and Theorem 3.4 item 2., the assertion holds for k£ + 1, as well.
O

Corollary 6.2. The sequences gi(n) satisfy the following asymptotic
formulas.

(1) 3(m) ~ g7z exp(m f Vi),
(2) log gi(n) ~ % - s oy for k> 2.

6.2. The generative spectrum of the varieties Vj 4.

Theorem 6.3. The sequences giqa(n) satisfy the following asymptotic
formulas.

(1) goa(n) = (T(d)+n) 1~ (d),n @ for d > 1.

(2) g1(n) ~ 323 exp(r ff

d 1/
(3) log g1.4(n) ~ w n#i for d > 2, where ( is the Rie-

mann zeta function.
2
(4) log g2a(n) ~ =2 - 2= for d > 1.

logn

(5) log gxa(n) ~ %.2 Coy Jork=3,d > 1.

Proof. For item 1. observe that an algebra (A4;u) in Vy 4 is n-generated
if and only if (A; u) consists of at most n disjoint circles. The length of a
circle can be any divisor of d. Thus up to isomorphism (A; u) is uniquely
determined by the multi-set of ¢ numbers, with ¢ < n, consisting of the
sizes of the circles in (A;u), and these ¢ numbers can be chosen from a

7(d)-element set. Hence, goqa(n) = > (r(d)ﬂ—1) _ (T(d)+n) 1
=1

3 n

i=

For item 2. observe that there is a bijection between V, and V) ;:
if we omit the root of an algebra in ), then we obtain an algebra in
V11. Moreover, this bijection maps n-generated algebras in Vs to n-
generated algebras in V1. Thus g;1(n) = go(n), and we are done by
Theorem 6.1 item 2.
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The proof of item 3. is analogous to that of Theorem 5.2 item 5.

For items 4. and 5. it is enough to show that log g3 4(n) ~ ”%d oo
for d > 1 and log g, 4(n) ~ %.2 T for k > 3,d > 1. By comparing

Theorem 5.1 and Corollary 6.2 we obtain that log fr(n) ~ log gi(n) for
k > 2. In the statement of Lemma 3.3 items 3., 4. and 5. are analogous
to items 6., 7. and 8. Hence, the proofs of the desired log-asymptotic
estimations log g5 ;,(n) ~ Td. 1 for d > 1 and log Jr.a(n) ~ . _n

6 logn 6" m
for k > 3,d > 1 are also analogous to the proofs of items 6. and 7. of
Theorem 5.2. 0
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