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SUMMARY

The paper presents a novel model order reduction technique for large-scale linear parameter varying
(LPV) systems. The approach is based on decoupling the original dynamics into smaller dimensional LPV
subsystems that can be independently reduced by parameter varying reduction methods. The decomposition
starts with the construction of a modal transformation that separates the modal subsystems. Hierarchical
clustering is applied then to collect the dynamically similar modal subsystems into larger groups. The
resulting parameter varying subsystems are then independently reduced. This approach substantially differs
from most of the previously proposed LPV model reduction techniques, since it performs manipulations on
the LPV model itself, instead of on a set of linear time-invariant (LTI) models defined at fixed scheduling
parameter values. Therefore the interpolation, which is often a challenging part in reduction techniques, is
inherently solved. The applicability of the developed algorithm is thoroughly investigated and demonstrated
by numerical case studies. Copyright c© 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The LPV models have proven to be useful in system analysis and control design, due to their
ability to represent a wide class of nonlinear systems, while preserving the advantageous properties
of linear structures [1], [2], [3]. Using LPV models, the analysis and control synthesis tasks
are generally casted to convex optimization problems involving linear matrix inequality (LMI)
constraints [4]. As long as the complexity of the system is low (the dimension of the state is smaller
than 20-30, the number of scheduling variables is at most 2 or 3) these problems can be efficiently
solved by off-the-shelf semidefinite solvers. On the other hand, the modeling of complex systems
(e.g. flexible structures [5]) results in high dimensional LPV systems (even with 100-1000 states),
the dimension of which has to be reduced in order to make them numerically tractable. It is important
to emphasize that our aim is to reduce the dimension of the state vector and not of the scheduling
variable. The latter problem is fundamentally different and is addressed in e.g. [6], [7].

Model order reduction for linear time invariant (LTI) systems is a well-studied topic, see e.g. [8]
and the references therein. The same problem for LPV systems was first addressed in [9], [10], where
the concept of balanced realization based model truncation [11] was extended to parameter varying
systems. The approach is based on the balancing state transformation computed from the parameter-
varying controllability and observability Gramians. These computations involve LMI optimization,
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which suffers from the same computational limitations as the LPV analysis and synthesis problems.
Therefore, this model reduction technique can only be applied to systems of moderate complexity. In
order to avoid these limitations an approximate balanced truncation method is proposed in [12]. The
approach is based on reformulating the problem as a Petrov-Galerkin (oblique) projection [8], that
involves two parameter-dependent transformation matrices. These transformations again rely on the
controllability and observability Gramians, but instead of computing them by LMI optimization,
[12] proposes an approximation, by using the local Gramians associated with the LTI systems
obtained at frozen scheduling parameter values. Since the algorithm uses only QR factorization
and singular value decomposition (SVD) it is numerically attractive. On the other hand, it works
only for stable systems and the approximation rises some technical questions. Finding answers to
these questions is part of the ongoing research.

In the literature some other model reduction methods can also be found for LPV systems, see e.g.
[13], [14], [15]. Although these techniques are different, yet, they share a common feature; they are
all based on frozen parameter models, i.e. they independently reduce the LTI models obtained at
fixed scheduling parameter values and then seek a suitable interpolation algorithm to construct an
LPV system from the reduced LTI model set. The latter step is very difficult in general [16], because
the independently reduced (transformed and projected) local, LTI systems have to be transformed
into a consistent state-space representation.

Regarding parameter-dependent systems, it is important to mention the family of parametric
model reduction methods, see e.g. [17], [18], [19], [20]. Though these approaches show similar
characteristics to the LPV model reduction, the problem they address is fundamentally different.
The parametric model reduction starts from a parameterized set of large-scale LTI systems. The
systems are reduced and a model database is constructed from the obtained reduced order models.
If a parameter value is given, the corresponding reduced order model is obtained from the stored
model set by a suitably chosen interpolation algorithm [21] [22]. It is important to emphasize that
the parameters in this framework are considered to be constant in time. This is significantly different
from the problem studied in this paper, since here the parameters change in time and thus the system
to be reduced is time-varying. Note also that, for LPV systems the input/output equivalence of
two models at frozen parameter values, i.e. the input/output equivalence of the corresponding LTI
systems, does not imply the input/output equivalence of the two systems along the time varying
parameter trajectories [23].

Finally, it has to be mentioned that there is a large family of model reduction tools that have
been developed for specific engineering applications. These methods highly exploit the particular
properties of the system and the underlying modelling framework, see e.g. the recent papers in [24].
In contrast, the approach presented in this paper belongs to the family of general model reduction
methods, as it starts from a general LPV description and no other particular properties are assumed.

The model reduction method proposed in this paper returns to the LPV reduction technique
presented in [9], but instead of constructing a numerically tractable approximation for the balanced
truncation, it decouples the large-scale system into smaller dimensional LPV subsystems that
can be independently reduced by the original algorithms of [9]. The decomposition starts with
the construction of a parameter varying modal transformation that separates the system modes.
Hierarchical clustering is applied then to group the modes into larger LPV subsystems, which can
then be independently reduced. Since the model reduction is applied on LPV subsystems and not on
frozen LTI models, the difficulties of system interpolation are avoided. Furthermore, the reduction
of unstable systems is naturally integrated in the proposed methodology.

Although the (approximate) modal decomposition is part of the proposed algorithm, it is
important to emphasize that the concept is fundamentally different from that of the modal truncation
methods elaborated for LTI systems [8], [25]. Modal truncation aims at reducing the large-scale
model by keeping only the dominant modal subsystems. This is not efficient in general, because
the pole location does not necessarily indicate the contribution of the corresponding state to the
input-output behavior of the overall system [8]. This is a reason why we propose to cluster the
modal subsystems into larger groups and use a model reduction algorithm to reduce the larger
subsystems obtained. The preliminary version of the proposed method have been published in [26]
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and successfully applied in [27] and [28] to generate control oriented model and a model based
control for a large-scale flexible wing. In this paper the preliminary concept is refined, the algorithm
is improved and several technical details are elaborated.

The paper is organized as follows. In the following section the model reduction problem is
formulated. Section 3 is devoted to the construction of the parameter-varying modal transformation.
In Section 4 the hierarchical clustering and the balanced reduction methods are discussed. The
numerical case studies are presented in Section 5. At the end of the paper the main results are
summarized and the most important conclusions are drawn.

2. PROBLEM FORMULATION

A continuous-time LPV system can be given in state-space form as follows

G(ρ) :
ẋ(t) = A(ρ(t))x(t) +B(ρ(t))u(t)
y(t) = C(ρ(t))x(t) +D(ρ(t))u(t),

(1)

where ρ : R+ → R denotes the time varying scheduling parameter, x : R+ → Rnx , u : R+ → Rnu

and y : R+ → Rny , are respectively the state, input and output. The matrix functions A : R→
Rnx×nx , B : R→ Rnx×nu , C : R→ Rny×nx , D : R→ Rny×nu are continuous functions of ρ.
Furthermore we assume that both ρ, ρ̇ and ρ̈ are bounded: ρ(t) ∈ Θ := [ρmin, ρmax] and ρ̇(t) ∈
Ω := [−δ, δ] and ρ̈(t) ∈ Φ := [−φ, φ] for all t†. (By this definition we restrict ourselves to LPV
models having only 1 scheduling parameter. The case of vector valued ρ is commented briefly in
the conclusion.)

In order to perform the numerical computations, the LPV system (1) is evaluated over a parameter
grid Γ = {ρ1 = ρmin, ρ2, . . . , ρN = ρmax}, ρ1 < ρ2 < . . . < ρN and the set G of LTI systems,
obtained at the grid points, is considered:

G =
{
Gk

∣∣∣ Gk =
[
Ak Bk
Ck Dk

]
, Ak = A(ρk), Bk = B(ρk),
Ck = C(ρk), Dk = D(ρk)

}
, k = 1 . . . N. (2)

The parameter grid is assumed to be suitably dense such that G preserves all the significant
dynamical properties of the LPV system. More precisely, the dynamical behavior of (1) between
any two consecutive grid points can be reconstructed from the LTI models defined at the grid points
by using simple (linear, polynomial, piece-wise polynomial (spline)) interpolation algorithm. This
grid-based representation is often directly generated by trimming a nonlinear system at different
operating points [29].

The aim of the model reduction is to find Gred(ρ, ρ̇, {ρ̈}) of order nredx � nx to be used for
designing a model based controller for (1). Therefore, the input-output behavior of the full order
model has to be preserved as much as possible. The similarity between the full and the reduced
order models can be analyzed by time-domain simulations and by different metrics presented in
Section 5. These metrics give quantitative information on the applicability of the reduced order
model in model-based control synthesis.

3. APPROXIMATE MODAL DECOMPOSITION FOR PARAMETER-VARYING SYSTEMS

3.1. Modal decomposition in LTI case

For LTI systems the concept of modal decomposition is theoretically sound. Let the system be
given by its state-space matrices A,B,C,D and let A be diagonalizable. Denote λ1, . . . , λm the
eigenvalues of A such that the complex-conjugate pairs are grouped together, i.e. for a complex
eigenvalue λi = ri ± cij. Then there exists a similarity state transformation T̄ such that the

†For parameter-dependent variables we use the following notational convention: a(ρ) denotes the variable a as a function
of the parameter ρ, while a(ρ(t)) or a(ρk) denotes the value of the variable at the specific parameter value ρ(t) or ρk.
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matrix Ā = T̄−1AT̄ is block diagonal in the form Ā = blockdiag(Ā1, . . . , Ām), where each Āi
corresponds to a real eigenvalue or a complex-conjugate eigenvalue pair and Āi = λj if λj is
real and Āi =

[ ri ci−ci ri
]

if λi is complex. The similarity transformation T̄ is constructed from the
eigenvectors as follows. Let v1, . . . vm be the eigenverctors (real and complex conjugate eigenvector
pairs) corresponding to eigenvalues above. Then T̄ = [ν1, . . . , νm], where νi = vi if λi is real and
νi = [Re(vi) Im(vi)] if λi is complex. With the block diagonal Ā the original system decouples into
the modal subsystems (Āi, B̄i, C̄i, D), where B̄i and C̄i denote the sub-blocks of T̄−1B and CT̄
corresponding to Āi. Note that T̄ is not unique, because it can be constructed from any eigenvector-
set spanning the same eigen-space.

Our aim is to extend this concept to parameter-varying systems and construct a parameter-
dependent state transformation T̄ (ρ) that decouples (at least approximately) the LPV system into
parameter-varying modal subsystems.

3.2. Simplifying assumptions

In order to simplify the discussion we consider first a special case, when matrix A(ρ) satisfies a set
of technical conditions. Later, it is shown that most of these conditions can be relaxed. Now let the
following assumptions be made:

(A) A(ρ) is diagonalizable and has a differentiable eigenvalue decomposition, i.e. there exist
a diagonal Λ(ρ) and invertible V (ρ) matrices such that both are differentiable in ρ and
A(ρ) = V (ρ)Λ(ρ)V (ρ)−1. The diagonal entries λi(ρ) of Λ(ρ) (i = 1 . . . nx) are the parameter-
dependent eigenvalues, while the columns vi(ρ) of V (ρ) (i = 1 . . . nx) give the parameter-
dependent eigenvectors.

(B) The characteristics of each λi(ρ), i.e. its multiplicity and type (complex or real) does not change
over the parameter domain.

Assumption (A) implies first that each Ak matrix is diagonalizable, so the eigen-decomposition
Λk = V −1k AkVk exists in every grid point. Second, the analyticity of V (ρ) makes it possible
to construct a differentiable and invertible parameter-varying state transformation from the
eigenvectors Vk. Assumption (B) guarantees that the dimension of the eigenspace associated with
each eigenvalue is constant for all scheduling parameter value. This makes it easier to transform
the eigenvectors Vk into a smooth sequence, from which a differentiable state transformation can be
constructed.

3.3. Eigen-decomposition

Our aim is to construct the differentiable λi(ρ), vi(ρ) functions satisfying λi(ρk) = λk,i and
vi(ρk) = vk,i, where Λk = blockdiag(λk,1, . . . , λk,nx

) and Vk = [vk,1, . . . , vk,nx
] define the eigen-

decomposition of Ak such that

Λk = V −1k AkVk, k = 1 . . . N. (3)

Note that, if the eigen-decomposition are computed for each Ak the ordering of the eigenvalues
obtained may vary over the grid points, so the sequence λ1,i, . . . , λN,i may not correspond to
λi(ρ1), . . . , λi(ρN ). In order to ensure the consistency of the Λk matrices, the ordering of the
eigenvalues has to be modified in each grid point. The right ordering can be found if the eigenvalues
at every grid point are correctly paired with the eigenvalues at the succeeding grid point. To find this
pairing, two ingredients are needed: first, a distance metric to compare the eigenvalues and second,
an algorithm to find the pairing. Moreover, the algorithm should work efficiently for large number
of eigenvalues as well. In the next section a suitably distance metric is proposed, which compares
the eigenvalues based on dynamic similarity. Then the pairing problem is reformulated as finding
a perfect matching in a bipartite graph. This is beneficial, because the latter problem can be solved
efficiently in polynomial time.
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Hyperbolic distance metric. Our goal is to connect the series of local eigenvalues in such way that
the resulting continuous trajectories correspond to the parameter-varying eigenvalues of the A(ρ)
matrix. In case of an LTI system each eigenvalue represents a dynamical mode, i.e. a subsystem
with particular dynamical characteristics. Extending this concept to the parameter varying case, we
intend to pair two eigenvalues if they belong to the same parameter varying subsystem. For this
purpose the hyperbolic distance metric is adopted, which measures dynamic similarity between
the eigenvalues. The reasons why this metric is chosen are detailed in the appendix. On the other
hand, this metric compares only the eigenvalues. In order to take the associated eigenvectors into
consideration as well, the distance metric is weighted by the modal assurance criterion (MAC)
[30] measuring the directional similarity of the normalized eigenvectors. Formally, if the weighted
distance metric is denoted by hw(·, ·) the final formula we use to compare two eigenvalues, e.g. λk,i
and λk+1,j (and their eigenvectors vk,i and vk+1,j) can be given as follows:

hw(λk,i, λk+1,j) := h(λk,i, λk+1,j) · (1− |v∗k,ivk+1,j |) (4)

where h(·, ·) is defined in the appendix.

Perfect matching in complete bipartite graphs. Let Lk and Lk+1 denote the ordered sets containing
the eigenvalues at grid points k and k + 1, respectively, i.e. Lk = {λk,1, . . . , λk,nx

}, Lk+1 =
{λk+1,1, . . . , λk+1,nx}. In order to pair every eigenvalue in Lk with exactly one eigenvalue in Lk+1

and vice versa, a graph-theoretic reformulation is applied. For this, let the weighted, complete,
bipartite graph [31] Bk = (Nk, Ek, Ck) be defined with vertices Nk = Lk ∪ Lk+1, edges Ek =
{eij | eij := (λk,i, λk+1,j), ∀(i, j) pairs} and edge-costs Ck = {cij | cij = hw(λk,i, λk+1,j)}. So Bk
is defined such that its edges connect every element in Lk with all elements in Lk+1 and the cost of
an edge characterizes the dynamical similarity between the two eigenvalues on the edge. Note that
every λk,i has to have exactly one pair in Lk+1 and every λk+1,j has to be a pair of exactly one vertex
inLk. In terms of the graph-theoretic setup this is a perfect matching ([32], [31]) in Bk, characterized
by a set of nx independent edges in Ek. The cost of a perfect matching is defined by the sum of the
costs for the corresponding set of independent edges. Accordingly, finding the right pairing between
the eigenvalues of Lk and Lk+1 is formulated as finding the minimum cost perfect matching in Bk
[32]. The obtained matching problem can be efficiently solved in polynomial (O(n3x)) time by using
the Hungarian Method (Kuhn-Munkres Algorithm) [31], offering a numerically attractive solution
for the eigenvalue pairing problem. Considering the ordering of the eigenvalues at ρ1 as a reference,
the pairing problem can be solved successively for k = 1, 2, . . . , N − 1. As a result, the Lk sets
(and consequently the Λk matrices) will be consistently ordered. This ordering has to be applied
to the columns of Vk as well, in order that the eigenvectors become consistent with the reordered
eigenvalues.

3.4. Continuity of the eigenvectors and the Procrustes-problem

The next step is to shape the eigenvectors stored in Vk, such that their entries form a smooth
function along the parameter grid. This is necessary to interpolate the entries of Vk into a
smooth, differentiable function and thus facilitating the construction of a differentiable and modal
transformation. Of course, the shaping of Vk has to preserve the eigenspace spanned by the
eigenvectors.

To this end, the first step is to identify the multiplicity of the eigenvalues in order that the
eigenvectors associated with a same eigenvalue can be grouped and handled together. For this, let
τi denote the i-th eigenvalue trajectory, i.e. τi = (λ1,i, . . . , λN,i). By using (22), we can introduce a
distance metric between two eigenvalue trajectories as follows‡:

H(τi, τj) = min
(

max
k

h(λk,i, λk,j) , max
k

h(λk,i, λ
∗
k,j)

)
. (5)

‡Note that, (5) can also be defined by the weighted hw(·, ·) metric as well.
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This metric does not distinguish the complex pairs, i.e. the distance of τi from τj and τ∗j are the same.
This is important to render the complex conjugate eigenvalue sequences together. By computing the
distance between every (τi, τj) pair, the multiple eigenvalue trajectories can be identified. Two
eigenvalue trajectories are considered to belong to a single repeated eigenvalue, if the distance
between them is smaller than a given threshold. §

By assigning to every eigenvalue the eigenvectors spanning its eigenspace, an ordered set
{(λk,1, Vk,1), . . . , (λk,n, Vk,n)}, n ≤ nx can be defined at each grid point. Here Vk,i ∈ Cnx×di

collects the eigenvectors associated with λk,i. Due to assumption (B) the dimension di of the eigen-
space associated with the i-the eigenvalue is constant and the same at every grid point, for any i.
This property will be exploited in the algorithm below.

The next step is to transform the eigenvector sequence V1,i, . . . , VN,i for all i. This can be done
by a right multiplication of Vk,i with an invertible matrix Qk,i, which changes the eigenvectors,
however leaves the eigenspace intact. To obtain the required smooth interpolation, Qk,i should
transform the respective eigenvectors at consecutive grid points as close as possible. This condition
is formulated as a complex, unconstrained Procrustes problem [33], [18], [22] as follows:

Q̄k+1,i := arg min
Qk+1,i

‖Vk,i − Vk+1,iQk+1,i‖F , ∀k, i (6)

where k goes from 1 to N − 1, i ∈ {1, . . . , n}, Qk+1,i ∈ Cdi×di . The solution for (6) can be
analytically given in the following closed form:

vec(Q̄k+1,i) =

(
I ⊗

[
Re (Vk+1,i) −Im (Vk+1,i)
Im (Vk+1,i) Re (Vk+1,i)

])†
vec
([

Re (Vk,i)
Im (Vk,i)

])
(7)

where vec(Q̄k+1,i) is a vector formed from Q̄k+1,i by stacking its columns below each other.
Accordingly, V̄k+1,i = Vk+1,iQ̄k+1,i is the appropriately rotated eigenvector, consistent with Vk,i.
The described Procrustes problem hence can be solved successively for each eigenvalue of the
system over the parameter domain k = 1, 2, . . . N . It should be noted, that the Procrustes iteration
can be started from any other grid point as well. The iteration has to be performed then in both
directions: for the larger and for the smaller indices. ¶

3.5. Approximate modal transformation

Due to the corrections above, the sequence V̄1, . . . V̄N of the shaped eigenvector matrices (with V̄k =
[V̄k,1 . . . V̄k,n]) can be smoothly interpolated (e.g. by linear, polynomial or piecewise polynomial
(spline) interpolation) over the parameter domain. From the resulted V̄ (ρ) matrix valued function
the parameter dependent, differentiable transformation T̄ (ρ) can be obtained in the same way as
in the LTI case. Defining a new state vector x̄ such that T̄ (ρ)x̄ = x, the original LPV system (1)
transforms into

˙̄x =

(
T̄−1(ρ)A(ρ)T̄ (ρ)− T̄−1(ρ)

∂T̄ (ρ)

∂ρ
ρ̇

)
x̄+ T̄−1(ρ)B(ρ)u

= (Ā(ρ) + Ē(ρ, ρ̇))x̄+ B̄(ρ)u

y = C(ρ)T̄ (ρ)x̄+D(ρ)u = C̄(ρ)x̄+D(ρ)u.

(8)

where Ā(ρ) is the block diagonal part of T̄−1(ρ)A(ρ)T̄ (ρ) such that Ā(ρk) = T̄−1(ρk)A(ρk)T̄ (ρk)
for all ρk ∈ Γ. Ē(ρ, ρ̇) collects the ρ̇-dependent terms in (8) and the difference T̄−1(ρ)A(ρ)T̄ (ρ)−

§This threshold-based decision is necessary here, because after the numerical manipulations (e.g. the eigen-
decomposition) performed on the LPV model we might not expect that the eigenvalue sequences corresponding to a
multiple eigenvalue of A(ρ) will be perfectly equal in each grid point and give 0 distance. On the other hand, if the
original system contains distinct eigenvalues that are very close to each other, then from numerical point of view, it is
generally better to handle them as a single, repeated eigenvalue. The threshold is typically chosen close to the numerical
precision of the computer arithmetic; for example in the case studies we applied 100ε, where ε is the relative accuracy of
the floating point numerical operations in MATLAB, that is ε = 2.22 · 10−16.
¶It is a reasonable to analyze the numerical conditioning of the eigenvector matrices and choose the starting point, where
the associated Vk matrix is well-conditioned.
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Ā(ρ) for all ρ ∈ Θ. The latter is zero only at the grid points. The term Ē(ρ, ρ̇) represents the main
challenge in the application of the transformation, since it represents cross-coupling between the
modal subsystems. Without it, the transformed system would be fully decoupled and similar to
the LTI modal form. Therefore, at this point the transformed model has to be analyzed in order to
decide if Ē(ρ, ρ̇) has to be kept or can be neglected. If the original and the modal system do not
differ significantly in terms of input-output behavior, the ρ̇-dependent term can be dropped out and
the computations can be proceeded with the decoupled structure. Otherwise, it has to be kept and
taken into account in the final, model reduction step as discussed in Section 4.2.

Note that, the presented modal decomposition allows the identification of modes (parameter
varying subsystems) with distinguished characteristics, such as integrators, unstable and mixed
stability modes, etc. These modes are often represent key system properties so it is necessary to
preserve them in the reduced order model. Using the modal form these modes can be temporarily
removed from the full order model and after reduction they can be added back to the reduced system.
Similarly, fast modes outside of the operating domain of interest can also be eliminated at this step.

3.6. Relaxation of conditions A and B

Clearly, if A(ρ) has a differentiable eigen-decomposition and one can give a numerical algorithm
that constructs it, there is no need for the most steps above and the modal transformation can easily
determined from the parameter-dependent eigenvectors. The eigen-decomposition of parameter-
varying matrices has been subject of intensive research for decades, see e.g. [34], [35], [36], [37],
[38], [39]. These papers provide rigorous mathematical conditions for the existence of an analytic
eigenvalue/eigenvector system and point out the difficulties of their numerical computation.

Before identifying these difficulties as critical weak points of our approach, two important
comments have to be made. First, the construction of the modal transformation requires only that
V̄ (ρ) be differentiable and suitably smooth function such that V̄ −1(ρk)diag(λk,1 . . . λk,nx)V̄ (ρk) =
A(ρk) holds at every grid point ρk ∈ Γ. It is therefore not necessary that V̄ (ρ) reconstructs exactly
the true eigenvector functions of A(ρ). Second, it also has to be kept in mind that the LPV model
(1) is always only an approximation of the underlying physical system, hence it is possible to apply
numerical perturbations in the systems description, as long as the overall input/output behavior does
not change significantly. Therefore, small perturbations on the A(ρ) matrix is allowed as long as
they do not significantly influence the input/output map realized by the dynamical system.

If condition B does not hold a small perturbation can help again, but in this case a more systematic
way is also available. The eigenvalue trajectories that cross at certain parameter values can be
grouped and handled together. The associated eigenvectors are then smoothed simultaneously by
a full block matrix in the Procrustes algorithm. Consequently, a larger dimensional subsystem
(comprising the grouped eigenvalues) appears in the modal form, which is then handled as a single,
indivisible object in the next, clustering step.

The case study in Section 5.1 gives an example for the application of the ideas above in practice.

4. CLUSTERING AND BALANCED REDUCTION

The algorithm we have developed so far is able to decouple (at least approximately) the LPV
system into a set of independent parameter-varying modal subsystems. Next, the idea is to group
these modal blocks with similar dynamical properties into clusters, so that the corresponding larger
dimensional subsystems can be efficiently reduced. The clustering is based on the eigenvalue
trajectories τ1 . . . τnx constructed in section 3.4, so the coupling term Ē(ρ, ρ̇), either significant
or not, is neglected in this step. If the effect of Ē(ρ, ρ̇) is not negligible, it can be taken into
consideration later at the final model reduction phase, in section 4.2.

In the forthcoming two subsections, we show first how the hierarchical agglomerative clustering
(HAC) methodology [40], [41] can be adapted to solve our specific clustering problem. Then, based
on [9], the main steps of the parameter-varying balanced reduction algorithm are recalled.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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4.1. Hierarchical clustering

In this section the hierarchical agglomerative clustering methodology is adopted to group the similar
modal subsystems together. The HAC framework is a bottom-up clustering approach, where each
data object is treated as a singleton cluster and successively merged until a single cluster is obtained.

In the context of the model reduction, the eigenvalue trajectories τi, i = 1, . . . , nx are considered
as the individual data objects. For measuring similarities between these trajectories, formula (5) is
used. As this metric ensures merging of complex pairs into one cluster, the parameter-varying modes
– (τi, τ

∗
i ) pairs – take place at the lowest level of the HAC. For the comparison of two clusters the

complete link clustering is applied, i.e.: the similarity of two clusters is determined by the similarity
of their most dissimilar members. Formally, if Cm and Cn are two clusters, then the corresponding
merging criterion is:

L(Cm, Cn) =

{
max
i,j

(H(τi, τj)), τi ∈ Cm, τj ∈ Cn
}
. (9)

Consequently, in the HAC framework, at each algorithmic step those two clusters are merged
together for which the (9) value is the smallest. Note that (9) is non-local, i.e. the entire structure
of the clustering can influence merge decisions. This results in a preference for compact clusters
with small diameters (i.e. the most similar dynamics are grouped together) and causes sensitivity
to outliers (i.e. uncommon dynamical components). The merging is repeated until all the objects
have been grouped into a single cluster. This can be done in O(n2x log nx) steps [40]. The result of
the HAC is visualized by a dendrogram, which is a tree diagram illustrating how the data objects
are merged into larger clusters until the one single cluster is reached. The final cluster structure
is obtained by cutting the dendrogram at a user-defined level of similarity. The careful choice of
this threshold is important, because it determines the number and size of the clusters generated. In
the decomposition of dynamical systems the number of clusters is mainly limited by the size of the
largest cluster, since the cluster size gives the dimension of the underlying dynamical system, which
cannot be arbitrarily large due to the numerical limitations of the balanced reduction algorithm to
be applied in the next step.

Assume M clusters have been generated. By rearranging the state x̄ of (8) according to these
clusters the obtained system structure is illustrated in Fig. 1. If the new state vector is denoted by x̃
and Π is the permutation matrix mapping x̃ to x̄, i.e. x̄ = Πx̃, then

Ã(ρ) = ΠT Ā(ρ)Π, B̃(ρ) = ΠT B̄(ρ)

Ẽ(ρ, ρ̇) = ΠT Ē(ρ, ρ̇)Π

C̃(ρ) = C̄(ρ)Π, D̃(ρ) = D(ρ)

(10)

Without Ẽ(ρ, ρ̇) the dynamics are fully decoupled into M subsystems G̃(`)(ρ) =[
Ã(`)(ρ) B̃(`)(ρ)
C̃(`)(ρ) D(`)(ρ)

]
, ` = 1, . . . ,M . The dimension of each subsystem equals to the size of the

corresponding cluster. If we have decided earlier to neglect the coupling term Ẽ(ρ, ρ̇), then
these subsystems can be handled separately. Otherwise, the coupling term has to be taken into
consideration. Since a decoupled structure is needed to continue our algorithm, this is only partially
possible. For this, let Ẽ(ρ, ρ̇) be expressed as a sum of Ẽ1(ρ, ρ̇) and Ẽ2(ρ, ρ̇) such that the structure
of Ẽ1(ρ, ρ̇) is aligned with the structure of Ã (see Fig. 1). Assuming that the effect of Ẽ2(ρ, ρ̇)
on the input-output behavior is negligible, we can proceed the computations with the subsystems
defined by the system matrices Ã(`)(ρ) + Ẽ

(`)
1 (ρ, ρ̇), B̃(`)(ρ), C̃(`)(ρ) and D(`)(ρ). These systems

are also independent, so they can be separately reduced. The neglected term can be treated as a
modeling uncertainty during the analysis or control synthesis procedures performed on the reduced
order model. ‖

‖To further minimize the approximation error, it is a reasonable idea to complete the distance metric (5) with an additional
term penalizing large entries in Ẽ2(ρ, ρ̇).
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(ρ)Ã (ℓ) (ρ)B̃ (ℓ)

(ρ)C̃ (ℓ)

(ρ)D̃ 

+ +

(ρ, )Ẽ 1 ρ̇ (ρ, )Ẽ 2 ρ̇

(ρ, )Ẽ (ℓ)
1 ρ̇

(ρ)Ã (ρ)B̃ 

(ρ)C̃ 

Figure 1. The structure of the system matrices after clustering: Ã(ρ) = blockdiag(Ã(1)(ρ), . . . , Ã(M)(ρ)),
Ẽ(ρ, ρ̇) is decomposed such that Ẽ(ρ, ρ̇) = Ẽ1(ρ, ρ̇) + Ẽ2(ρ, ρ̇) such that the structure of Ẽ1(ρ, ρ̇) is aligned

with the structure of Ã(ρ). The white areas denote the zero entries.

4.2. Balanced reduction

Balanced reduction is a fundamental approach for the model reduction of linear (time invariant
and varying, as well as parameter-dependent) systems [10], [9]. The key concept is the balanced
realization which reveals the controllability and observability properties of the system. After
clustering the dynamical modes, M separate LPV systems are obtained, each of which can be given
in the following general form:

ẋ(`) = Ã(`)(ρ̃)x̃(`) +B(`)(ρ̃)u

y(`) = C̃(`)(ρ̃)x(`) +D(`)(ρ̃)u,
(11)

where Ã(`)(ρ̃) = Ã(`)(ρ) + Ẽ1(ρ, ρ̇) and ρ̃ = [ρ, ρ̇]. The similarity transformation T̂ (ρ̃), which
transforms (11) into balanced form is obtained from the observability X(`)

o (ρ̃) and controllability
X

(`)
c (ρ̃) Gramians∗∗. If the LPV system is given in a state-space form and the structure of the

Gramians is a-priori fixed (e.g. in the form X
(`)
o (ρ̃) = X

(`)
o,0 +

∑nb

i=1X
(`)
o,i fi(ρ̃)X

(`)
o,i and X(`)

c (ρ̃) =

X
(`)
c,0 +

∑nb

i=1X
(`)
c,i gi(ρ̃)X

(`)
c,i where fi(ρ̃), gi(ρ̃) are fixed basis functions and X

(`)
o,i , X(`)

c,i , i =

1, . . . nb are free variables), then X(`)
o (ρ̃) and X(`)

c (ρ̃) can be obtained as a result of the following
optimization problem [9]:

min
X

(`)
o,i ,X

(`)
c,i ,i=1...nb

∑
k

trace X(`)
o (ρ̃k)X(`)

c (ρ̃k)

Ẋ(`)
o (ρ̃k, ν̃s) +A(`)(ρ̃k)TX(`)

o (ρ̃k) +X(`)
o (ρ̃k)A(`)(ρ̃k) + C(`)(ρ̃k)TC(`)(ρ̃k) ≺ 0

−Ẋ(`)
c (ρ̃k, ν̃s) +A(`)(ρ̃k)X(`)

c (ρ̃k) +X(`)
c (ρ̃k)A(`)(ρ̃k)T +B(`)(ρ̃k)B(`)(ρ̃k)T ≺ 0

X(`)
o (ρ̃k) � 0, X(`)

c (ρ̃k) � 0,∀ρ̃k ∈ Θ̃ and ∀ν̃s ∈ Ω̃

(12)

where Θ̃ and Ω̃ are suitably dense grids over Θ× Ω and Ω× Φ, respectively. This is a nonconvex
optimization problem, but if either X(`)

o (ρ̃k) or X(`)
c (ρ̃k) is fixed, then the cost function becomes

∗∗The presented balanced reduction algorithm can only be applied to quadratically stable LPV systems. The extension
of the method to unstable systems is well documented in [9] and [10]. If the unstable and mixed stability modes are
previously identified and separated in the modal form (see Section 3.5), then only the stable part of the system has to be
reduced, so the algorithm above can be applied.
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linear in the remaining variables, hence the problem reduces to a linear optimization problem with
(LMI) constraints. As suggested in the literature by alternately fixing X

(`)
o (ρ̃k) and X

(`)
c (ρ̃k) a

numerically tractable iterative algorithm is obtained, where an initial X(`)
o (ρ̃k) (or X(`)

c (ρ̃k)) can
be calculated from the frozen parameter solutions.

Although the above modifications ease the computational burden, the approach still suffers from
the curse of dimensionality. The number of decision variables involved, and hence the numerical
complexity grows with the state-dimension of the system. If the number of states goes over 30-40,
the LMI optimization problem becomes intractable by the currently available semidefinite solvers.
The decomposition of the system into smaller, independent subsystems, offers a remedy for this
problem.

Having determined the observability and controllability gramians of every subsystem, the
balancing T̂ (`)(ρ̃) transformations and the corresponding parameter dependent, generalized singular
value trajectories can be determined. The details of the related numerical algorithms can be found
in [9]. Applying the balancing transformations on the subsystems the states corresponding to small
singular values can be then eliminated. Since the T̂ (`)(ρ̃) transformations depend on ρ and ρ̇, the
reduced systems explicitly depend on ρ̇ and ρ̈ as well [9]. ††

Having reduced the subsystems individually, the reduced dynamics are finally joined together to
obtain the low dimensional approximation of (2). To formally express the result, let the balanced
state vector of the `-th subsystem be denoted by x̂(`) and let T̂ (`)(ρ̃) be defined such that
x̃(`) = T̂ (`)(ρ̃)x̂(`). Then, by definition the state z of the reduced order model can be computed
as z = Π̂TT−1(ρ̃)x̃, where T̂ (ρ̃) = blockdiag(T̂ (1)(ρ̃), . . . , T̂ (M)(ρ̃)),

Π̂ = blockdiag(Π̂(1), . . . , Π̂(M))

Π̂(`) = [ Idim(z(`)) 0 ]
T
, such that z(`) =

(
Π̂(`)

)T
x̂(`),

and z(`) denotes the state of the `-th reduced subsystem. Define W (ρ̃) = Π̂T T̂−1(ρ̃) and V (ρ̃) =
T̂ (ρ̃)Π̂. Then the reduced order model can be expressed as follows:

ż =
(
W (ρ̃)Ã(ρ̃)V (ρ̃)−W (ρ̃)V̇ (ρ̃) +W (ρ̃)Ẽ2(ρ̃)V (ρ̃)

)
z +W (ρ̃)B̃u

y = C̃(ρ̃)V (ρ̃)z + D̃(ρ̃)u
(13)

Since term Ẽ2 has been neglected in the reduction procedure, the term W (ρ̃)Ẽ2(ρ̃)V (ρ̃) appears in
the reduced order model. This term can be considered as an additive uncertainty that has to be taken
into consideration during the model based control synthesis.

5. CASE STUDIES

5.1. A benchmark example

As a first example a 80 dimensional, 2-input-2-output LPV system has been generated for the
numerical evaluation of the developed algorithm. The procedure used to generate the model consists
of 4 steps. First, the parameter-variation of each eigenvalue is defined over the parameter domain
Ω = [0, 1]. The obtained λi(ρ) functions are then used for constructing a parameter-varying block-
diagonal A0(ρ) ∈ R80×80 matrix. This is then completed with a randomly generated constant input
B0 ∈ R80×2 and output C0 ∈ R2×80 mappings, as well as a constant direct feedthrough term
D0 ∈ R2×2. To make the problem more realistic and industrially relevant, the generated modal
system is transformed in the second step by a parameter-varying matrix T (ρ). T (ρ) is constructed
by randomly generating an invertible matrix and making its certain (randomly selected) blocks

††If the second derivative of ρ is not bounded or its bounds are unknown, then by simply removing the ρ̇-dependence of
the Gramians also eliminates the explicit ρ̈-dependence of the reduced order system.
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Figure 2. Pole migration of the LPV benchmark system. The value of the scheduling parameter is indicated
by colors according to the color-bar on the right.

parameter-dependent. The resulting LPV system can be given as follows:

G0(ρ) :

{
ẋ = T (ρ)−1A0(ρ)T (ρ)x+ T (ρ)−1B0u
y = C0T (ρ)x+D0u

(14)

The third step is evaluating the system over an equidistant grid Γ0 containing N0 parameter values.
Then a d-th degree polynomial is fitted to each entry of the system matrices in order to deform the
eigenvalue trajectories and thus make the model more realistic. Finally, in the fourth step, a grid-
based representation is generated by evaluating the model over the grid Γ. This way, the LPV system
is free from any special structure and can be considered as a generic parameter-varying model. To
obtain the particular model used in this section the length N0 of the initial grid, the length N of
the final grid and the degree d of the interpolating polynomials have been chosen to be 60, 100 and
14, respectively. Furthermore, to evaluate and challenge the algorithm, a wide range of dynamical
behaviors have been covered including:

• parameter varying real- and complex conjugate eigenvalues,
• parameter independent dynamics,
• higher order complex and real eigenvalues (with algebraic multiplicity),
• integrators,
• mixed stability eigenvalues (that cross the imaginary axis),
• complex conjugate - real transitions.

These modes can be recognized on the eigenvalue trajectories depicted in Figure 2. The numerical
testing of the algorithm can be performed according to the following steps:

• Eigen-decomposition. Using standard numerical methods, the eigenvalues and the
corresponding eigenvectors of the Ak matrices are computed at each grid point.

• Identification of integrators. An initial ordering is carried out, based on the absolute
value of the eigenvalues in order to locate and label integrators for further computations.
The eigenvalues corresponding to the integrators are simply removed from the reduction
procedure, and will be added back later, before applying the Procrustes algorithm to smooth
the eigenvectors.

• Finding the eigenvalue trajectories. The samples of the pointwise modes over the parameter
domain are connected by the Hungarian Algorithm, based on their weighted hyperbolic
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distance. Unstable poles are projected into the unit circle during the construction of the
distance matrix, as discussed in APPENDIX A. Continuous eigenvalue trajectories are
restored as a function of the scheduling parameter. Integrators are excluded from the pairing
and matched individually.

• Detection of multiple eigenvalue trajectories. Eigenvalue trajectories which are in close
proximity for every value of the scheduling parameter are grouped together and handled as
muliple ones. In a same manner, using the hyperbolic metric between trajectories, irregular
behaviours (i.e. complex-real transitions) can be detected and labelled. For example, in
this particular example there are two eigenvalues very close to each other, accompanied
by occasional complex-real transitions. This represents discontinuity in the eigenspace
(assumptions (A) and (B) are violated), hence a numerical correction was necessary. The
absolute variance for the corresponding poles over the scheduling parameter domain was
found to be in the range of 10−7 clearly indicating a constant real pole with multiplicity of
2. Therefore we can replace the values with their average, and the complex eigenvectors can
be replaced by the closest real eigenvectors. These steps succesfully resolve the mathematical
discontinuity without effecting the input-output behaviour.

• Eigenvector smoothing. The complex Procrustes problem is solved for the matched
eigenvectors, where the subspaces of the previously labelled poles are treated accordingly.
The smoothness of the modal transformations are analyzed numerically, by comparing the ρ̇
dependent terms. For this purpose, a cubic spline interpolation is applied for the eigenvectors
obtained from the eigen-decomposition, and for the one obtained through the Procrustes
problem. These continuous functions are then evaluated between grid points. The results are
summarized in Table I, where the large entries indicate discontinuity in ∂T̄ (ρ)/∂ρ, which
implies that the state transformation T̄ (ρ) is probably not differentiable. The results illustrate
the effectiveness of the proposed complex Procrustes smoothing.

maxρ max {·} meanρ max {·} maxρ ‖·‖2 meanρ ‖·‖2
Before Procrustes ∂T (ρ)

∂ρ 100.52 73.6 312.28 246.28

After Procrustes ∂T (ρ)
∂ρ 4.57 1.07 12.6 2.85

Table I. Numerical comparison of the maximal elements and the matrix norms of modal transformations
before- and after smoothing, over the parameter domain. The numerical values were obtained by applying
the functions labelling the columns to the matrices labelling the rows, i.e. the 1,1 entry is obtained by

computing the maximal entry of ∂T̄ (ρ)/∂ρ as a function of the parameter and maximizing it over ρ.

• Modal form. Applying transformation T̄ (ρ), the parameter-varying modal form is obtained.
At this point a numerical test was carried out to investigate the effect of the ρ̇-dependent
term. In this particular example this term can be neglected without significant change in the
input/output response. (see also Table I).

• Stable-unstable decomposition. By using the continuous eigenvalue trajectories and the
parameter-varying modal form, unstable (as well as mixed stability) dynamics can be
separated and removed from the system. In the underlying example, five states were separated
(see Figure 2) and thus the model reduction is performed for the remaining 75 (stable) states.

• Clustering. Hiearchical clustering of the matched eigenvalue trajectories are performed next,
aiming to reveal dynamical redundancies of the system. Figure 3 shows the corresponding
dendrogram plot, which is used for representing the arrangement of the clusters. In Figure 3
the height of each line equals to the distance between the two data objects (either eigenvalue
trajectory or cluster of trajectories, computed by (9) ) below. Based on the dendrogram,
different number of clusters can be generated and it is the task of the user to decide. To
make this decision the following trade-off has to be taken into consideration: large number of
clusters corresponds to smaller sized groups, in which state elimination is generally more
conservative (consider the extreme case, where each cluster contains a single mode). On
the other hand, small number of clusters imply higher dimensional groups with increasing
numerical burden (on the other extreme: the entire system considered as a single cluster).
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Taking this into account, the given system are subdivided into five clusters (see Figure 3),
with the following dimensions: 26 (red), 34 (purple), 7 (blue), 6 (green) and 2 (black). Note
that the last cluster cannot be reduced, since it contains a single complex-conjugate mode.
According to Figure 3, a dynamic dissimilarity can be observed, implying the preservation of
this mode in question.
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Figure 3. Dendrogram for clustering in the benchmark example. The horizontal axis is labelled by the indices
of the data objects (eigenvalue trajectories) while the vertical axis shows the similarity distance computed
by using (9). The dashed line indicates the threshold where the dendrogram was cut to obtain the 5 clusters.

In addition, the cophenetic correlation coefficient is computed, which is often used for
characterizing a dendrogram: how faithfully does it represent the similarities among data
objects [40]. The magnitude of the cophenetic correlation should be close to 1 for the case of
a good description. The computed value was 0.83, which shows that the selected hyperbolic
metric is indeed a good indicator for comparing different dynamical behaviours.

• Computing Gramians. The parameter-dependent controllability and observability Gramians
are computed for each individual cluster. By fixing the structures of the Gramians as
X

(`)
c (ρ) = X

(`)
c,0 + ρX

(`)
c,1 and X(`)

o (ρ) = X
(`)
o,0 + ρX

(`)
o,1 the iterative optimization (Section 4.2)

is carried out for each sub-system by using the MOSEK optimization tool [42]. This
corresponds to (351 + 595 + 28 + 21)× 4 decision variables in four separate optimization
problems, which is a significant decrease compared to the 5550× 4 variables involved in the
single LMI problem for the entire 75 dimensional system.

• Singular Value Decomposition. In order to determine the number of states with the largest
contributions to the input-output behaviour of each subsystem, the parameter-varying
generalized singular values are computed for the subsystems by [9] The number of most
significant singular values followed by the dimension of the corresponding cluster are 5/26,
5/34, 3/7 and 2/6.

• Balanced Transformation. The parameter-varying balancing transformations and their
inverses can be computed for each subsystem, using the singular value decomposition [9].
Applying these transformations, balanced forms are obtained, resulting in a ρ, ρ̇ dependent
system. The balanced models are then truncated according to the most significant singular
values, computed in the previous step. That is, the 75 dimensional stable part is reduced to 17
dimension.

• Reduced model construction. Finally, the individually reduced subsystems are joined together
and the five dimensional unstable dynamics are added back. Hence the final, reduced-order
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Figure 4. ν-gap metric of the full (80) and reduced (22) order model over the scheduling parameter domain

LPV model has 22 states (compared to the original 80) and given in a grid-based fashion,
depending on ρ and ρ̇.

• Evaluation of the reduced model. In order to validate the reduced model, various numerical
properties have been investigated. One of the main motivation of model reduction is to obtain
a smaller dimensional representation, which is suitable for controller design. From this point
of view, similartity of closed-loop behaviours between the high-order and low-order models is
of capital importance. In order to take the feedback control objective into account, the widely-
used ν-gap metric is evaluated, defined between LTI systems, G1(jω) and G2(jω), as [43],
[44]:

δν(G1(jω), G2(jω)) =∥∥∥(I +G2(jω)G∗2(jω))−
1
2 (G1(jω)−G2(jω))(I +G∗1(jω)G1(jω))−

1
2

∥∥∥
∞
. (15)

Essentially, if δν(G1, G2) ≤ β, then a controller, which stabilizes G2 also stabilizes G1, with
a stability margin of β [44]. For identical systems δν(G1, G2) = 0, otherwise it is 0 ≤ δν ≤ 1.
For LPV systems (15) can be interpreted in different ways. One possibility is to compare
point-wise LTI systems of the LPV dynamics by taking:

max
ω

δν(Gk(jω), G̃k(jω)) (16)

at each grid point k ∈ [1 100]. Figure 4 shows the evaluation of the above expression for
models interpolated between the original grid points. The maximal value is 0.12, implying a
satisfactory similarity between the full and reduced order models. The second representation
of (15) is illustrated on Figure 5, where the interpolated systems are compared at every ωi
frequency, i.e.:

max
ρ

δν(G(ρ)(jωi), G̃(ρ)(jωi)). (17)

Figure 5 also provides an insight on the frequency-domain properties of the LPV model
reduction.
Finally, the proposed algorithm is compared with a local reduction approach. At each grid
point a balanced transformation based model reduction is performed for the corresponding
high dimensional LTI model. The local Hankel singular values imply lower dimensional
models, within the range of 2− 10, for the sake of consistency the dimension has been
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Figure 5. Frequency-wise maximum ν-gap metric of the full (80) and reduced (22) order model over the
scheduling parameter domain
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Figure 6. Pole migration map for the reduced order model (left) and for the collection of locally reduced
systems (right). The value of the scheduling parameter is indicated by colors according to the color-bar on

the right.

fixed for 10 at each grid-point. This fact indicates some conservativeness of the proposed
methodology, which, in general preserves more states as a consequence of the modal
decomposition. The pole migration maps for the two approaches are compared in Figure 6. It
can be observed, that the resulting parameter varying model has a smooth pole map, which
makes the LPV model generation straightforward and less challenging. On the other hand,
the pole map for the set of locally reduced models shows large variation (see the right plot
in Figure 6). This implies the need of a more refined interpolation technique to successfully
recover time domain behaviour of the original plant, which also makes control design virtually
infeasible.

The complete flowchart representing the model reduction workflow is presented in Fig. 7.
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Figure 7. The complete flowchart of the model reduction algorithm.

5.2. B-1 aircraft

Our second example is the publicly available nonlinear aeroelastic model of the Rockwell B-1
aircraft. This model is widely known and investigated due to the aeroelastic effects observed at
subsonic speeds. To obtain an LPV system for model reduction the simulation model from [45]
is used. By linearizing the nonlinear model at the flight altitude of 15000ft with different Mach
numbers between 0.6− 0.75, a grid-based LPV dynamics with 20 state variables are obtained. The
20 states consist of the 10 dimensional rigid body dynamics (bank angle φ, pitch angle θ, yaw angle
ψ, roll, pitch and yaw rates of the center of gravity: p, q, r, and x− y − z axis velocities in the body
coordinate frame: U , V , W and altitude h) and the additional 10 states of the five flexible modes.
Eight measured outputs are considered: flight path angle γ, the roll, pitch and yaw rates of the center
of gravity, and the lateral and vertical accelerations of the cockpit and center of gravity. The model
has 9 inputs: throttle T , right and left (symmetric) horizontal tails: δHR, δHL, upper and lower
split rudder surfaces: δRU , δRL, wing upper-surface spoilers: δSR, δSL and canard control vanes:
δCV R, δCV L. For these actuators a 13 dimensional LTI dynamics is given and used through the
augmentation of the LPV model. Accordingly, the final model used for testing the model reduction
algorithm is 33 dimensional.

The reduced order model can be obtained by performing the following steps. After obtaining the
parameter-varying modal form, three mixed stability modes are removed. The resulting 30 states
can be grouped into 3 clusters with dimensions of 23, 5 and 2. Based on the parameter-varying
singular values 7, 5 and 2 significant dimensions can be identified, i.e. only the largest block has to
be reduced. Hence, the resulting reduced-order model has a 14 dimensional stable and 3 dimensional
unstable part.

To investigate the numerical properties of the reduced order model, time-domain simulations are
carried out first. In these simulations the flight speed is set to vary as:

V (t) = 0.675 + 0.05 sin(0.2t), (18)
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Figure 8. Pitch rate response to a positive one degree deflection of the symmetric horizontal tail.
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Figure 9. Roll rate response to a one degree asymmetric horizontal tail deflection.

which corresponds to a maximal acceleration of ≈ 3.3 m
sec2 . Figure 8 compares the pitch rate

responses to a positive-one-degree commanded symmetric-horizontal-tail deflection of the full order
model (with 33 states) and the reduced order one (17 states). It can be depicted that the two models
give almost identical responses. Figure 9 shows the roll rate responses, where the horizontal-tail
deflections are set asymmetrically δHL = −1◦, δHR = 1◦. Again, only a small discrepency can be
observed between the two models.

As noted previously, the LPV balanced transformation and reduction suffers from the curse of
dimensionality, i.e. it runs into numerical problems for higher dimensional systems. Accordingly,
it cannot be applied directly to our first benchmark example in Section 5.1. At the same time, for
the case of the 33 dimensional model it is possible to solve the underlying LMI problems and
consequently obtain a reduced description. Accordingly, after a stable-unstable decomposition the
parameter-varying singular values have been computed for the stable part by using the parameter-
varying Gramians and the corresponding balancing transformation [9]. The singular-value plots are
given in Figure 10 implying the elimination of 17 states, which corresponds to a 16 dimensional
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Figure 10. Singular Values for the stable part of the B1 aircraft model. The value of the scheduling parameter
is indicated by colors according to the color-bar on the right.
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Figure 11. Bode plots from δRU to r of the full model (33 states) at 0.6 Mach compared to the two reduced
order models. The 17-state model has been obtained by the proposed algorithm, while the balanced reduction

algorithm from [9] has generated the 16-state model.

reduced system. This shows and verifies that the proposed approach indeed give a good estimation
for the order of the reduced system.

Finally, the frequency-domain properties are compared in Figures 11 and 12. The Bode amplitude
and phase diagrams of the i) full (blue), ii) reduced with the proposed approach (red) and iii) reduced
by the method of [9] (black), models have been compared from the upper rudder surface δRU to
the roll rate r at two different flight speed (0.6M and the interpolated point 0.7312M ). Note that,
according to the applied balanced residualization, model mismatch appears in the higher frequency
domain. Still, the frequency domain approximation is satisfactory in the operation domain.
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Figure 12. Bode plots from δRU to r of the full model (33 states) at 0.7312 Mach compared to the two
reduced order models. The 17-state model has been obtained by the proposed algorithm, while the balanced

reduction algorithm from [9] has generated the 16-state model.

6. CONCLUSION

A novel model order reduction algorithm, based on approximate system decomposition, has been
developed for LPV systems. The fundamental element of the algorithm is a parameter varying state
transformation, which transforms (at least approximately) the LPV system into modal form. For
this purpose the local transformation matrices have been appropriately modified and interpolated.
The obtained structure is then subjected to a dynamic similarity analysis by using a hierarchical
clustering method. This step reveals dynamically redundant modes of the system, which are grouped
together to form parameter-varying subsystems. Finally, these smaller dimensional subsystems are
separately reduced by parameter varying balanced reduction algorithm. The effectiveness of the
methodology is illustrated by in-depth numerical studies.

The present framework requires some assumptions on the LPV system to be reduced. It is
shown that most of these assumptions can be relaxed if slight modifications are allowed on the
system matrices. The most stringent constraint is the one limiting the dimension of the scheduling
variable to 1. Though the main concept of the proposed model reduction method can be extended to
systems having more than one scheduling parameters, the numerical details of the algorithm have
to be elaborated. The most critical point here is the separation of the modal subsystems, i.e. the
generalization of the Hungarian algorithm and the iterative Procrustes smoothing. But once this is
done the procedure can be continued since the clustering and the balanced reduction do not depend
on the dimension of the scheduling parameter. The extension of the modal decomposition to multi-
parameter LPV systems is one important direction for the future research.

Since LTI and parametric LTI systems are special classes of LPV systems, so the proposed method
remains applicable, though it may be not the most efficient approach, in those special cases as well.
If the system to be reduced is LTI, then there are no parameter dependent eigenvalues/eigenvectors
so the modal transformation and also the clustering can be omitted and the algorithm boils down
to a simple balanced reduction. In parametric LTI case the time derivative of the parameter is zero,
so the ρ̇-dependent terms causing most of the difficulties in model reduction do not appear in the
transformed models.

The well-known numerical problems related to eigen-decomposition is certainly one area
which also needs further considerations, especially for very large dimensional and ill-conditioned
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problems. Furthermore, currently we are seeking more rigoruous methods for the decomposition of
LPV systems. Guaranteed error bounds of the method will also be part of our future research.
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A. HYPERBOLIC DISTANCE

This section introduces the hyperbolic distance metric as a possible measure of dynamic similarity between
two poles of LTI systems. The derivation is based on the fundamental results of system theory, which relate
the location of the dominant poles to the transient response. This property is more pronounced in a discrete
time setup, therefore all the stable eigenvalues are mapped into the unit circle for further discussion. Each
z′ ∈ C discrete-time eigenvalue defines a first-order SISO transfer function G′(z) with a single pole located
at z′:

G′(z) =
a′(z)
z′ − z , (19)

where a′(z) is an arbitrary polynomial in z. The collection of all possible transfer functions, generated by
a single eigenvalue z′ is denoted by G[z′]. It is clear, that G[z′] ⊂ H2(D), where H2(D) denotes the Hardy
space of complex-valued functions [46]. This is an infinite dimensional vector space. Among its possible
orthonormal bases the discrete Laguerre system has received distinct attention in system and control theory
[47]. The Laguerre system is generated by any complex number z′′ as follows:

Φ′′m(z) =

√
1− |z′′|2
z − z′′

(
1− (z′′)∗z
z − z′′

)m
(m = 0, 1, 2 . . . ), (20)

Using the Laguerre system as a basis, each transfer function in G[z′] can be represented through the linear
combination of a Φm(z), i.e.

G′(z) =

∞∑
m=0

lmΦ′′m(z) (21)

where lm are the corresponding linear coefficients. It follows from the results in [48] and [49] that under
the given conditions, the ratio of two consecutive coefficients in (21) is always constant and depends only
on the generator elements z′′ and the z′. That is: lm+1/lm = r for all m = {1, 2, . . .} and r is called the
convergence factor, because it characterizes the convergence of the Laguerre series (21). Small coefficient
implies that only a few elements are dominant in (21), i.e. few basis functions are enough to capture the
dynamic behaviour of G′(z). The metric r is thus characterizes the similarity between the transfer functions
G′(z) generated by z′ and the basis elements parameterized by z′′. Therefore, it can be considered as a
possible measure of the dynamic similarity between z′ and z′′. Furthermore, it can be proved (see e.g. [48])
that r can be computed by the following simple formula

r = h(z′, z′′) =

∣∣∣∣ z′ − z′′1− z′∗z′′

∣∣∣∣ , (22)

which is also known as the pseudo-hyperbolic metric between z′ and z′′ [50], [51].
Being defined on the unit disk, this metric can only be applied on stable, discrete eigenvalues. In order

to compare continuous eigenvalues, they have to be ”discretized” first by the formula λd = exp(λcTs),
where Ts is a sufficiently small sampling time and λc, λd denote the continuous eigenvalue and its discrete
counterpart, respectively. Formula (22) can be applied to discrete, unstable eigenvalues as well provided that
they are transformed into the unit disk by the mapping f(z) = 1/z∗. (Note that f(z) reflects the unstable
eigenvalue across the unit circle, which guarantees that the distance between a stable and a (transformed)
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unstable eigenvalue is small if they are close to each other in the sense that they can be considered as
two consecutive points of the same eigenvalue trajectory. This property is important when mixed stability
eigenvalues have to be identified.) For notational convenience, the hyperbolic distance of two stable/unstable
continuous/discrete eigenvalues will also be denoted by h(·, ·) and the transformations necessary to use (22)
are assumed to be performed beforehand.
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51. Szabó Z, Bokor J. Non-Euclidean Geometries in Modeling and Control. Széchenyi University Press, 2015.
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