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The calculation of the geometrical derivatives of three-center electron repulsion integrals (ERIs)
over contracted spherical harmonic Gaussians has been optimized. We compared various methods
based on the Obara–Saika, McMurchie–Davidson, Gill–Head-Gordon–Pople, and Rys polynomial
algorithms using Cartesian, Hermite, and mixed Gaussian integrals for each scheme. The latter ERIs
contain both Hermite and Cartesian Gaussians, and they combine the advantageous properties of
both types of basis functions. Furthermore, prescreening of the ERI derivatives is discussed, and an
efficient approximation of the Cauchy–Schwarz bound for first derivatives is presented. Based on
the estimated operation counts, the most promising schemes were implemented by automated code
generation, and their relative performances were evaluated. We analyzed the benefits of computing
all of the derivatives of a shell triplet simultaneously compared to calculating them just for one degree
of freedom at a time, and it was found that the former scheme offers a speedup close to an order of
magnitude with a triple-zeta quality basis when appropriate prescreening is applied. In these cases, the
Obara–Saika method with Cartesian Gaussians proved to be the best approach, but when derivatives
for one degree of freedom are required at a time the mixed Gaussian Obara–Saika and Gill–Head-
Gordon–Pople algorithms are predicted to be the best performing ones. Published by AIP Publishing.
https://doi.org/10.1063/1.5049529

I. INTRODUCTION

Analytical derivative methods are essential tools of quan-
tum chemistry1,2 since many of the most important molecular
properties are related to energy derivatives. The geometri-
cal gradient of the energy is necessary to find equilibrium
structures of chemical systems, which makes it especially of
interest. The speed of the evaluation of electron repulsion inte-
gral (ERI) derivatives is an important factor in the efficiency
of such gradient calculations.3

When Cartesian Gaussian basis functions are applied, the
ERI derivatives can be computed in a straightforward man-
ner invoking the differentiation rule of the Gaussians after the
evaluation of the ERIs. More elaborate techniques were also
investigated in the literature that proved useful in accelerating
four-center ERI derivative calculations. With the Rys polyno-
mial method,4–7 where ERIs are calculated as the weighted
sum of two-dimensional integral products, one can differen-
tiate these intermediates and calculate the ERI derivatives
directly.8,9 Using the McMurchie–Davidson (MD) expan-
sion,10 the cost of the derivative integral computation can be
reduced by differentiating the Hermite integrals and the cor-
responding expansion coefficients with respect to variables
related to nuclear coordinates and then, after an assembly,
transforming these derivatives into the desired quantities.11

The Gill–Head-Gordon–Pople (GHP) algorithm,12,13 which
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transforms the Hermite integrals of the MD scheme into ERIs
over Cartesian overlap distributions using contracted level
recursions, can be used to compute derivatives as well.14,15 The
accompanying coordinate expansion and transferred recur-
rence relation method,16 efficient for the computation of ERIs
with heavily contracted basis sets, was also extended to serve
derivative calculation purposes.17 It was shown in Ref. 18 that
Hermite Gaussians are also applicable to ERI and ERI deriva-
tive calculations when the angular parts of the basis functions
are spherical harmonics, and the Obara–Saika19 (OS) recur-
rences for Hermite ERIs were also presented. The use of
Hermite Gaussians offers the advantage of a more simple
calculation of derivatives from the ERIs compared to Carte-
sian Gaussians, although the horizontal recurrence relation20

(HRR) involves four terms instead of the original two. The
translational and rotational invariance of ERIs and their appli-
cation to derivative evaluations were also investigated by
several authors.21–27

Density fitting (DF) is an established procedure to effi-
ciently and accurately approximate the four-center ERIs
required by most quantum chemical methods. If the Coulomb
metric is applied for DF,28–32 then three- and two-center ERI
derivatives are necessary to evaluate the derivative of the
energy. Here the efficiency is determined by the speed of the
three-center ERI derivative calculation, for which, in princi-
ple, all of the above mentioned methods can be adapted. While
this has not been done so far, several techniques have been
developed for the evaluation of three-center ERIs, which are
also useful in accelerating the computation of their derivatives.
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Ahlrichs showed33 that the OS method can be considerably
simplified if the fitting functions have spherical harmonic
angular parts. In our recent work, we proved34 that the com-
putation of the two-dimensional integrals of the Rys method
also becomes simpler in this case. The MD and GHP algo-
rithms greatly benefit from the use of spherical harmonic
Hermite Gaussians for the ket side of three-center ERIs since
the time consuming transformation of Hermite Gaussians into
the Cartesian ones can be avoided for the fitting functions.18

We should also mention the work of Köster, who combined
the OS, MD, and GHP methods for three-center ERIs35 and
developed new recurrence formulas for fitting basis sets con-
taining uncontracted Hermite Gaussian functions.36 Efficient
implementation of three-center ERIs and ERI derivatives,37–40

as well as options for prescreening these quantities,41–43 has
also received attention.

It is worth mentioning that the explicit evaluation of the
three-center ERI derivative list is not mandatory for the com-
putation of the derivative of the Coulomb-energy in a direct
self-consistent field (SCF) calculation. Utilizing the J-engine
scheme and related ideas,36,44 it is possible to only partially
calculate the integral-derivatives and, by reverse operations,
transform the density matrix into a form appropriate for the
contraction with intermediate differentiated ERIs rather than
with those over atomic orbitals (AOs). The approach is espe-
cially advantageous for Kohn–Sham SCF gradients, but it
can also be beneficial for DF Hartree–Fock or hybrid den-
sity functional calculations if the J-engine is applied along
with reduced-cost schemes45–51 for the computation of the
Fock-exchange contribution to the gradient. In the latter cases,
however, three-center ERI derivatives still have to be com-
puted. In addition, the ideas of the J-engine approach cannot
be efficiently utilized for correlated gradient calculations. We
also note that, for basis functions with sufficiently small over-
lap, the exact calculation of ERI derivatives is not necessary.
Here significant speedups can be achieved by the application
of approximations based on multipole or asymptotic expan-
sions.52–54 Still, the evaluation of the near-field ERI deriva-
tives demands considerable computational effort, especially
in the case of integrals involving high angular momentum
functions.

In this study, our goal is to find the most efficient method
for evaluating three-center ERI derivatives using contracted
spherical harmonic Gaussians. In Sec. II, we summarize the
properties of Cartesian and Hermite Gaussian basis functions
and three-center ERI derivatives and discuss the adaptation of
the OS, MD, GHP, and Rys schemes for calculating the deriva-
tives for Cartesian and Hermite Gaussian integrals. We give
new recurrence relations for each method to evaluate mixed
Gaussian ERIs, which contain both Cartesian and Hermite
Gaussians. The motivation for using these integrals is to ben-
efit from both the easier derivative calculation with Hermite
Gaussians and the less expensive Cartesian recurrences. We
note that, to our knowledge, the MD, GHP, and Rys methods
have not yet been extended to the case of Hermite Gaussian
basis functions, and this has been achieved in the present work.
We explore schemes for evaluating the ERI derivatives sepa-
rately for each degree of freedom and also the ones where all
of the derivatives are computed at the same time. The latter

approach makes us able to exploit the translational invariance
of the integrals and use shared recursion intermediates for the
derivative calculations. We also consider different prescreen-
ing approaches, introducing an efficient approximation of the
Cauchy–Schwarz upper bound for ERI derivatives. Section III
presents and discusses floating point operation (FLOP) counts
for the considered algorithms. In Sec. IV, implementation
details are given, and in Sec. V, we compare the runtime per-
formances of the selected schemes, which we implemented by
automated tools, as well as the four prescreening approaches
described in Sec. II F. We summarize our conclusions in
Sec. VI.

II. THEORY
A. Geometrical derivatives of three-center
Coulomb integrals

In this work, we investigate the efficient evaluation of
the first-order geometrical derivatives of three-center Coulomb
integrals over contracted solid harmonic Gaussian functions
using integrals over Cartesian and Hermite Gaussians. The
Cartesian Gaussians have the form of

GIJK (r, a, A) = xI
AyJ

AzK
A exp

(
−ar2

A

)
, (1)

and the Hermite Gaussians will be defined as18

H̃Ĩ J̃K̃ (r, a, A) =
∂L̃ exp(−ar2

A)

(2a)L̃∂AĨ
x∂AJ̃

y∂AK̃
z

, (2)

where r denotes the position vector of the electron, A is the
position of the center of the function, a is a constant Gaussian
exponent, and rA is the magnitude of the vector rA = r−A with
xA being the x component of rA. L = I + J + K will be called the
angular momentum of the Gaussian, and the vector L = (I, J,
K) will be referred to as its angular momentum vector. A tilde
over the angular momentum vector and its components will be
used for Hermite Gaussians to distinguish them from the cor-
responding Cartesian Gaussians. Functions with the same cen-
ter, exponent, and angular momentum constitute a shell with
(L + 1)(L + 2)/2 components. The primitive Gaussians are sep-
arable in the three Cartesian directions, that is, GIJK = GI GJGK

and H̃Ĩ J̃K̃ = H̃Ĩ H̃J̃H̃K̃ , where, for instance, GI = xI
A exp(−ax2

A)

and H̃I = ∂
Ĩ exp(−ax2

A)/(2a∂Ax)Ĩ . Cartesian Gaussians obey
the recurrence relations

xAGI = GI+1 (3)

and
∂GI

∂Ax
= 2aGI+1 − IGI−1, (4)

while the corresponding relations for the Hermite Gaussians
are

xAH̃Ĩ = H̃Ĩ+1̃ +
Ĩ

2a
H̃Ĩ−1̃ (5)

and
∂H̃Ĩ

∂Ax
= 2aH̃Ĩ+1̃. (6)

We will also make use of the

xB = xA + XAB (7)
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equation. In some cases, we will utilize the unscaled Hermite
Gaussians, defined as

HĪ J̄K̄ (r, a, A) =
∂L̄ exp(−ar2

A)

∂AĪ
x∂AJ̄

y∂AK̄
z

. (8)

A shell of differentiated Cartesian Gaussians can be trans-
formed into a differentiated solid harmonic Gaussian shell
consisting of 2L + 1 functions as

∂GLm(r, a, A)
∂Ax

=
∑

I+J+K=L

CLm
IJK

∂GIJK (r, a, A)
∂Ax

, (9)

where m is an integer satisfying −L ≤ m ≤ L, and the CLm
IJK

coefficients in Eq. (9) only depend on the angular momentum
vector and the value of L and m.55 Equation (9) also holds for
undifferentiated Cartesian Gaussians. For the transformation
of the Hermite Gaussians, the values of the coefficients are the
same as in the Cartesian case,18 and the simple differentiation
rule, Eq. (6), allows us to perform the differentiation and the

transformation in a single step as

∂GLm(r, a, A)
∂Ax

=
∑

Ĩ+J̃+K̃=L̃

CLm
ĨJ̃K̃

2aH̃Ĩ+1̃J̃K̃ (r, a, A), (10)

where CLm
ĨJ̃K̃
= CLm

IJK . We obtain contracted Gaussians (and dif-
ferentiated contracted Gaussians analogously) by combining
the corresponding elements of shells with different exponents
as

χALm(r, A) =
∑

a

GLm(r, a, A)daχA , (11)

where the contraction coefficients daχA also include the norm
of the solid harmonic Gaussian function and are the same for
a given shell. The solid harmonic transformation and the con-
traction of primitives are interchangeable operations even if
we use Eq. (10) since in practice the multiplication with 2a is
performed on earlier stages of the calculation.

Three-center ERIs over primitive Cartesian Gaussian
functions are defined as

(LaLb |Lc) =
∫ ∫

GIaJaKa (r1, a, A)GIbJbKb (r1, b, B)GIcJcKc (r2, c, C)

|r1 − r2 |
dr1 dr2, (12)

where La = (Ia, Ja, Ka) stands for the angular momentum vector, and La = Ia + Ja + Ka is the angular momentum of the function
with exponent a. Likewise, the ERIs over primitive Hermite Gaussian functions are given as

(L̃aL̃b |L̃c) =
∫ ∫ H̃Ĩa J̃aK̃a

(r1, a, A)H̃Ĩb J̃bK̃b
(r1, b, B)H̃Ĩc J̃cK̃c

(r2, c, C)

|r1 − r2 |
dr1 dr2. (13)

The term class will be used to refer to primitive or solid har-
monic integrals with the same angular momenta, centers, and
exponents; e.g., the primitive class (11|1) contains 27 prim-
itive integrals. For contracted integrals, a class will mean a
group of ERIs over the same contracted functions and with the
same angular momenta and centers. A shell triplet will refer
to all the integrals belonging to the same centers and angular
momenta.

The primitive integral where the total angular momentum
is zero is of central importance for the evaluation of ERIs. For
both types of basis functions, the value of this integral is given
explicitly as33

(00|0) ≡ (00|0)(0) = θpcκabF0(αR2
PC), (14)

with

κab = exp(−µR2
AB), θpc =

2π5/2

pc
√

p + c
,

µ =
ab

a + b
, P =

aA + bB
p

,

RAB = A − B, RPC = P − C,

p = a + b, α =
pc

p + c

and Fn being the Boys function of order n, defined as

Fn(x) =
∫ 1

0
t2n exp(−xt2)dt. (15)

Integrals (00|0)(n) calculated similar to Eq. (14) with the order
of the Boys function not necessarily being zero serve as the
starting values for the OS,19 MD,10 and GHP12 schemes for
the evaluation of the integrals of Eqs. (12) and (13) and their
derivatives.

Generally, differentiation of the integrals defined by
Eqs. (12) and (13) results in a linear combination of integrals
over differentiated basis functions given by Eqs. (4) and (6) as

∂(LaLb |Lc)
∂Ax

=
( ∂La

∂Ax
Lb |Lc

)
+

(
La
∂Lb

∂Ax
|Lc

)
+

(
LaLb |

∂Lc

∂Ax

)
.

(16)

In the following, we will utilize the translational invariance of
the integrals,( ∂La

∂Ax
Lb |Lc

)
+

(
La
∂Lb

∂Bx
|Lc

)
+

(
LaLb |

∂Lc

∂Cx

)
= 0. (17)

First of all, it trivially follows that Eq. (16) evaluates to zero if
the three functions are located on the same center. Rearranging
Eq. (17), we get( ∂La

∂Ax
Lb |Lc

)
+

(
La
∂Lb

∂Bx
|Lc

)
= −

(
LaLb |

∂Lc

∂Cx

)
, (18)

from which two further things are apparent. First, if two of
the three centers coincide, differentiating with respect to the
coordinates of this center does not require the evaluation of
the sum in Eq. (16), but rather we can differentiate the third
function and take the negative of the result. This does not
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necessarily reduce the operation count since performing the
differentiation for this second center can be more expensive
than to do so for the functions centered on the first one. How-
ever, for medium-sized and larger systems, such integrals are
much less numerous than the ones with three distinct centers.
For such shell triplets with coinciding centers, Eq. (18) only
makes an optimized code-generated implementation simpler
since one does need to have separate subroutines to treat these
cases. Second and more importantly, if we wish to produce
the derivatives for the shell triplets with respect to all three
centers, it is sufficient to perform the calculations only for two
of the centers for a given shell triplet, and the derivatives for
the third (most expensive) one can be constructed by using
Eq. (18). The classes required for these two derivatives can
be built up in the same recursive process, reducing the redun-
dancy of the calculation. However, proceeding in such a way
is not always the preferred choice. For example, producing
derivatives with respect to a couple of degrees of freedom at a
time may be advantageous for a coarse-grained parallelization
scheme where the derivatives with respect to the coordinates
of a center are evaluated on a separate node. The similar holds
when the solution of response equations is necessary for each
degree of freedom, as is the case for the calculation of second
derivatives, and we wish to avoid the storage and sorting of
the integral-derivatives. For these reasons, we will investigate
both approaches.

Utilizing Eq. (18), we only need to explicitly calculate
6 of the 9 derivatives of a three-center ERI. When Carte-
sian Gaussians are used, the classes ([La + 1x]Lb|Lc), ([La

− 1x]Lb|Lc), (La[Lb + 1x]|Lc), and (La[Lb − 1x]|Lc), for
example, have to be evaluated to construct the necessary
derivatives. Kahn has shown24 that, from the rotational invari-
ance of the integrals, it is possible to recover all of the deriva-
tives of an (LaLb|Lc) integral by just computing, for example,
∂(LaLb|Lc)/∂Ax, ∂(LaLb|Lc)/∂Ay, ∂(LaLb|Lc)/∂Bz, and three
other auxiliary integrals which are linear combinations of the
ERIs in the (LaLb|Lc) class. The remaining derivatives can
be calculated by solving three simultaneous linear equations,
optionally at the contracted level. The possible advantage is
that not all components of the classes with increased angular
momenta have to be evaluated. The approach, however, has
drawbacks. It is required to compute the extra class (LaLb|Lc).
When the HRR is applied, as is often the case, these ERIs
appear as intermediates for (La[Lb + 1x]|Lc). However, this
fact cannot be exploited if the buildup of the final angular
momenta takes place at the contracted level since according
to Eq. (4) the class with incremented Lb will be scaled by
2b, meaning that the class required for the auxiliary integrals
has to be computed by a separate recursion. Furthermore,
none of the functions of the (LaLb|Lc) ERIs can be trans-
formed into the spherical harmonic Gaussian basis until the
auxiliary integrals have been formed, while performing these
operations on earlier intermediates is known7 to enhance the
speed of the calculation. This also hinders the exploitation
of (LaLb|Lc) as an intermediate of another class. The for-
mation of the auxiliary integrals is also relatively expensive,
each requiring five additions and six multiplications. The solu-
tion of the system of linear equations is also considerably
more expensive than the application of Eq. (18). Finally, the

advantage of not evaluating every component of the more
expensive classes becomes less significant with the increase of
the angular momenta. For example, when we wish to compute
every ∂(LaLb|Lc)/∂Bz, we need the same number of compo-
nents from the (La[Lb + 1x]|Lc) class as the number of ERIs in
(LaLb|Lc), with the ratio of the number of the components in
the two classes getting smaller with increasing Lb. Because of
these considerations, we only deal with the invariance property
defined by Eq. (17) in this work.

In the following, La will denote the final angular momen-
tum we wish to build up on the function with exponent a. la

will be used to represent the angular momenta of intermedi-
ate classes, that is, classes that are required by the recursions
or other transformations to create the final angular momen-
tum. The notation will be similar for the other two functions.
The index ranges for the intermediates reported in this paper
were determined on the basis of a method outlined in the
supplementary material. Even though the presentation sug-
gests that the lower limits of the ranges can take negative
values, for brevity, we will not use the notation max(0, l) for
these cases but assume that the angular momenta are greater
than or equal to zero. The notation for the various investigated
methods will display the basic algorithm, the applied basis
function, the center the coordinates of which we differentiate
with respect to, and an additional index if we inspect different
approaches for a given problem. For example, GHPCart,A2 will
denote the GHP-based scheme where we use Cartesian Gaus-
sians and differentiate with respect to A, while the approach
to which “2” refers will be explained later. We will omit the
indices when we talk about all the possible values for those
indices, e.g., OSCart means all the discussed methods within
the OS scheme that apply Cartesian Gaussians. We will use an
upper left index “3” to denote schemes where all the deriva-
tives of the shell triplets are produced by a common recursion.
For example, 3OSCart,AB refers to the OS-based scheme using
Cartesian Gaussians where we simultaneously evaluate the
derivatives with respect to A and B by recursion and calculate
the C derivatives via Eq. (18).

B. Obara–Saika recursion

The OS scheme utilizes recurrence relations for auxiliary
intermediate integrals defined as

(LaLb |Lc)(n) =
2

π1/2

∫ ∞
0

∫ ∫
GIaJaKa (r1, a, A)

×GIbJbKb (r1, b, B)GIcJcKc (r2, c, C)

× exp(−|r1 − r2 |
2u2)

( u2

α + u2

)n
dr1 dr2 du

(19)

to construct the true ERIs with n = 0 and with the required
angular momenta for the calculation of the differentiated inte-
grals. From now on, superscript (n) will be kept only when
it is not equal to zero. For the derivation of the equations for
four-center ERIs, we refer to the other work.19,55

An efficient application of the OS method to three-center
solid harmonic Gaussian ERIs was developed by Ahlrichs.33

Our equations will slightly differ from those of Ref. 33 since
it will prove useful to work with the starting integrals

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-012836
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(00|0)(n) ≡ (0)(n) = (−2α)nθpcκabFn(αR2
PC). (20)

To arrive at the undifferentiated (LaLb|Lc) class, we first apply
the vertical recurrence relation (VRR)

([la + 1x]0|0)(n) = XPA(la0|0)(n) +
1

2p
XPC(la0|0)(n+1)

+
ia
2p

(
([la − 1x]0|0)(n)

+
1

2p
([la − 1x]0|0)(n+1)

)
. (21)

Here and from now on, la + 1x means that the x component of
the angular momentum vector la has been increased by one.
To reach an (La0|0)(n) class, Eq. (21) needs (00|0)(m) ERIs for
n ≤ m ≤ n + La. Next, the simplified vertical recurrence for
the ket function33

(la0|[lc + 1x])(n) = −
1
2c

XPC(la0|lc)(n+1)

−
ia

4pc
([la − 1x]0|lc)(n+1) (22)

is applied, which requires (la0|0)(n) intermediates for La − Lc

≤ la ≤ La and n = Lc to construct an (La0|Lc) class. Finally,
the HRR

(la[lb + 1x]|Lc) = ([la + 1x]lb |Lc) + XAB(lalb |Lc) (23)

is employed, for which (la0|Lc)-type intermediates for La ≤ la

≤ La + Lb are needed to build (LaLb|Lc) ERIs. We note that
the la → lc → lb order of building up the angular momenta is
not the only possible one, and the electron transfer relation56

can also be applied in the evaluation of the ERIs. In our pre-
vious study,34 we found that the presented scheme is the most
efficient OS-type algorithm for undifferentiated three-center
Cartesian ERIs.

The application of this method is straightforward for
the derivatives with respect to the coordinates of A and
B, where we use Eqs. (20)–(23) to evaluate the required
classes for Eq. (4). This slightly modifies the index ranges;
e.g., for ([∂La/∂Ax]Lb|Lc), the lower and upper limits that
depend on La decrease and increase by one, respectively. Equa-
tion (22) can, however, not be applied if we wish to evaluate
(LaLb|[∂Lc/∂Cx]). Instead, we shall use the original VRR
equation19 reduced to the three-center case,

(la0|[lc + 1x])(n) = −
1
2c

XPC(la0|lc)(n+1)

−
ia

4pc
([la − 1x]0|lc)(n+1)

+
ic
2c

(
(la0|[lc − 1x])(n)

+
1
2c

(la0|[lc − 1x])(n+1)
)
. (24)

For undifferentiated ERIs, the last two terms of Eq. (24) can-
cel when we transform Lc to the solid harmonic Gaussian
basis.33 Now we are changing to the differentiated solid har-
monic Gaussian basis, and from Eqs. (4) and (9), we can see
that functions with angular momenta higher and lower than Lc

get transformed by the coefficients belonging to Lc; hence, the
cancellation does not take place. The (la0|0)(n) ERIs required
for the calculation of an (La0|Lc) class by using Eq. (24) are

those with the mod[Lc, 2] ≤ n ≤ Lc and La −mod[Lc, 2]− 2d(n
− mod[Lc, 2])/2 c≤ la ≤ La index ranges, where dxc denotes
the integer part of x.

The OS method can be developed for ERIs over Hermite
Gaussians as well.18 The bra side VRR is very similar to its
Cartesian counterpart, having the form of

([l̃a + 1̃x]0|0)(n) = XPA(l̃a0|0)(n) +
1

2p
XPC(l̃a0|0)(n+1)

+
ĩa
2p

(
−

b
a

([l̃a − 1̃x]0|0)(n)

+
1

2p
([l̃a − 1̃x]0|0)(n+1)

)
. (25)

The VRR for the ket function is the same as Eq. (22). The HRR
for the Hermite ERIs,

(l̃a[l̃b + 1̃x]|L̃c) = ([l̃a + 1̃x]l̃b |L̃c) + XAB(l̃a l̃b |L̃c)

+
ĩa
2a

([l̃a − 1̃x]l̃b |L̃c) −
ĩb
2b

(l̃a[l̃b − 1̃x]|L̃c),

(26)

can be obtained with the help of Eqs. (5) and (7). The
range for the necessary (l̃a0|L̃c) intermediates for Eq. (26) is
L̃a − L̃b ≤ l̃a ≤ L̃a + L̃b. The ERIs required for A and B deriva-
tives are computed with the above described scheme with
modified index limits; e.g., for ([∂L̃a/∂Ax]L̃b |L̃c), the lower
and upper limits that depend on L̃a increase by one accord-
ing to Eq. (6). Note that the multiplication with the double of
the exponent appearing in Eq. (6) can be built into Eq. (20)
if we calculate a derivative with respect to one center at a
time. When we differentiate with respect to C, the necessary
ket VRR equation is analogous to Eq. (24); however, the third
term is zero. This is because in the corresponding equation
for four-center ERIs18 this third term is multiplied by −d/c,
where d is the exponent for the fourth function, and d is zero
for three-center integrals. Hence the relation becomes

(l̃a0|[l̃c + 1̃x])(n) = −
1
2c

XPC(l̃a0|l̃c)(n+1)

−
ĩa

4pc
([l̃a − 1̃x]0|l̃c)(n+1)

+
ĩc

4c2
(l̃a0|[l̃c − 1̃x])(n+1), (27)

for which we need (l̃a0|0)(n)-type ERIs to build an (L̃a0|L̃c)
class for L̃c − dL̃c/2c ≤ n ≤ L̃c and L̃a + L̃c − 2n ≤ l̃a ≤ L̃a.

We see that both kinds of Gaussian basis functions have
advantageous properties. With Hermite Gaussians, the explicit
evaluation of the primitive derivatives can be avoided and the
recursion for L̃c during the computation of (L̃aL̃b |[∂L̃c/∂Cx])
is simpler, while for the Cartesian Gaussians the HRR is
cheaper, independent of the exponents, and requires a smaller
range of intermediates. For higher Lb values, this latter prop-
erty compensates for the widening of the index ranges due to
Eq. (4), while if the differentiated function is of s type, the
direct application of Eq. (4) can be avoided similar to the Her-
mite case. In the following, we exploit that, for first derivatives,
only one of the functions has to be Hermite Gaussian to utilize
Eq. (6), and we shall investigate how calculating such mixed
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Gaussian ERIs affects the complexity of the task. The deriva-
tion of the following recurrences can be found in Subsection 1
of the Appendix.

For the A derivatives, we choose the first and second bra
functions to be a Hermite and a Cartesian Gaussian, respec-
tively, and use Eq. (25) for the bra VRR. Since the choice
for the function in the ket side is irrelevant now, we apply
Eq. (22) to gain the (l̃a0|l̃c)-type intermediates. For the l̃a → lb
translation, we need a new HRR,

(l̃a[lb+1x]|l̃c) = ([l̃a+1̃x]lb |l̃c)+XAB(l̃alb |l̃c)+
ĩa
2a

([l̃a−1̃x]lb |l̃c),

(28)
which is one term less expensive than Eq. (26). In the case of
the derivatives for B, we reverse the type of the three func-
tions and use Eqs. (21) and (22) for the (la0|lc) ERIs and then
the

(la[l̃b+1̃x]|lc) = ([la+1x]l̃b |lc)+XAB(la l̃b |lc)−
ĩb
2b

(la[l̃b−1̃x]|lc)

(29)
HRR is applied, for which the range of the necessary start-
ing intermediates is the same as for Eq. (23). The obvi-
ous choice for the C derivatives is to use the (lalb |l̃c) ERIs
since this would allow us to employ Eq. (23) for the HRR.
The appropriate recurrence to construct the (la0|l̃c)(n)-type
integrals is

(la0|[l̃c + 1̃x])(n) = −
1
2c

XPC(la0|l̃c)(n+1)

−
ia

4pc
([la − 1x]0|l̃c)(n+1)

+
ĩc

4c2
(la0|[l̃c − 1̃x])(n+1). (30)

Equation (30) is analogous to Eq. (27), but since the function
on the first center is now a Cartesian Gaussian, we can use
Eq. (23) to build up Lb. In addition to the OS methods for
Cartesian (OSCart) or Hermite (OSHerm) Gaussian ERI deriva-
tives, we will also analyze the new schemes based on these
mixed Gaussian ERIs (OSMixed) and conclude that the use of
such mixed integrals is often superior to the pure Cartesian and
always to the pure Hermite algorithms. For the case when the
derivatives of all three centers are evaluated at the same time,
we will compare the purely Cartesian Gaussian based methods
(3OSCart) with 3OSHerm,AB, 3OSMixed,AC, and 3OSMixed,BC. As

we will see, the 3OSCart,AB route is very competitive because
of the simple form of Eq. (23). The OS-based algorithms are
summarized in Table I.

C. McMurchie–Davidson method

The essence of the MD scheme for undifferentiated ERIs
is to recover Gaussian overlap distributions (Cartesian or
Hermite) from Hermite Gaussian functions, for which two-
center Hermite integrals have to be calculated first. Exploiting
the translational invariance of two-center integrals (that is,
−∂/∂Px = ∂/∂Cx), these can be expressed with one-center
ERIs as18

(l̃p |l̃c)(n) = (2p)−l̃p (2c)−l̃c ∂ l̃p+l̃c (0)(n)

∂P
ĩp
x ∂P

j̃p
y ∂P

k̃p
z ∂C ĩc

x ∂C j̃c
y ∂C k̃c

z

= (2p)−l̃p (−2c)−l̃c ∂ l̃p+l̃c (0)(n)

∂P
ĩp+ĩc
x ∂P

j̃p+j̃c
y ∂P

k̃p+k̃c
z

= (2p)−l̃p (−2c)−l̃c (l̄p + l̄c)(n). (31)

The one-center quantities on the rightmost side of
Eq. (31) can be calculated with the McMurchie–Davidson
recurrence10

(l̄c+l̄p+1̄x)(n) = XPC(l̄c+l̄p)(n+1)+(īp+īc)(l̄c+l̄p−1̄x)(n+1). (32)

This relation requires (0)(n) ERIs for dL̄p/2c + mod [L̄p, 2]
≤ n ≤ L̄p to evaluate (L̄p) integrals. From these, one
way to recover the three-center integrals is the use of the
expression55

(LaLb |L̃c)(n) = (−2c)−Lc

Ia+Ib∑
īp=0

EIa,Ib

īp

Ja+Jb∑
j̄p=0

EJa,Jb

j̄p

×

Ka+Kb∑
k̄p=0

EKa,Kb

k̄p
(l̄p + L̄c)(n), (33)

where it has been utilized that for three-center ERIs over solid
harmonic Gaussians we only have to expand the bra side since
the Hermite Gaussian in the ket side can be readily transformed
into the solid harmonic Gaussian basis. The recursive evalua-
tion of the E expansion coefficients that transform l̄p functions
into lalb products is described in Ref. 55, and the coefficients
to construct l̃a l̃b distributions from l̃p functions are presented
in Ref. 18. It is more efficient34 to use recurrences to transform

TABLE I. Serial number of the equations to be applied to calculate the necessary classes in the various
OS-based algorithms. Equation (20) is omitted since its use is common to all routes. Separate recursion denotes the
schemes where only derivatives with respect to one center are evaluated, while in the common recursion schemes,
derivatives for all the centers are calculated at the same time for a shell triplet.

Separate recursion Common recursion

OSCart,A and OSCart,B (21), (22), (23) 3OSCart,AB (21), (22), (23)
OSCart,C (21), (24), (23) 3OSCart,AC and 3OSCart,BC (21), (24), (23)
OSMixed,A (25), (22), (28) 3OSHerm,AB (25), (22), (26)
OSMixed,B (21), (22), (29) 3OSMixed,AC (25), (27), (28)
OSMixed,C (21), (30), (23) 3OSMixed,BC (21), (30), (29)
OSHerm,A and OSHerm,B (25), (22), (26)
OSHerm,C (25), (27), (26)
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the Hermite polynomials in xP to monomials in xA and xB for
Cartesian ERIs and to Hermite polynomials in xA and xB for
integrals over Hermite Gaussians. In the Cartesian case, we
work with the recursions55(

Ω
l̄p

la+1x ,lb

�� = īp
(
Ω

l̄p−1̄x

la,lb

�� + XPA
(
Ω

l̄p

la,lb

�� +
1

2p
(
Ω

l̄p+1̄x

la,lb

��, (34)

(
Ω

l̄p

la,lb+1x
�� = īp

(
Ω

l̄p−1̄x

la,lb

�� + XPB
(
Ω

l̄p

la,lb

�� +
1

2p
(
Ω

l̄p+1̄x

la,lb

�� (35)

(where the unaffected ket side of the integrals has been omitted
from the formulas), which use integrals over hybrid functions
of the form

Ω
l̄p

la,lb
= xia

Ayja
Azka

A xib
B yjb

Bzkb
B

∂ l̄p κab exp(−pr2
P)

∂P
īp
x ∂P

j̄p
y ∂P

k̄p
z

. (36)

To get integrals with an (Ω0
La,0 | bra side with Eq. (34), we need

starting integrals over Ω
l̄p
0,0 functions for 0 ≤ l̄p ≤ La.

We can also work with mixed or Hermite Gaussian inte-
grals in the MD scheme. In the case of Hermite ERIs, the
auxiliary functions have the form of

Ω
l̄p
l̃a,l̃b
=

∂ l̄p+l̃a+l̃b κab exp(−pr2
P)

(2a)l̃a∂Aĩa
x ∂Aj̃a

y ∂Ak̃a
z (2b)l̃b∂Bĩb

x ∂Bj̃b
y ∂Bk̃b

z ∂P
īp
x ∂P

j̄p
y ∂P

k̄p
z

,

(37)
and the two recurrences (see Subsection 2 of the Appendix)
are (
Ω

l̄p
l̃a+1̃x ,l̃b

�� =
1

2p
(
Ω

l̄p+1̄x

l̃a,l̃b
�� + XPA

(
Ω

l̄p
l̃a,l̃b

�� −
ĩa
2p

b
a
(
Ω

l̄p
l̃a−1̃x ,l̃b

��

+
ĩb
2p

(
Ω

l̄p
l̃a,l̃b−1̃x

�� (38)

and (
Ω

l̄p
l̃a,l̃b+1̃x

�� =
1

2p
(
Ω

l̄p+1̄x

l̃a,l̃b
�� + XPB

(
Ω

l̄p
l̃a,l̃b

�� +
ĩa
2p

(
Ω

l̄p
l̃a−1̃x ,l̃b

��

−
ĩb
2p

a
b
(
Ω

l̄p
l̃a,l̃b−1̃x

��. (39)

To calculate ERIs over Ω0
L̃a,L̃b

with Eq. (39), we need Ω
l̄p
l̃a,0

integrals for L̃a − L̃b ≤ l̃a ≤ L̃a and 0 ≤ l̄p ≤ L̃b − (L̃a − l̃a),

while the Ω
l̄p
l̃a,0

ERIs are gained by applying Eq. (38) starting

from Ωl̄o
0,0 ERIs for l̄p ≤ l̄o ≤ l̄p + l̃a. For the mixed integrals,

we use the hybrid functions

Ω
l̄p

l̃a,lb
= xib

B yjb
Bzkb

B

∂ l̄p+l̃a κab exp(−pr2
P)

(2a)l̃a∂Aĩa
x ∂Aj̃a

y ∂Ak̃a
z ∂P

īp
x ∂P

j̄p
y ∂P

k̄p
z

,

Ω
l̄p

la,l̃b
= xia

Ayja
Azka

A

∂ l̄p+l̃b κab exp(−pr2
P)

(2b)l̃b∂Bĩb
x ∂Bj̃b

y ∂Bk̃b
z ∂P

īp
x ∂P

j̄p
y ∂P

k̄p
z

(40)

and the recurrences(
Ω

l̄p
l̃a+1̃x ,lb

�� =
1

2p
(
Ω

l̄p+1̄x

l̃a,lb
�� + XPA

(
Ω

l̄p
l̃a,lb

�� −
ĩa
2p

b
a
(
Ω

l̄p
l̃a−1̃x ,lb

��, (41)

(
Ω

l̄p
l̃a,lb+1x

�� =
1

2p
(
Ω

l̄p+1̄x

l̃a,lb
�� + XPB

(
Ω

l̄p
l̃a,lb

�� + īp
(
Ω

l̄p−1̄x

l̃a,lb
��

+
ĩa
2p

(
Ω

l̄p
l̃a−1̃x ,lb

��, (42)

(
Ω

l̄p
la+1x ,l̃b

�� =
1

2p
(
Ω

l̄p+1̄x

la,l̃b
�� + XPA

(
Ω

l̄p
la,l̃b

�� + īp
(
Ω

l̄p−1̄x

la,l̃b
��

+
ĩb
2p

(
Ω

l̄p
la,l̃b−1̃x

��, (43)

(
Ω

l̄p
la,l̃b+1̃x

�� =
1

2p
(
Ω

l̄p+1̄x

la,l̃b
�� + XPB

(
Ω

l̄p
la,l̃b

�� −
ĩb
2p

a
b
(
Ω

l̄p
la,l̃b−1̃x

��. (44)

Using Eqs. (41) and (42), the index range requirements are
the same as for Eqs. (38) and (39), respectively. Reaching

Ω0
La,L̃b

ERIs with Eq. (44) demands integrals over Ω
l̄p
La,0 for

0 ≤ l̄p ≤ L̃b, while these are evaluated with Eq. (43) fromΩl̄o
0,0

for l̄p−La ≤ l̄o ≤ l̄p +La. To use Eqs. (38), (39), and (41)–(44),

we have to start from (Ω
l̄p

0,0 |l̃c) = (l̄p + l̃c) integrals; that is, the

scaling with (2p)−l̄p should be left out from Eq. (31). Also,
when all the target classes have the same L̃c, the necessary
scaling with (−2c)−L̃c can be done at the level of the Boys
functions. These newly presented equations will be mostly
useful in setting up the GHP scheme for Hermite and mixed
Gaussian integral-derivatives.

It is also possible to use the MD scheme along with
OS-type recursions. For undifferentiated Cartesian ERIs, we
concluded34 that the application of both Eq. (23) for lb and
Eq. (22) for lc enhances the performance compared to using
only Eqs. (32), (34), and (35). In this route, one first calculates
the (0)(n) ERIs with Eq. (20), applies Eq. (32) to construct

the (l̄p)(L̃c) = (Ω
l̄p

0,0 |0)(L̃c) integrals, transforms these into the

(Ω0
la,0 |0)(L̃c) = (la0|0)(L̃c) ones via Eq. (34), and then proceeds

as described for the OS method.
We will consider the following approaches within the

MD scheme: when calculating A or B derivatives, we will
produce the (la0|0)L̃c or (l̃a0|0)L̃c intermediates via the MD
recursions and then proceed as the corresponding OS scheme.
If C derivatives are needed, this is not necessarily the best
approach since it might be more efficient to increment the ket
side function with Eq. (32) rather than with the VRR, which
is more expensive now. Here we will produce the (LaLb |L̃c)
target class from (l̄p |L̃c) by either directly with Eqs. (34) and
(35) (MDMixed,C1) or using Eq. (34) for (la0|L̃c) ERIs and then
Eq. (23) (MDMixed,C2), or we apply Eq. (34) for the (la0|0)(n)

classes followed by Eqs. (30) and (23) (MDMixed,C3). Only the
mixed Gaussian scheme is considered since transforming L̃c

into Lc does not offer any advantage. When we wish to evalu-
ate the derivatives with respect to all three centers at the same
time, we will only investigate the scheme applying the OS
VRR for the ket side since in the majority of the above men-
tioned cases (that is, differentiating with respect to a single
center) this turned out to be the most efficient choice. In these
cases, we can also utilize the approach of Helgaker and Tay-
lor11 (further denoted as 3MDPR). Here we produce derivatives
with respect to P and RAB using the equations

∂(LaLb |L̃c)(n)

∂Px
= κab(−2c)−L̃c

Ia+Ib∑
īp=0

EIa,Ib

īp

Ja+Jb∑
j̄p=0

EJa,Jb

j̄p

×

Ka+Kb∑
k̄p=0

EKa,Kb

k̄p
(l̄p + 1̄x + L̄c)(n) (45)



124101-8 G. Samu and M. Kállay J. Chem. Phys. 149, 124101 (2018)

and, with ∂EIa,Ib

īp
≡ ∂(κabEIa,Ib

īp
)/∂XAB,

∂(LaLb |L̃c)(n)

∂XAB
= (−2c)−L̃c

Ia+Ib∑
īp=0

∂EIa,Ib

īp

Ja+Jb∑
j̄p=0

EJa,Jb

j̄p

×

Ka+Kb∑
k̄p=0

EKa,Kb

k̄p
(l̄p + L̄c)(n). (46)

The advantage of this scheme is that the summation limits
remain the same as for undifferentiated ERIs. Note that using
Eqs. (45) and (46), one should omit κab from Eq. (20). The
evaluation of the differentiated E coefficients is explained in
Ref. 11. The A and B derivatives are then recovered by the
expressions

∂

∂Ax
=

a
p

∂

∂Px
+

∂

∂XAB
(47)

and
∂

∂Bx
=

∂

∂Px
−

∂

∂Ax
. (48)

The derivatives with respect to C are trivially obtained by
the translational invariance, ∂/∂Cx = −∂/∂Px. The considered
routes are summarized in Table II. For the 3MD algorithms
where C is differentiated, Cart or Mixed refers to the bra-side
functions, while L̃c is always a Hermite Gaussian.

D. Gill–Head-Gordon–Pople algorithm

Here we will investigate the method of Gill, Head-Gordon,
and Pople14 for three-center ERI derivatives with Cartesian,
Hermite, and mixed Gaussian integrals. The basis of the algo-
rithm for Cartesian ERIs is that Eqs. (34) and (35) can be
applied to contracted integrals if we work with the scaled
hybrid ERIs (

Ω
l̄p

la,lb

��λ,β,ζ =
(2a)λ(2b)β

(2p)ζ
(
Ω

l̄p

la,lb

��. (49)

With XPA = −b/pXAB, we can recast Eq. (34) as(
Ω

l̄p

la+1x ,lb

��λ,β,ζ = īp
(
Ω

l̄p−1̄x

la,lb

��λ,β,ζ − XAB
(
Ω

l̄p

la,lb

��λ,β+1,ζ+1

+
(
Ω

l̄p+1̄x

la,lb

��λ,β,ζ+1, (50)

which is now not explicitly dependent on the Gaussian
exponents. Similarly, since XPB = a/pXAB, Eq. (35) becomes(

Ω
l̄p

la,lb+1x
��λ,β,ζ = īp

(
Ω

l̄p−1̄x

la,lb

��λ,β,ζ + XAB
(
Ω

l̄p

la,lb

��λ+1,β,ζ+1

+
(
Ω

l̄p+1̄x

la,lb

��λ,β,ζ+1. (51)

Thus the strategy is to first calculate (l̄p + L̄c) integrals using
Eq. (32), perform the necessary scalings according to Eq. (49)
to produce all the λ, β, ζ-scaled classes of these ERIs that
are going to be required by Eqs. (50) and (51), perform the
primitive contraction on these scaled classes, and then apply
Eqs. (50) and (51) to build up la and lb, respectively. We
refrain from presenting the necessary index ranges for the
intermediates here since the presence of the scaling indices
makes them quite complicated. The reader can find these index
ranges in the supplementary material. At the contracted level,
we can work in two directions: in GHPCart,1, we build up la

and lb by using Eqs. (50) and (51), respectively, while the
GHPCart,2 scheme uses Eq. (50) to construct the appropriate
(Ω0

la,0 |L̃c)λ,β,ζ intermediates for Eq. (23). The target classes are

([La + 1x]Lb |L̃c)1,0,0 and ([La −1x]Lb |L̃c)0,0,0 for the A deriva-
tives and (La[Lb + 1x]|L̃c)0,1,0 and (La[Lb − 1x]|L̃c)0,0,0 for the
B derivatives. For the same reason as in MD, we will only con-
sider mixed ERI based schemes for the C derivatives, where
Eqs. (50) and (51) are employed to build up (LaLb |L̃c + 1̃x)0,0,0.
Also, in the 3GHP algorithms where C is differentiated, the
function on C will always be a Hermite Gaussian, and the
3GHPCart and 3GHPMixed notations will refer to the functions
in the bra side.

If we wish to work with Hermite integrals, we have to
rewrite Eqs. (38) and (39) as we did so with Eqs. (34) and (35).
That is, when a term is multiplied by 2a, 2b, or (2p)−1, index
λ, β, or ζ , respectively, is incremented by one. The resulting
equations are(
Ω

l̄p
l̃a+1̃x ,l̃b

��λ,β,ζ =
(
Ω

l̄p+1̄x

l̃a,l̃b
��λ,β,ζ+1 − XAB

(
Ω

l̄p
l̃a,l̃b

��λ,β+1,ζ+1

− ĩa
(
Ω

l̄p
l̃a−1̃x ,l̃b

��λ−1,β+1,ζ+1 + ĩb
(
Ω

l̄p
l̃a,l̃b−1̃x

��λ,β,ζ+1

(52)

and(
Ω

l̄p
l̃a,l̃b+1̃x

��λ,β,ζ =
(
Ω

l̄p+1̄x

l̃a,l̃b
��λ,β,ζ+1 + XAB

(
Ω

l̄p
l̃a,l̃b

��λ+1,β,ζ+1

+ ĩa
(
Ω

l̄p
l̃a−1̃x ,l̃b

��λ,β,ζ+1 − ĩb
(
Ω

l̄p
l̃a,l̃b−1̃x

��λ+1,β−1,ζ+1.

(53)

Transforming Eq. (26) the same way, we get(
Ω

0
l̃a,l̃b+1̃x

��λ,β,ζ =
(
Ω

0
l̃a+1̃x ,l̃b

��λ,β,ζ + XAB
(
Ω

0
l̃a,l̃b

��λ,β,ζ

+ ĩa
(
Ω

0
l̃a−1̃x ,l̃b

��λ−1,β,ζ − ĩb
(
Ω

0
l̃a,l̃b−1̃x

��λ,β−1,ζ .

(54)

TABLE II. Serial numbers of the equations to be applied to calculate the necessary classes in the various MD-
based algorithms. Equations (20) and (32) are omitted since all the schemes start with the use of these relations.
See also the caption of Table I.

Separate recursion Common recursion

MDCart,A and MDCart,B (34), (22), (23) 3MDCart,AB (34), (22), (23)
MDMixed,A (41), (22), (28) 3MDCart,AC and 3MDCart,BC (34), (24), (23)
MDMixed,B (34), (22), (29) 3MDHerm,AB (41), (22), (26)
MDMixed,C1 (34), (35) 3MDMixed,AC (41), (27), (28)
MDMixed,C2 (34), (23) 3MDMixed,BC (34), (30), (29)
MDMixed,C3 (34), (30), (23) 3MDPR (45), (46)

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-012836
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We will use these equations for the 3GHPHerm,AB schemes. In
3GHPHerm,AB1, l̃a and l̃b are built up by using Eqs. (52) and
(53), respectively, while in 3GHPHerm,AB2, Eq. (54) is applied
to increment l̃b.

To employ mixed integrals for A derivatives, we transform
Eqs. (41) and (42), respectively, as(

Ω
l̄p
l̃a+1̃x ,lb

��λ,β,ζ =
(
Ω

l̄p+1̄x

l̃a,lb
��λ,β,ζ+1 − XAB

(
Ω

l̄p
l̃a,lb

��λ,β+1,ζ+1

− ĩa
(
Ω

l̄p
l̃a−1̃x ,lb

��λ−1,β+1,ζ+1 (55)

and(
Ω

l̄p
l̃a,lb+1x

��λ,β,ζ =
(
Ω

l̄p+1̄x

l̃a,lb
��λ,β,ζ+1 + XAB

(
Ω

l̄p
l̃a,lb

��λ+1,β,ζ+1

+ ĩa
(
Ω

l̄p
l̃a−1̃x ,lb

��λ,β,ζ+1 + īp
(
Ω

l̄p−1̄x

l̃a,lb
��λ,β,ζ , (56)

and also Eq. (28) as(
Ω

0
l̃a,lb+1x

��λ,β,ζ =
(
Ω

0
l̃a+1̃x ,lb

��λ,β,ζ + XAB
(
Ω

0
l̃a,lb

��λ,β,ζ

+ ĩa
(
Ω

0
l̃a−1̃x ,lb

��λ−1,β,ζ . (57)

In the GHPMixed,A algorithms, Eq. (55) is exploited to build
up l̃a, while to lb, we apply Eqs. (56) and (57) in GHPMixed,A1

and GHPMixed,A2, respectively. For B derivatives, Eqs. (43) and
(44) are rewritten, respectively, as(
Ω

l̄p
la+1x ,l̃b

��λ,β,ζ =
(
Ω

l̄p+1̄x

la,l̃b
��λ,β,ζ+1 − XAB

(
Ω

l̄p
la,l̃b

��λ,β+1,ζ+1

+ ĩb
(
Ω

l̄p
la,l̃b−1̃x

��λ,β,ζ+1 + īp
(
Ω

l̄p−1̄x

la,l̃b
��λ,β,ζ (58)

and (
Ω

l̄p
la,l̃b+1̃x

��λ,β,ζ =
(
Ω

l̄p+1̄x

la,l̃b
��λ,β,ζ+1 + XAB

(
Ω

l̄p
la,l̃b

��λ+1,β,ζ+1

− ĩb
(
Ω

l̄p
la,l̃b−1̃x

��λ+1,β−1,ζ+1, (59)

while Eq. (29) is recast as(
Ω

0
la,l̃b+1̃x

��λ,β,ζ =
(
Ω

0
la+1x ,l̃b

��λ,β,ζ + XAB
(
Ω

0
la,l̃b

��λ,β,ζ

− ib
(
Ω

0
la,l̃b−1̃x

��λ,β−1,ζ . (60)

Equation (58) is utilized for la in the GHPMixed,B schemes,
and l̃b is built up by Eqs. (59) and (60) in GHPMixed,B1

and GHPMixed,B2, respectively. The considered GHP-based
schemes are given in Table III.

E. Rys quadrature

From the above discussed recursive methods, it follows
that ERIs can be written as a linear combination of Boys
functions and thus can be expressed as

(LaLb |Lc) =
La+Lb+Lc∑

r=0

ZrFr(αR2
PC)

=

1∫
0

La+Lb+Lc∑
r=0

Zr t2r exp(−αR2
PCt2)dt, (61)

where the Zr coefficients can be obtained, for example, by
backtracking the OS recursions until the ERI is expanded
only in Boys functions. Since this expression is an integral
over a polynomial f (t2) =

∑La+Lb+Lc
r=0 Zr t2r multiplied by the

weight function exp(−αR2
PCt2), it can be evaluated by the Rys

quadrature6,55 with the expression

∫ 1

0
f (t2) exp(−αR2

PCt2)dt =
Nrts∑
r=1

f (t2
r )ωr(αR2

PC, t2
r ), (62)

with N rts > d(La + Lb + Lc)/2c, tr is the rth positive root of
the (2N rts)th Rys polynomial4 in t, and ωr is the weight fac-
tor of the quadrature associated with t2

r . f (t2
r ) can be written

as

f (t2
r ) = 2

(α
π

)1/2
Θ

Ia,Ib,Ic
x (t2

r )ΘJa,Jb,Jc
y (t2

r )ΘKa,Kb,Kc
z (t2

r ), (63)

where ΘIa,Ib,Ic
x (t2

r ) is a two-dimensional (2D) integral with
respect to the x coordinates of the two electrons.5 These 2D
integrals can be computed recursively.55 If we use Θ0,0,0

x (t2
r )

= Θ
0,0,0
y (t2

r ) = 1 and Θ0,0,0
z (t2

r ) = θpcκabωr(αR2
PC, t2

r ) as the
starting values for the recursion, the final working equation
becomes∫ 1

0
f (t2) exp(−αR2

PCt2)dt

=

Nrts∑
r=1

Θ
Ia,Ib,Ic
x (t2

r )ΘJa,Jb,Jc
y (t2

r )ΘKa,Kb,Kc
z (t2

r ). (64)

TABLE III. Serial numbers of the equations to be applied to calculate the necessary classes in the various GHP-
based algorithms. Equations (20) and (32) are omitted since all the schemes start with the use of these relations.
See also the caption of Table I.

Separate recursion Common recursion

GHPCart,A1, GHPCart,B1, 3GHPCart,AB1, 3GHPCart,AC1,
and GHPMixed,C1 (50), (51) and 3GHPCart,BC1 (50), (51)
GHPCart,A2, GHPCart,B2, 3GHPCart,AC2, 3GHPCart,AC2,
and GHPMixed,C2 (50), (23) and 3GHPCart,BC2 (50), (23)
GHPMixed,A1 (55), (56) 3GHPHerm,AB1 (52), (53)
GHPMixed,A2 (55), (57) 3GHPMixed,AC1 (55), (56)
GHPMixed,B1 (58), (59) 3GHPMixed,BC1 (58), (59)
GHPMixed,B2 (58), (60) 3GHPHerm,AB2 (52), (54)

3GHPMixed,AC2 (55), (57)
3GHPMixed,BC2 (58), (60)
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To calculate the integral-derivatives, we consider two
options. The first one is to evaluate the undifferentiated ERIs
necessary for the direct construction of the derivatives by either
Eq. (4) or Eq. (6). In our earlier investigation of the algorithm
for ERIs,34 we concluded that it is always more advantageous
to calculate only the (la0|0)(n) classes with the quadrature and
proceed with OS recursions thereafter. For this, the 2D inte-
grals Θia,0,0

x (and their y and z counterparts) for 0 ≤ ia ≤ La

+ 1 have to be evaluated. For brevity, in this subsection, we
present the recursions for the Cartesian, Hermite, and mixed
Gaussian 2D ERIs in a single equation because of their very
similar form. The necessary recursion here is (see Subsection 3
of the Appendix)

Θ
ia+1,0,0
x (t2

r ) =
(
XPA −

α

p
XPCt2

r

)
Θ

ia,0,0
x (t2

r )

+
ia
2p

(
wba −

α

p
t2
r

)
Θ

ia−1,0,0
x (t2

r ), (65)

where wba = −b/a when the function centered on A is a Her-
mite Gaussian and 1 otherwise. From these, we can compute
(la0|0)(n) by using Eq. (64), but note that each term in the
summation has to be multiplied by t2n

r for these classes.34

When we can use Eq. (22), this is easily accounted for
by starting the recursion for the z direction from Θ0,0,0

z (t2
r )

= θpcκabωr(αR2
PC, t2

r )t2Lc
r . When C is differentiated, we have,

however, more than one n values to consider due to the fact that
Eq. (24) or Eq. (27) have to be used. Here we have to apply34

the more expensive assembly∫ 1

0
f (t2) exp(−αR2

PCt2)t2ndt

=

Nrts∑
r=1

Θ
Ia,Ib,Ic
x (t2

r )ΘJa,Jb,Jc
y (t2

r )ΘKa,Kb,Kc
z (t2

r )t2n
r . (66)

Thus in these cases, we will also inspect the schemes where
Eq. (64) is used to construct the target ERIs and also when the
(la0|lc) integrals are calculated by it. The 2D recurrence for
incrementing ic is (see Subsection 3 of the Appendix)

Θ
ia,0,ic+1
x (t2

r ) =
α

c
XPCt2

rΘ
ia,0,ic
x (t2

r ) +
iat2

r

2(p + c)
Θ

ia−1,0,ic
x (t2

r )

+
ic
2c

(wc −
αt2

r

c
)Θia,0,ic−1

x (t2
r ), (67)

where wc = 1 if the function on C is a Cartesian and 0 if a
Hermite Gaussian. Finally, for ib, we use

Θ
ia,ib+1,ic
x (t2

r ) = Θia+1,ib,ic
x (t2

r ) + XABΘ
ia,ib,ic
x (t2

r )

+ wa
ia
2a
Θ

ia−1,ib,ic
x (t2

r ) − wb
ib
2b
Θ

ia,ib−1,ic
x (t2

r ),

(68)

where wa = 1 if the A function is a Hermite and 0 if a Cartesian
Gaussian, and analogously for wb. As for the MD and GHP
methods, there are no advantages the Cartesian Gaussian ERIs
offer for calculating C derivatives compared to the mixed inte-
grals; hence, in these cases, only the mixed algorithms will be
characterized. Similar to the MD schemes, it turns out that
the route applying Eq. (66) and then the HRR and VRR equa-
tions appropriate for the applied Gaussians is the most efficient

choice for the C derivatives; hence, only this method will be
investigated for the 3RYS algorithms.

The other option is the approach of Flocke and Lotrich,9

where the 2D integrals are differentiated, and Eq. (64) directly
produces the differentiated ERIs,

∂

∂Ax

∫ 1

0
f (t2) exp(−αR2

PCt2)dt

=

Nrts∑
r=1

∂ΘIa,Ib,Ic
x (t2

r )
∂Ax

Θ
Ja,Jb,Jc
y (t2

r )ΘKa,Kb,Kc
z (t2

r ). (69)

This scheme will be further referred to as RYS2D (e.g.,
RYSCart,A2D when we use Cartesian Gaussians and differen-
tiate La). Since the nuclear coordinate dependent parts of the
2D integrals are the x, y, or z components of the Cartesian or
Hermite Gaussian basis functions, they follow the differentia-
tion rule of Eq. (4) or Eq. (6). Concerning the methods for the
calculation of the roots of the Rys polynomials and the weight
factors, we refer to other work,4,9,57 but we note that the asso-
ciated computational cost is of the same magnitude as that
for the Boys function evaluations with the other algorithms.
The discussed schemes are summarized in Table IV, with the
exception of the RYS2D schemes: these algorithms always cal-
culate the 2D integrals with Eqs. (65), (67), and (68), compute
their derivatives, and then apply Eq. (69).

F. Algorithmic considerations

The contraction of the primitive functions for a shell triplet
is performed inside a nested loop structure by paying specific
attention to the treatment of uncontracted AOs and the use of
cache-friendly buffer arrays. For a detailed description, please
see our previous work.34

The main algorithmic difference between the approaches
based on Cartesian and Hermite Gaussians for the OS, MD,
and RYS methods is the applicability of the HRR at the con-
tracted level. The fact that Eq. (23) does not depend on any
Gaussian exponents is an obvious advantage of the Cartesian
Gaussians. However, for the (L̃aL̃b | and (L̃aLb | bra sides with
Lb = 1 and for the (LaL̃b | ones with Lb = 2, only one of the

TABLE IV. Serial numbers of the equations to be applied to calculate the
necessary classes in the various Rys-based algorithms. See also the caption of
Table I.

Separate recursion

RYSCart,A and RYSCart,B (65), (64), (22), (23)
RYSMixed,A (65), (64), (22), (28)
RYSMixed,B (65), (64), (22), (29)
RYSMixed,C1 (65), (67), (68), (66)
RYSMixed,C2 (65), (67), (66), (23)
RYSMixed,C3 (65), (66), (30), (23)

Common recursion

3RYSCart,AB (65), (64), (22), (23)
3RYSHerm,AB (65), (64), (22), (26)
3RYSCart,AC and 3RYSCart,BC (65), (66), (24), (23)
3RYSMixed,AC (65), (66), (30), (28)
3RYSMixed,BC (65), (66), (30), (29)
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classes in the HRR recursion tree will be multiplied by a fac-
tor with an exponent, that is, ([L̃a − 1x]0|L̃c) using Eqs. (26)
and (28) and (La0|L̃c) using Eq. (29). If these classes are
multiplied by their respective exponent dependent factors at
the primitive level, the HRR can be performed on the con-
tracted basis in these cases. We note this because AOs with
angular momenta greater than 2 are rarely contracted. While
working with contracted integrals generally lowers the FLOP
count, performing the operations at the primitive level is usu-
ally more cache friendly. The reason for this, as we concluded
for ERIs,34 is that most cache misses, that is, events where
the referenced memory address is not represented in the cache
memory of the central processing unit (CPU), happen during
the reading or writing of large arrays that store the partially
and fully contracted integrals. The calculation steps which are
performed inside the primitive loops use the same small and
fixed length arrays for every exponent triplet, while, at the
contracted level, the data have to be read from and written into
arrays that store all the classes for a shell triplet. The size of
these arrays and thus the number of cache misses34 can be
reduced by applying the spherical harmonic transformation at
the primitive level. Such algorithms are especially advanta-
geous when prescreening is applied for the evaluation of the
primitive classes, which can greatly reduce the actual work
performed inside the primitive loops. We also note that the
HRR work can be reduced in the cases when we evaluate B
derivatives for La = Lb shell triplets by switching the two func-
tions in the bra and then proceeding by differentiating the first
function.

For the prescreening of significant ERI derivative batches,
we consider two approaches. A straightforward strategy is
to apply the Cauchy–Schwarz inequality, which, for exam-
ple, for the first derivative of the first function, is written
as43

���
( ∂la
∂Ax

lb |lc
) ��� ≤

√
���
( ∂la
∂Ax

lb |
∂la
∂Ax

lb
) ���
√
|(lc |lc)|. (70)

The calculation of the second derivatives appearing in Eq. (70)
is a challenging task, and the efficiency of evaluating the quan-
tities necessary for prescreening becomes important, espe-
cially when the three-center derivative integral list is only
computed once for a given geometry. We can reduce the cost
of this type of prescreening if we use Eq. (70) to determine the
upper bounds for primitive ERI derivatives instead of deriva-
tives of ERIs over AOs and multiply these with the maximal
contraction coefficients and contraction degrees belonging to
the primitives in question. A batch of AOs are then screened
out using the largest of the associated primitive bounds. This
method has the advantage that the calculation of the required
second derivative integrals scales with the second power of the
number of primitive functions, which would be fourth power
if we aimed to give upper bounds for AO ERI derivatives.
Furthermore, RPQ becomes 0 in these cases, which makes the
Boys functions trivial to calculate.55 An MD based calcula-
tion is even more simplified since the one-center ERIs given
by Eq. (32) reduce to

(l̄p) = (īp − 1)!!(j̄p − 1)!!(k̄p − 1)!!κ2
abθ

2
pp(−p)lp/2Flp/2(0) (71)

for the cases when īp, j̄p, and k̄p (and therefore also l̄p) all
have even parity, otherwise (l̄p) = 0. This reduces the cost of
an assembly of the type of Eq. (33). It is also advantageous
to use Hermite Gaussians to evaluate the second derivatives.
Note that for the application of Eq. (10) we only need to calcu-
late the cases where l̃a and l̃b denote the same solid harmonic
or differentiated solid harmonic Gaussians in the bra and the
ket. In addition to screening entire AO batches, the calculated
primitive bounds are readily used to screen the evaluation of
primitive integral-derivatives. In the following, we will refer
to this prescreening scheme as C–S when it is only applied
to screen shell triplets, and when primitive ERI derivatives
are also screened, the notation will be C–S prim. We note
that in a scheme where we compute all the derivatives of a
shell triplet at the same time, we can use Eq. (70) to see if
the derivatives with respect to all three centers will be sig-
nificant. If not, a less expensive algorithm computing only the
derivatives with respect to a single center can be applied, along
with Eq. (18). We will not pursue this approach in the present
work.

Another option we could use for the prescreening is to
work with the assumption that

|(lalb |lc)| ≤ |(ss|s)|. (72)

For three-center ERIs, we concluded that this approxima-
tion results in an efficient bound with satisfactory accuracy.34

From Eq. (4), we can write for the derivatives of the first
function

���
∂

∂Ax
(lalb |lc)��� ≤ |[2max(a, b, c) + max(la, lb, lc)](ss|s)| (73)

and use this for the screening of AO batches and primitive ERI
derivatives as well. The screening method using this approx-
imate bound will be denoted as sss and sss prim. We will
analyze the efficiency of both methods and the error introduced
by this latter screening strategy.

It is not trivial to decide at what stage of the algorithms
the spherical harmonic transformations and the construction of
the derivatives should be carried out. The spherical harmonic
transformations reduce the number of components for further
operations, but their own costs also depend on what number of
intermediates they are performed on. Constructing the deriva-
tives of a Hermite Gaussian function with angular momentum
L̃ with Eq. (10) always increases the number of the inter-
mediates compared to the L̃ + 1̃x shell, which is required for
this operation. This is not necessary true for Cartesian Gaus-
sians because applying Eq. (4) and then Eq. (9) decreases the
number of components compared to the sum of the compo-
nents in the L + 1x and L − 1x shells if L > 3. The possible
stages where these transformations can be performed also vary
from scheme to scheme. For example, in a GHPCart,A1 algo-
rithm, if we first build up La with Eq. (50) and then Lb with
Eq. (51), we can perform both the differentiation and the solid
harmonic transformation of La after using Eq. (50). With a
GHPMixed,A1 scheme, where Eqs. (55) and (56) are used, we
do not have this option since Eq. (56) depends on l̃a. Note
also that, when Cartesian Gaussian derivatives are calculated
with an algorithm employing Eq. (23), moving the HRR out-
side of the primitive loops makes it impossible to use common
intermediates for the buildup of the two classes that appear in
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Eq. (4) since the intermediates for the term with the increased
angular momentum have to be multiplied by an exponent-
dependent factor before the contraction. These considera-
tions make it very complicated to say which order of oper-
ations will be the most preferable for a given algorithm. The
most efficient positions for the various computational steps
were thus determined by calculating floating point operation
counts.

III. FLOATING POINT OPERATION COUNTS

To decide which of the various discussed methods is the
most beneficial, we performed a preliminary FLOP counting.
The required number of FLOPs for the considered schemes
were compared by estimating the necessary number of oper-
ations for the evaluation of the derivatives with respect to the
coordinates of the three centers for shell triplets up to (hh|i).
For this purpose, a simple program was developed that counts
the FLOPs for a model system of three separate carbon atoms,
with Dunning’s58 correlation consistent cc-pVXZ (X = D, T,
Q, 5) basis sets (XZ for short) for the bra side and the corre-
sponding auxiliary basis sets of Weigend59 (cc-pVXZ-RI) for
the ket side. The considered computational steps include the
evaluation of the two- and three-center auxiliary quantities,
the buildup of the primitive Gaussian ERIs, the construction
of derivatives for Cartesian integrals by Eq. (4), and the trans-
formation into the solid harmonic and contracted bases. The
sparsity of the last two transformations was taken into con-
sideration. We refrained from the estimation of the cost of
the Boys function and Rys root evaluations since both depend
heavily on the geometry of the system. For the same reason,
we also did not consider the effect of primitive prescreening.
The program counts the FLOP requirements for every possi-
ble route which can be derived by varying the order of the
operations that can be performed at different parts of the algo-
rithms. The spherical harmonic transformation of La, Lb, or
Lc can be carried out at any place where no more operations
depend on la, lb, or lc, respectively. For the derivatives, Eq. (4)
or Eq. (10) can be applied after there is no more dependence
on the shell to be differentiated for any recursion, even at the
contracted level if the multiplication with the double of the
exponent is performed before the contraction. Equation (23)
can be carried out anywhere after the (la0|Lc) intermediates
have been produced. As explained in Sec. II F, the same is
possible for Eqs. (26) and (28) with L̃b = 1 and for Eq. (29)
with Lb ≤ 2. For the MD1 and GHP1 type schemes, the order
in which the bra-side angular momenta are built up is also
arbitrary. For the GHP schemes, we only considered routes
where at least one of the bra-side recursions is performed at the
contracted level since, when both angular momenta are con-
structed in the primitive basis, the scheme is equal to an MD
algorithm. The VRR equations, the one-center recursion of the
MD and GHP schemes, and the 2D recursions and the quadra-
ture assembly of the Rys method are executed at the primitive
level.

Tables V–VIII display the FLOP counts for the various
schemes. The numbers for each shell triplet with the best order
of the computational steps are presented in the supplemen-
tary material, and the conclusions regarding the efficiency of

TABLE V. FLOP counts for the various OS-based algorithms with the
cc-pVXZ (X = D, T, Q, 5) basis sets.

X

Algorithm D T Q 5

OSCart,A 834 039 3 586 356 19 552 557 90 066 913
OSCart,B 878 444 3 774 088 20 114 653 90 629 426
OSCart,C 963 485 4 685 749 28 813 487 145 680 780
OSHerm,A 781 668 3 397 430 19 121 889 91 472 513
OSHerm,B 904 647 4 135 692 23 578 592 111 565 131
OSHerm,C 793 992 3 960 789 24 936 806 130 619 870
OSMixed,A 778 308 3 333 764 18 431 265 86 727 029
OSMixed,B 858 221 3 691 859 19 875 872 90 166 857
OSMixed,C 749 055 3 445 287 20 089 055 98 798 104
3OSCart,AB 1 331 840 5 712 048 30 371 707 136 326 843
3OSCart,AC 1 782 179 8 575 091 51 458 794 253 017 583
3OSCart,BC 1 914 024 9 009 709 52 763 347 255 133 654
3OSHerm,AB 1 419 613 6 213 209 33 738 005 154 821 887
3OSMixed,AC 1 508 292 7 288 759 43 730 208 217 161 994
3OSMixed,BC 1 628 374 7 579 886 43 448 054 207 249 588

the methods for different angular momenta will rely on these
results.

Table V contains the FLOP requirements of the OS-based
algorithms. Here, using the mixed Gaussian integrals for each
shell triplet reduces the FLOP count by 7%-4% for the A
derivatives, 2%-1% for the B derivatives, and 22%-32% for the
C derivatives for the DZ-5Z basis sets compared to applying
only the OSCart schemes. These savings are 1%-5%, 5%-19%,
and 6%-24%, respectively, compared to the case when we only
use the OSHerm algorithms. As Lb increases, the simplicity
of Eq. (23) compensates for the extra work required for the
shell triplet with the decreased angular momentum stemming
from the last term of Eq. (4). Generally, when Lb ≥ 3, OSCart

becomes the best choice for A and B derivatives. In the latter
case, the Lb that we have to build up is increased by one, but
Eq. (29) is also more efficient than Eq. (28) since it requires
fewer intermediates. For C derivatives, OSMixed,C is always the

TABLE VI. FLOP counts for the various MD-based algorithms with the
cc-pVXZ (X = D, T, Q, 5) basis sets.

X

Algorithm D T Q 5

MDCart,A 916 213 4 043 754 21 895 647 100 400 942
MDCart,B 958 288 4 218 790 22 394 767 100 711 632
MDMixed,A 865 972 3 827 843 21 051 221 98 842 722
MDMixed,B 941 824 4 146 520 22 178 126 100 298 776
MDMixed,C1 909 103 5 157 925 35 351 909 197 374 785
MDMixed,C2 842 553 4 521 333 28 852 865 150 054 265
MDMixed,C3 787 388 3 780 076 22 521 838 111 879 063
3MDCart,AB 1 413 790 6 166 368 32 693 989 146 570 332
3MDCart,AC 2 032 851 9 988 407 59 788 722 293 139 967
3MDCart,BC 2 160 810 10 406 048 61 017 238 294 977 623
3MDHerm,AB 1 511 629 6 721 972 36 405 233 167 086 412
3MDMixed,AC 1 721 805 8 452 087 50 373 647 249 640 343
3MDMixed,BC 1 825 007 8 630 926 49 302 884 234 896 789
3MDPR 3 111 352 19 451 574 142 582 639 848 103 741

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-012836
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-012836
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TABLE VII. FLOP counts for the various GHP-based algorithms with the
cc-pVXZ (X = D, T, Q, 5) basis sets.

X

Algorithm D T Q 5

GHPCart,A1 893 738 5 206 588 34 696 058 181 827 684
GHPCart,A2 886 662 4 718 681 28 260 468 136 426 246
GHPCart,B1 932 694 5 488 016 37 012 933 195 655 585
GHPCart,B2 944 946 4 993 045 29 474 616 140 521 684
GHPMixed,A1 841 451 4 782 519 31 904 972 168 362 436
GHPMixed,A2 847 333 4 577 449 28 616 778 143 174 999
GHPMixed,B1 909 815 5 259 732 35 075 833 183 173 164
GHPMixed,B2 939 050 5 002 224 29 675 460 142 225 345
GHPMixed,C1 662 485 4 118 817 30 732 628 178 382 077
GHPMixed,C2 671 760 3 855 113 25 984 570 138 067 909
3GHPCart,AB1 1 380 773 8 382 919 55 370 303 288 455 800
3GHPCart,AB2 1 605 952 8 784 298 54 930 312 280 549 055
3GHPCart,AC1 1 343 819 8 593 244 60 728 861 332 513 082
3GHPCart,AC2 1 353 354 8 067 045 52 558 001 267 957 804
3GHPCart,BC1 1 383 307 8 878 565 62 975 698 342 948 786
3GHPCart,BC2 1 467 546 8 511 933 54 385 447 273 898 475
3GHPHerm,AB1 1 297 987 8 213 273 57 886 000 318 368 393
3GHPHerm,AB2 1 573 955 8 192 973 49 124 752 242 974 909
3GHPMixed,AC1 1 298 470 8 393 091 61 268 253 344 809 058
3GHPMixed,AC2 1 314 025 7 925 813 52 946 831 275 481 605
3GHPMixed,BC1 1 365 938 8 882 016 64 397 121 357 490 370
3GHPMixed,BC2 1 466 426 8 502 294 54 433 543 275 552 831

best choice. The FLOP counts using mixed integrals for differ-
entiating with respect to one center are nearly optimal; that is,
they are on average about 1% higher than the counts resulting
from the best suited Gaussian combination (OSCart, OSHerm,
or OSMixed) for every shell triplet. The most efficient way of
evaluating all three nuclear derivatives is 3OSCart,AB. Here we
only have one Lc to build up, so there are more common

TABLE VIII. FLOP counts for the various Rys-based algorithms with the
cc-pVXZ (X = D, T, Q, 5) basis sets.

X

Algorithm D T Q 5

RYSCart,A 909 536 3 821 275 20 459 245 93 163 062
RYSCart,A2D 1 584 986 7 524 841 46 468 848 242 012 893
RYSCart,B 953 406 4 002 579 20 982 691 93 546 498
RYSCart,B2D 1 618 478 7 631 728 46 915 887 243 064 918
RYSMixed,A 847 432 3 543 792 19 249 913 89 536 499
RYSMixed,A2D 1 562 392 7 428 420 46 092 369 240 372 510
RYSMixed,B 932 616 3 918 769 20 740 050 93 074 206
RYSMixed,B2D 1 622 394 7 643 554 46 907 993 242 640 950
RYSMixed,C1 1 107 643 4 917 716 27 808 428 135 735 251
RYSMixed,C2 990 588 4 423 282 24 829 490 118 200 624
RYSMixed,C3 839 702 3 841 094 22 218 908 108 540 338
RYSMixed,C2D 2 091 075 9 351 259 54 608 020 274 107 117
3RYSCart,AB 1 409 731 5 954 407 31 297 787 139 483 332
3RYSCart,AC 2 060 190 9 785 375 57 785 166 281 094 275
3RYSCart,BC 2 193 980 10 211 841 58 993 050 282 670 260
3RYSHerm,AB 1 497 616 6 457 450 34 677 023 158 057 580
3RYSMixed,AC 1 721 569 8 170 373 48 084 554 235 930 334
3RYSMixed,BC 1 857 226 8 509 113 47 938 028 226 251 462

intermediates for Eq. (23) that are shared among the differ-
ent required shell triplets than in the 3OSCart,AC and 3OSCart,BC

cases. The ket side VRR is also cheaper, while the HRR is
more efficient than for 3OSHerm,AB. Applying the 3OSCart,AB

scheme requires 12%-20% fewer FLOPs for calculating all the
derivatives for each shell triplet in the DZ-5Z basis sets than
for evaluating the derivatives with respect to the two cheapest
centers separately and recovering the third one via Eq. (18).

The results for the MD algorithms are presented in
Table VI. The conclusions for the schemes are very sim-
ilar to those for OS. For the C derivatives of the shell
triplets with small bra angular momenta and high L̃c, the
MDMixed,C2 scheme demands the fewest FLOPs; however,
using MDMixed,C3 for every shell triplet only results in 3%-1%
increase in the cost. The 3MDPR algorithm is only competitive
in the (ss|s) case.

The FLOP counts of the investigated GHP paths are dis-
played in Table VII. With the GHP schemes, the use of the
best Gaussian type results in 6%-3% and 3%-1% (0%-7% and
0%-2%) lower FLOP requirements than using only Cartesian
Gaussian (mixed Gaussian) integrals for the A and B deriva-
tives, respectively. Applying only GHP1-type schemes costs
2%-21%, 2%-24%, and 1%-23% more than using the best
route for the A, B, and C derivatives, respectively. For GHP2,
these values are 2%-0%, 4%-1%, and 2%-0%. As Lb or L̃b

increases, the application of the HRR becomes more favored
since it requires fewer kinds of λ, β, ζ-scaled intermediates
than the GHP recursions. Cartesian Gaussians are preferred for
higher bra sides, especially for A derivatives. This is because
for these classes it is more advantageous to perform the recur-
sion for the first angular momentum at the primitive level, and
while for B derivatives, the necessary intermediates for the
HRR are the same in this case for the mixed and the Cartesian
ERIs, and for the A derivatives, there are more HRR inter-
mediates for the mixed integrals. When differentiating A, the
preferred algorithm is GHPCart,A2 for La ≥ 3 and Lb ≥ 1 and
also for (dd| bras, and GHPMixed,A1 for the rest of the shell
triplets. For B, GHPCart,B2 is the best choice for (dd|, (ff |,
(gf |, (gg|, (hg|, and (hh| bras, GHPMixed,B1 for bra sides up to
(dp| and also (fs|, and GHPMixed,B2 for the other shell triplets.
In the C case, where we only investigated the mixed Gaussian
algorithms, the GHPMixed,C2 route is the best when La ≥ 3 and
Lb , 0 and also for (dd| bra sides, otherwise GHPMixed,C1 is the
method of choice. If we wish to calculate the three derivatives
in a common algorithm, 3GHPMixed,AC1 is preferred for Lb = 0,
3GHPHerm,AB1 for L̃a = L̃b = 1, and 3GHPHerm,AB2 for most of
the remaining cases. For a number of shell triplets with (gg|,
(hg|, and (hh| bras, 3GHPCart,AC2 is the most efficient because
of the simplicity of Eq. (23). Calculating the derivatives with
the 3GHP schemes reduces the cost by 14%-8% compared to
evaluating the two cheapest derivatives and applying Eq. (18).
Unlike in the OS and MD cases, this method becomes less
efficient as the cardinal number of the basis set increases since
performing operations at the contracted level limits the use of
common intermediates in the recursions because of the differ-
ent exponent scalings for the derivatives coming from Eqs. (4)
and (6).

The results for the RYS schemes are presented in
Table VIII. For the RYSC algorithms, we observe that the
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schemes applying VRR for L̃c are always the most efficient;
thus, the results are very similar to the OS case. Compared to
Cartesian ERIs, the mixed Gaussian schemes reduce the cost
by 7% and 2% for the A and B derivatives, respectively. As
with OS, the 3RYSCart,AB route is the best way of evaluating
all three derivatives at the same time.

Concerning the order of the various operations, we
observe that it is preferred to carry out the HRR step at the
contracted stage for Lb = 1 or L̃b = 1. For the considered
basis sets, the higher shell triplets are uncontracted, and in
these instances, applying Eq. (23) on contracted ERIs results
in higher FLOP counts for the Lb > 2 cases than doing so
at the primitive level, except for the C derivatives. This is
because the HRR for the two terms in Eq. (4) cannot share any
intermediates if the scaling with 2a or 2b has already been per-
formed for the primitive ERIs. For example, if an 3OSCart,AB

scheme is applied, the ([la + 1x]lb|lc) and (la[lb − 1x]|lc) classes
appear as recursion intermediates for (la[lb + 1x]|lc). We can-
not exploit this at the contracted stage since these classes will
have different scalings. Our results also suggest that it is the
most advantageous to perform the spherical harmonic trans-
formation of the bra side functions, Eq. (4) for Cartesian ERIs,
and the spherical harmonic transformation of the differentiated
shell as the last operations in every investigated algorithm. In
the case of the OS, MD, and RYS algorithms, both the costs of
the spherical harmonic transformation of the ket function and
the HRR are reduced if we transform Lc or L̃c before the HRR
in most of the cases. The spherical harmonic transformation
is slightly more expensive this way for (L̃aL̃b | and (L̃aLb | bra
sides, with L̃b = 1 or Lb = 1, and for (LaL̃b | bra sides with
L̃b = 1, but the reduction in the FLOP count of the HRR com-
pensates for this. In the most efficient 3OSCart,AB algorithm,
the Lc spherical harmonic transformation is always preferred
to be carried out at the primitive stage since the intermediates
required by Eq. (23) are less numerous before the 2a and 2b
scaling of Eq. (4) is applied. For the spherical harmonic trans-
formation of L̃c in the GHP schemes, we found two options to
be efficient for the majority of shell triplets: before the scaling

of the (Ω
l̄p
0,0 |L̃c) = (l̄p + L̃c) classes or after the contraction

of the (Ω
l̄p
0,0 |L̃c)λ,β,ζ ones. Transforming L̃c before the scaling

means that we do not have to perform this operation for all the
necessary λ, β, ζ scaled classes. However, in this case, first we

have to transform the (l̄p + L̃c) integrals into the (Ω
l̄p
0,0 |L̃c)0,0,0

ones according to Eq. (31), so the scaling itself and the con-
traction of the primitive functions will become more expensive
because of the increased number of intermediates. In most of
the cases, the second route is more efficient when the second
function in the bra side is s and also for (pp| bras. Other-
wise the first option is more efficient. Picking the better route
for each shell triplet is 15%-5% and 3%-33% cheaper than
going with only the first or second option, respectively, for
A derivatives. These savings are 15%-4% and 2%-36% for B
derivatives.

Tables V–VIII imply that for most scenarios the OS based
algorithms provide the lowest FLOP count. Let us take a look at
if any benefit can be predicted from using the best suited algo-
rithm for each shell triplet compared to applying exclusively
OS based schemes. Our results show that the MD schemes

do not offer significant advantage in any of the cases. It turns
out that for a lot of Lc = 0 or L̃c = 0 shell triplets the Rys
scheme provides the smallest FLOP count. However, the gain
is rather limited since the saving it introduces is less than 1%;
thus, in the following, we do not consider this algorithm. The
GHP method, in turn, considerably lowers the FLOP count
for certain shell triplets. If we use the most advantageous
OS or GHP algorithm for each triplet, the FLOP requirement
is reduced by 6%-1%, 7%-1%, and 17%-5% for the A, B,
and C derivatives, respectively. For the A and B derivatives,
the GHPMixed,A1 and GHPMixed,B1 schemes are preferred for
most of the shell triplets with (ss|, (ps|, and (pp| bras, while
for higher bra angular momenta, the GHP recursions become
inefficient with the investigated basis sets. In the case of C
derivatives, the GHPMixed,C1 algorithm is the best method for
a number of Lb = 0 and Lb = 1 cases. As L̃c increases, the
advantage of Eq. (32) over Eq. (30) becomes more pronounced,
although for higher Lb values, OSMixed,C is still superior. Com-
pared to using only 3OSCart,AB, the combined application of
3OSCart,AB and 3GHPHerm,AB1 reduces the cost of calculating
the derivatives by 16%-2%. Up to (pp| bras, the GHP method
is the better choice, and for derivatives with (ds| bra side, the
L̃c from which 3GHPHerm,AB1 is more efficient depends on
the basis set. As the cardinal number increases, the ratio of
the primitive and contracted functions becomes smaller, so
recursions at the contracted stage are less preferred. However,
with increasing L̃c, building up this angular momentum with
Eq. (32) becomes more advantageous, and the primitive con-
traction is also cheaper when performed on the (l̄p + L̃c)λ,β,ζ

intermediates. Applying the most efficient 3OS and 3GHP
schemes costs 22%-20% fewer FLOPs for the DZ-5Z bases
than calculating the derivatives with respect to the cheapest
two centers for every shell triplet and then using Eq. (18).
This is an improved result compared to applying only the OS
or GHP schemes since now we utilize both the advantage of
GHP for small-angular-momentum bra sides and the superi-
ority of OS for higher angular momenta. If we only consider
3OSCart,AB and 3GHPHerm,AB1, this reduction in cost changes
to 20% for each basis set. For this reason, in the following, we
only deal with the implementation of the 3OSCart,AB schemes
along with the 3GHP algorithms that are predicted to be the
best performing ones. It should be noted, however, that we are
comparing very dissimilar algorithms with a different amount
of memory operations. For example, the work associated with
the transformation of one-center Hermite ERIs to the two-
center ones via Eq. (31) is not accounted for since it does not
require any FLOPs if the exponent scalings have been taken
care of beforehand. For this reason, it is necessary to compare
the actual wall time performances of the two approaches to
decide which one is more beneficial. We also note that the most
advantageous GHP algorithms turned out to be the ones using
mixed or Hermite Gaussian ERIs. With the exception of the
C derivatives, these always use the newly derived recursions,
Eqs. (52)–(60).

IV. IMPLEMENTATION

We implemented the 3OSCart,AB algorithms as well as the
best performing 3GHP schemes for each shell triplet, which
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Algorithm 1. Overview of the separate recursion algorithms. D denotes the
center of differentiation.

Loop for D
Loop for A
Loop for la

Loop for B
Loop for lb

Loop for C
If D = A, B, or C
Loop for lc

sss or C–S screening
Call generated codes

Algorithm 2. Overview of the common recursion algorithms.

Loop for A
Loop for la

Loop for B
Loop for lb

Loop for C
Loop for lc

sss or C–S screening
Call generated codes

include the 3GHPMixed,AC1, 3GHPHerm,AB1, 3GHPHerm,AB2, and
3GHPCart,AC2 routes, by means of automated code generation.
There is an optimized, generated subroutine for every shell
triplet. The spherical harmonic transformations, the contrac-
tion of the primitives, and the recursions are as vectorized as
possible, and the unnecessary components of the intermediate
shells are omitted from the calculation.60 The efficiency of this
implementation method was demonstrated for our integral-
direct local MP2 approach,51 which calculates three-center
ERIs using optimized subroutines34 designed in the same man-
ner as in this work. Schematic representations of the algorithms
applying separate and common recursions are presented in
Algorithms 1 and 2, respectively. Both of the algorithms use
a general driver subroutine that handles three-center ERI and
ERI derivative calculations for various methods. This driver
contains the loops from A (first atom) to lc (third angular
momentum), initializes the necessary arrays and variables,
and computes the scaled contraction coefficients for efficient
primitive contraction.34 The order of the loops for the prim-
itive functions in the generated codes is a, b, and c. When
prescreening is carried out at the primitive stage, Eq. (70) is
applied before the loop for c using the maximal

√
|(lc |lc)| and

√
|(∂lc/∂Cx |∂lc/∂Cx)| for the given C and lc or the smallest

and largest c when Eq. (73) is used. The prescreening ERIs
and ERI derivatives for Eq. (70) are calculated using a general
routine which applies the MD scheme with the four-center
variant of Eq. (33) and Hermite Gaussian basis functions.18

This allows us to exploit most of the simplifications discussed
in Sec. II F.

V. PERFORMANCE TESTS

In the following tests, a medium-sized molecule of
94 atoms, acetoacetyl-CoA, was used as the model system.
Wall time and cache simulation measurements were performed
using a single core of an Intel Core i7-7700K 4.2 GHz CPU.
The cache memory of this hardware includes 32-32 kB of data
and instruction level 1, 256 kB of level 2, and 8 MB of level
3 cache.

Table IX compares the different prescreening approaches
using a threshold of 10−10 Eh. We see that the C–S screening
is more efficient when we apply screening only for the shell
triplets, while with primitive level prescreening, the sss prim
method gives a tighter bound. sss prim, however, increases
the error introduced by roughly an order of magnitude, which
reaches 10−7 Eh with the QZ basis. This could be prohibitive
when one wishes to converge a geometry optimization to high
accuracy.

Figure 1 shows the estimated FLOP counts and wall
times for the shell triplets in the cc-pVTZ basis, where the
counts of the GHP method are superior to those of the OS
algorithms (the related FLOP counts can be found in the sup-
plementary material, namely, in Table SIV for the 3OSCart,AB

route, Tables SXXX to SXXXIX for the 3GHPCart schemes,
Tables SXL and SXLI for the 3GHPHerm, and Tables SXLII
to SLI for the 3GHPMixed methods). The predictions corre-
late well with the timings without prescreening up to the
(ps|g) triplets. For the other cases, the discrepancy can be
attributed to work that is not accounted for in the FLOP counts,
e.g., the rearrangement of one-center ERIs to the two-center
ones. The GHP based methods also require more Boys func-
tion evaluations. Also, 3OSCart,AB always uses the Cartesian
HRR, Eq. (23), which is more vectorizable than Eq. (52)
or Eq. (55). When prescreening is applied on the primitive
level, the 3OSCart,AB algorithm always performs better than
the GHP ones. This is understandable since the main merit of
the GHP scheme is to move much of the work to the contracted
stage.

TABLE IX. Comparison of the C–S and sss prescreening approaches for acetoacetyl-CoA with the cc-pVXZ
(X = D, T, Q) basis sets. Efficiency refers to the percentage of derivatives screened out, while accuracy is the
maximum error larger than 10�10 a.u. in the final AO ERI derivatives.

DZ TZ QZ

Efficiency Accuracy Efficiency Accuracy Efficiency Accuracy

sss 35 4.7 · 10�10 40 9.3 · 10�9 43 6.6 · 10�8

C–S 45 . . . 46 . . . 47 . . .

sss prim 78 7.6 · 10�9 78 3.7 · 10�8 80 3.5 · 10�7

C–S prim 70 . . . 74 . . . 76 . . .

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-012836
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-012836
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FIG. 1. FLOP counts and wall times for the derivatives of the (ss|s) − (ds|g) shell triplets calculated with the implemented 3OS and 3GHP algorithms for
acetoacetyl-CoA with the cc-pVTZ basis set.

FIG. 2. Wall times in minutes for the execution of Algorithm 1 (red) and Algorithm 2 (blue) for acetoacetyl-CoA with the cc-pVXZ (X = D, T, Q) basis sets.

To compare the separate and common recursion algo-
rithms, we measured the wall times required for the 3OSCart,AB

and the OSHerm algorithms, of which the latter we previously
implemented by automated code generation, to calculate the
derivatives of every shell triplet for our test system. The wall
times for the full execution of Algorithms 1 and 2 are displayed
in Fig. 2, while the contribution of the generated codes to the
timings can be seen in Fig. 3. Comparing the results in Fig. 3
with the times measured without prescreening in Fig. 2 we
see that, while for 3OSCart,AB, the runtime is almost equiva-
lent to the time spent in the generated codes, and for OSHerm,
there is a significant discrepancy increasing with the basis set.
This is because of the greater overhead of Algorithm 1 com-
pared to Algorithm 2. Without prescreening, 3OSCart,AB offers
speedups of factors of 3.2, 4.7, and 6.6 compared to OSHerm

with the DZ, TZ, and QZ bases, respectively. These increase
to 4.7, 8.7, and 15.5 if we apply C–S prim type prescreening.
Screening increases the efficiency of Algorithm 2 more than it
does so for Algorithm 1 because it reduces the work performed
in the generated codes, which contribute to the total runtime
with a higher percentage in the common recursion approach.
It is interesting to compare the ratios of the wall times for the
two schemes in Fig. 3 with the quotients of the summed FLOP
counts of OSHerm,A, OSHerm,B, and OSHerm,C and the FLOP
counts of 3OSCart,AB from Table V. The ratios of the wall times
with the DZ, TZ, and QZ basis sets are 2.1, 2.2, and 2.4, respec-
tively. These values for the FLOP counts are 1.9, 2.0, and 2.2.

The good agreement shows that FLOP counting for similar
algorithms is a valid tool for predicting their relative runtime
performances.

Finally, Table X contains the results of CPU cache simu-
lations for H2O2 performed by the Valgrind61 program suite.
In most aspects, Algorithm 2 produces a smaller percentage of
cache misses because of the more local nature of the common
recursion route. The exceptions are the level 1 data read and
write misses, where Algorithm 1 performs better. This obser-
vation is in accordance with our earlier conclusion34 that most
data cache misses occur during the contraction of the prim-
itives because of the large size of the arrays involved. Since
in Algorithm 2 we calculate derivatives with respect to two
centers, there are more integral derivatives to contract, and
therefore, there are more cache misses.

FIG. 3. Contribution (in minutes) of the generated codes to the wall time
of Algorithm 1 (red) and Algorithm 2 (blue) without prescreening for
acetoacetyl-CoA with the cc-pVXZ (X = D, T, Q) basis sets.
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TABLE X. Cache simulation results for the evaluation of the ERI derivatives of H2O2 with the cc-pVXZ
(X = D, T, Q) basis sets. The results indicate the percentage of cache misses relative to all events. Notations:
I and D mean instructions and data, respectively, 1 and L mean that the referenced memory address did not have
a copy in the first level of the CPU cache memory or in all of it, respectively. r and w refer to data read and data
write operations, respectively.

DZ TZ QZ

Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2

I1 0.21 0.32 0.76 0.72 1.75 1.23
IL 0.01 0.01 0.04 0.01 0.08 0.03
Dr1 0.29 1.32 0.48 2.13 0.87 2.71
DrL 0.01 0.02 0.01 0.01 0.01 0.01
Dw1 1.81 3.72 3.97 6.51 6.75 8.37
DwL 0.05 0.05 0.28 0.05 0.65 0.13

VI. CONCLUSIONS

We optimized the evaluation of the first derivatives of
three-center Coulomb integrals over contracted spherical har-
monic Gaussians in two steps. First, we determined estimations
of the FLOP requirements of several schemes, including the
ones that apply mixed Gaussian ERIs. The FLOP counts sug-
gest that these integrals containing both Cartesian and Hermite
Gaussians are better suited for the task when we compute the
derivatives for one center at a time (Algorithm 1), except for
the bra-side derivatives with Lb ≥ 3. The OS method is pre-
dicted to be superior for most of the cases; however, for shell
triplets up to (pp| bra sides, GHPMixed produces the lowest
FLOP counts. For Algorithm 2, the most efficient scheme is
3OSCart,AB, with the exception of 3GHPMixed,AC1 for (ss| and
(ps|, and 3GHPHerm,AB1 for (pp| and a few other shell triplets
with Lb = 0 and high Lc. In the second step, we compared
the wall time performances of certain selected methods. The
results for 3OSCart,AB and those 3GHP schemes which were
predicted to be the best based on the FLOP requirement suggest
that FLOP counts alone are insufficient to decide between two
methods that are algorithmically very different. On the other
hand, the wall times for the generated codes for 3OSCart,AB

and OSHerm reproduce the ratios of the FLOP counts rea-
sonably well, which suggests that this type of prediction is
useful when variants of the same basic algorithm are compared.
When we do not only measure the timings for the gener-
ated codes but also measure the total time for the execution
of Algorithms 1 and 2, we get significantly larger speedups
for the common recursion scheme than expected from the
FLOP counts, which is the result of the increased overhead in
Algorithm 1.

We discussed an efficient approximation of the Cauchy–
Schwarz upper bound for ERI derivatives and an inexact
screening quantity derived from the Boys function. The test
calculations for these approaches reveal that it is important to
screen both the primitive integrals and the shell triplets. The
sss prim type screening is slightly more efficient, but it can
introduce errors which are three orders of magnitude greater
than the tolerance. This problem does not arise with the C–S
prim approach. When primitive prescreening is applied, the
3OSCart,AB scheme always performs better than the 3GHP algo-
rithms. Based on our results, we recommend the usage of the

Schwarz screening instead of the approximate bound, and the
application of 3OSCart,AB when it is not necessary to compute
the derivatives with respect to one center at a time. For the
separate recursion schemes, the OSMixed approach is predicted
to be the most efficient. Our results indicate, however, that in
this case the overhead of the loops over the shell triplets of the
molecule dominates the wall time rather than the evaluation of
the derivatives.

SUPPLEMENTARY MATERIAL

See supplementary material for the method by which the
index ranges of the recursions in Sec. II were determined,
for the index ranges of the recursions in Sec. II D, for the
detailed FLOP counts of the investigated schemes, and for the
geometries of the applied test molecules.
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APPENDIX: RECURRENCE RELATIONS FOR
HERMITE AND MIXED GAUSSIAN INTEGRALS

Here we present the derivations for the new equa-
tions introduced in Sec. II: the l̃a → lb, la → l̃b, and
la → l̃c translations in OS and the recurrence relations for
Hermite and mixed Gaussian integrals in the MD and Rys
schemes.

1. Obara–Saika recursions

The validity of Eq. (28) can be easily seen by substituting
Eq. (3) into the bra side overlap distribution H̃ia Gib+1 and then
applying Eqs. (7) and (5),

H̃ĩa Gib+1 = xBH̃ĩa Gib = xAH̃ĩa Gib + XABH̃ĩa Gib

= H̃ĩa+1̃Gib +
ĩa
2a

H̃ĩa−1̃Gib + XABH̃ĩa Gib . (A1)

Equation (29) is proven in the same manner by rewrit-
ing Gia H̃ib+1. For Eq. (30), let us express the incremented
integral according to the expansion in the McMurchie–

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-012836
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Davidson scheme (see Sec. II C for the definition of the
quantities) as

(la0|[l̃c + 1̃x])(n) =
( 1
2c

) l̃c+1̃ ∑
īp,j̄p k̄p

Eia,0
īp

Eja,0
j̄p

Eka,0
k̄p

(−1)l̃c+1̃

× (l̄c + l̄p + 1̄x)(n), (A2)

where we expanded the Cartesian overlap distribution in the
bra in terms of unscaled Hermite Gaussians defined by Eq. (8),
and the scaling with the exponent present in Eq. (2) has been
accounted for the ket side function. The sums over ip, jp, and
kp run from 0 to ia, ja, and ka, respectively. Inserting Eq. (32)
into Eq. (A2), we get

(la0|[l̃c + 1̃x])(n) = XPC

( 1
2c

) l̃c+1̃ ∑
īp,j̄p,k̄p

Eia,0
īp

Eja,0
j̄p

Eka,0
k̄p

(−1)l̃c+1̃(l̄c + l̄p)(n+1)

+
( 1
2c

) l̃c+1̃ ∑
īp,j̄p,k̄p

Eia,0
īp

Eja,0
j̄p

Eka,0
k̄p

(−1)l̃c+1̃(īp + ĩc)(l̄c + l̄p − 1̄x)(n+1)

= −
1
2c

XPC(la0|l̃c)(n+1) +
ĩc

4c2
(la0|[l̃c − 1̃x])(n+1)

+
( 1
2c

) l̃c+1̃ ∑
īp,j̄p,k̄p

īpEia,0
īp

Eja,0
j̄p

Eka,0
k̄p

(−1)l̃c+1̃(l̄c + l̄p − 1̄x)(n+1), (A3)

where the first two terms in the last equation arise from substi-
tuting back Eq. (A2). By factoring out 1/(2p) in the last term,
we can use the recurrence55

2pīpEia,0
īp
= iaEia−1,0

īp−1̄
, (A4)

and noting that Eia,ib
īp
= 0 if īp < 0 or īp > ia + ib, we can

substitute Eq. (A2) for the last term. It becomes −ia/(4pc)([la
− 1x]0|l̃c)(n+1), and we arrive at Eq. (30).

2. McMurchie–Davidson method

For brevity, let us only deal with the x-dependent part
of the auxiliary functions defined by Eqs. (37) and (40).
We only show the derivation of Eq. (38) since the remain-
ing recursions for Hermite and mixed Gaussian ERIs can
be acquired in an analogous way. We use the auxiliary
function

Ω
īp
ĩa,ĩb
=

( ∂

2a∂Ax

) ĩa ( ∂

2b∂Bx

) ĩb ( ∂

∂Px

) īp
Λab, (A5)

where Λab = κab exp(−px2
P) = exp(−ax2

A) exp(−bx2
B). We will

also apply the following relations:
[( ∂

∂Ax

) ĩa
, XPA

]
= −ĩa

b
p

( ∂

∂Ax

) ĩa−1̃
, (A6)

[( ∂

∂Bx

) ĩb
, XPA

]
= ĩb

b
p

( ∂

∂Bx

) ĩb−1̃
, (A7)

[( ∂

∂Px

) īp
, XPA

]
=

[( ∂

∂Px

) īp
, XPB

]
= 0, (A8)( ∂

∂Px

) īp+1̄
Λab =

( ∂

∂Px

) īp
2pxPΛab. (A9)

The commutators can be proven by induction. For
Eq. (A8), we also need ∂/∂Px = ∂/∂Ax + ∂/∂Bx,
XPA = −b/pXAB, and XPB = a/pXAB. Incrementing ia, we can
write

Ω
īp
ĩa+1̃,ĩb

=
( ∂

2a∂Ax

) ĩa+1̃ ( ∂

2b∂Bx

) ĩb ( ∂

∂Px

) īp
Λab

=
( 1
2a

) ĩa+1̃ ( ∂

∂Ax

) ĩa ( ∂

2b∂Bx

) ĩb ( ∂

∂Px

) īp
2axAΛab

=
( ∂

2a∂Ax

) ĩa ( ∂

2b∂Bx

) ĩb ( ∂

∂Px

) īp
(xP + XPA)Λab

=
( ∂

2a∂Ax

) ĩa ( ∂

2b∂Bx

) ĩb [ 1
2p

( ∂

∂Px

) īp+1̄
+ XPA

( ∂

∂Px

) īp ]
Λab

=
1

2p
Ω

īp+1̄

ĩa,ĩb
+

( 1
2b

) ĩb ( ∂

2a∂Ax

) ĩa [
ĩb

b
p

( ∂

∂Bx

) ĩb−1̃
+ XPA

( ∂

∂Bx

) ĩb ] ( ∂

∂Px

) īp
Λab

=
1

2p
Ω

īp+1̄

ĩa,ĩb
+

ĩb
2p
Ω

īp
ĩa,ĩb−1̃

+
( 1
2a

) ĩa [
− ĩa

b
p

( ∂

∂Ax

) ĩa−1̃
+ XPA

( ∂

∂Ax

) ĩa ] ( ∂

2b∂Bx

) ĩb ( ∂

∂Px

) īp
Λab

=
1

2p
Ω

īp+1̄

ĩa,ĩb
+

ĩb
2p
Ω

īp
ĩa,ĩb−1̃

−
ĩa
2p

b
a
Ω

īp
ĩa−1̃,ĩb

+ XPAΩ
īp
ĩa,ĩb

. (A10)
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Here we first differentiate with respect to Ax and then rewrite
the result according to Eq. (7). For xPΛab, we substitute
Eq. (A9), and for XPAΛab, we substitute Eq. (A8). For the
first term of the resulting expression, we substitute Eq. (A5)

to get 1/2pΩ
īp+1̄

ĩa,ĩb
, and for the second term Eq. (A7). After the

fifth equation sign, we substitute Eq. (A5) again for the first

term in the bracket to get ĩb/2pΩ
īp
ĩa,ĩb−1̃

, and for the second

we use Eq. (A6). After the sixth equation sign, we can apply
Eq. (A5) for both terms in the bracket to gain the remaining
two terms in the recursion.

3. Rys quadrature

To derive the 2D recurrence relations for Hermite and
mixed Gaussian integrals, we mostly follow the methods
applied in Refs. 18 and 55. Here we outline the process for
the Hermite 2D ERIs. We exploit that the 2D integrals can be
expressed by the modified Hermite polynomials55 H according
to the McMurchie–Davidson scheme as

Θ
ĩa,ĩb,ĩc
x (t2

r ) =
(
−

1
2c

) ĩc
ĩa+ĩb∑
īp=0̄

Eĩa,ĩb
īp

Hīp+ĩc (t2
r ). (A11)

From this, after incrementing indices and using the recurrence
relation55 for H,

Hīp+1̄(t2
r ) = −2αt2

r [XPCHīp (t2
r ) + īpHīp−1̄(t2

r )], (A12)

and the ones for the Eĩa,ĩb
īp

expansion coefficients for the trans-

formation of the unscaled Hermite Gaussians centered on P to
a Hermite overlap distribution, Eqs. (65), (67), and (68) can
be proven. The required recurrences for the E coefficients can
be derived from

H̃ĩa H̃ĩb =

ĩa+ĩb∑
īp=0̄

Eĩa,ĩb
īp

Hīp (A13)

in an analogous manner as it is done for Eqs. (101) and (103)
of Ref. 18. We obtain

ĩaEĩa−1̃,ĩb
īp

+ ĩbEĩa,ĩb−1̃
īp

= 2p(īp + 1̄)Eĩa,ĩb
īp+1̄

(A14)

and

Eĩa+1̃,ĩb
īp

= XPAEĩa,ĩb
īp

+
1

2p
Eĩa,ĩb

īp−1̄
+ (īp + 1̄)Eĩa,ĩb

īp+1̄
−

ĩa
2a

Eĩa−1̃,ĩb
īp

.

(A15)

Substituting Eq. (A14) into Eq. (A15), we get

Eĩa+1̃,ĩb
īp

= XPAEĩa,ĩb
īp

+
1

2p

(
Eĩa,ĩb

īp−1̄
− ĩa

b
a
Eĩa−1̃,ĩb

īp
+ ĩbEĩa,ĩb−1̃

īp

)
,

(A16)

and for the other bra index,

Eĩa,ĩb+1̃
īp

= XPBEĩa,ĩb
īp

+
1

2p

(
Eĩa,ĩb

īp−1̄
+ ĩaEĩa−1̃,ĩb

īp
− ĩb

a
b
Eĩa,ĩb−1̃

īp

)
.

(A17)

Equations (A16) and (A17) differ from the corresponding
recursions of the E coefficients for Cartesian ERIs55 in
the −b/a and −a/b factors, respectively. Incrementing ĩa in

Eq. (A11) and then using Eqs. (A16), (A12), and (A14), we
get

Θ
ĩa+1̃,ĩb,ĩc
x (t2

r ) =
(
XPA −

α

p
XPCt2

r

)
Θ

ĩa,ĩb,ĩc
x (t2

r )

+
ĩa
2p

(
−

b
a
−
α

p
t2
r

)
Θ

ĩa−1̃,ĩb,ĩc
x (t2

r )

+
ĩb
2p

(
1 −

α

p
t2
r

)
Θ

ĩa,ĩb−1̃,ĩc
x (t2

r )

+
ĩct2

r

2(p + c)
Θ

ĩa,ĩb,ĩc−1̃
x (t2

r ) (A18)

and the similar equation for ĩb,

Θ
ĩa,ĩb+1̃,ĩc
x (t2

r ) =
(
XPB −

α

p
XPCt2

r

)
Θ

ĩa,ĩb,ĩc
x (t2

r )

+
ĩa
2p

(
1 −

α

p
t2
r

)
Θ

ĩa−1̃,ĩb,ĩc
x (t2

r )

+
ĩb
2p

(
−

a
b
−
α

p
t2
r

)
Θ

ĩa,ĩb−1̃,ĩc
x (t2

r )

+
ĩct2

r

2(p + c)
Θ

ĩa,ĩb,ĩc−1̃
x (t2

r ). (A19)

If we increment ĩc in Eq. (A11) and then use Eqs. (A12) and
(A14), we obtain the recursion for ĩc, which is

Θ
ĩa,ĩb,ĩc+1̃
x (t2

r ) =
α

c
XPCt2

rΘ
ĩa,ĩb,ĩc
x (t2

r ) +
ĩc
2c

(−
αt2

r

c
)Θĩa,ĩb,ĩc−1̃

x (t2
n )

+
t2
r

2(p + c)
[ĩaΘ

ĩa−1̃,ĩb,ĩc
x (t2

r ) + ĩbΘ
ĩa,ĩb−1̃,ĩc
x (t2

r )].

(A20)

Equation (68) is obtained by subtracting Θĩa+1̃,ĩb,ĩc
x (t2

r ) from

Θ
ĩa,ĩb+1̃,ĩc
x (t2

r ). Concerning mixed Gaussian 2D ERIs, Eq. (A14)
retains the same form. The recursion for incrementing the
Hermite part of the mixed bra side is either Eq. (A16) or
(A17), while the index referring to the Cartesian component
is incremented by the same equations as for the Cartesian E
coefficients.55
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