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Observer-Based Recursive Sliding Discrete Fourier Transform

In the field of digital signal analysis 
and processing, the ubiquitous domain 
transformation is the discrete Fourier 

transform (DFT), which converts the sig-
nal of interest within a limited time win-
dow from discrete time to the discrete 
frequency domain. The active use in real-
time or quasi-real-time applications has 
been made possible by a family of fast 
implementations of the DFT, called fast 
Fourier transform (FFT) algorithms.

Although highly optimized and effi-
cient FFT algorithms are available, their 
operation remains block oriented with 
nonrecursive operations. An alternative 
approach to this technique is the sliding 
DFT (SDFT), where the calculations are 
performed for a fixed-size sliding win-
dow.

The basic idea behind the SDFT 
algorithm is to recursively calculate the 
DFT spectrum of the input stream [1], 
[2]. It is based on a Lagrange structure, 
built up on a comb filter and complex 
resonators for the various frequency 
bins. The biggest disadvantage of this 
algorithm is that it suffers from stability 
problems caused by numerical imper-
fections. Various solutions have been 
proposed to counteract this effect, keep-
ing the original functionality. The mod-
ulated SDFT (mSDFT) [3] addresses 
the problem with a modified structure 
moving the complex multiplication fac-

tor out of the resonator. Another SDFT 
variant is the hopping SDFT (hSDFT) 
[4], which is optimized for the calcula-
tion of the SDFT with larger steps ( )L  
than a single sample but smaller than 
the observation window: .L N2a 1=

In this article, we investigate the 
observer-based SDFT (oSDFT), a less-
er-known alternative solution for the 
recursive calculation of the DFT that 
is based on the observer theory. It was 
originally developed by Hostetter [5] 
and generalized by Péceli [6]. Software 
implementation issues of the structure 
were recently presented in [7]. The 
structure is proved to be stable, with a 
small sensitivity to numerical imperfec-
tions. Throughout this article we will 
compare it to the SDFT and mSDFT 
structures.

SDFT
The formula for calculating the DFT 
coefficient in the kth  frequency posi-
tion over the N  samples block of [ ]x n  
is given as

 , ,X x n W k N0 1k N
kn
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N
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=

-
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 (1)

where eW j N
N

2= r^ h
 with j  being the 

imaginary unit. The calculation of (1) in 
a sliding manner, the DFT component 
can be expressed as
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where N0 1f -=k  and 
.1N +-n=q  Through this operation 

we obtain a rotating DFT coefficient, a 
complex DFT component [ ],X nk

C  since 
[ ]x n  slides while WN

km-  stands still rela-
tive to the sampling window. The upper 
index C  in [ ]X nk

C  refers to the compo-
nent nature of the DFT value to distin-
guish it from the DFT coefficient [ ] .X nk  
Given a periodic signal with periodicity 
of ,N  the DFT component equals the 
DFT coefficient at every Nth  step

 [ ] , , , .X n X n N N0 2k
C

k f= =  (3)

The recursive equivalent of (2) can 
be expressed based on the previous 
DFT component [ ],X nk

C  the current sig-
nal sample [ ]x n  and the former signal 
sample [ ]x n N-  as
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(4)

Figure 1 shows how (4) can be imple-
mented as a comb filter followed by a 
resonator stage. The resonator stage is 
an integrator containing a complex mul-
tiplication factor, which is an infinite 
impulse response (IIR) filter. The trans-
fer function of the SDFT structure can 
be expressed as

 
( )

( )
( )

( ),H z
X z
X z

z H z1,k
k
C

N
kSDFT = = - -^ h

 (5)

where the transfer function of the reso-
nator ( )H zk  can be determined as
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This structure is considered to be 
only marginally stable in practice [1] as 
the WN

k  poles, in the presence of numer-
ical imperfections, may be located 
inside or outside the unit circle. To avoid 
a potential divergence in the results, 
without altering the structure, a straight-
forward method is given by the rSDFT 
[1] <AU: Should “r” be italic here? If 
not, the please spell out “rSDFT”.> 
enforcing the poles inside the unit circle 
by applying a constant multiplication 
factor ,r  slightly smaller than one, to all 
WN

k  factors. As a drawback, it leads to a 
modified DFT calculation, thus it gives 
inaccurate results [3].

mSDFT
A slightly modified structure of the 
SDFT is the mSDFT [3], which aims to 
solve the aforementioned stability issue 
without sacrificing accuracy through 
utilizing the DFT’s frequency shift 
theorem property. The mSDFT-based 
structure calculating the kth  frequency 
bin is shown in Figure 2.

First, it transforms the kth  frequency 
bin to dc ( )k 0=  by a complex multipli-
cation with the sequence ,WN

kn-  then the 
calculations of (2) is applied for .k 0=  
Finally, it transforms the result back by 
up conversion with a multiplication of 
the sequence .WN

kn  With this described 
technique, the resonators became stable 
integrators performing simple averag-
ing.

Via down conversion, the mSDFT 
calculates the DFT coefficients, recur-
sively as

 
[ ]

( [ ] ( [ ] [ ])) .

X n

X n W x n x n N

1k

k N
kn

+ =

+ - --

t

t  
 

(7)

To get the same output as the SDFT in 
(2), namely the DFT component, an up-
conversion sequence has to be applied 
by multiplying the DFT coefficient Xk  
with ,WN

kn

 [ ] [ ] .X n X n Wk
C

k N
kn=t t  (8)

As a result, the transfer function of an 
mSDFT branch is theoretically identical 
with the transfer function of an SDFT 
branch presented in (5).

oSDFT
In this section, we introduce a lesser-
known alternative approach to the 
SDFT problem: the oSDFT. The main 
idea behind the oSDFT, the application 
of the state observer, is widely used in 
system control theory [8] and also can 
be successfully adapted for digital sig-
nal processing purposes [5], [6].

The observer theory model
The observer theory supposes the sys-
tem model that the measured signal 

[ ]x n^ h is a linear combination of the 
elements of a given basis system

 [ ] [ ],x n X c nk k
k

N

0

1

=
=

-

/  (9)

where N  is the rank of the basis system, 
[ ]c nk  is the kth  basis vector, and Xk  its 

matching weighting factor.
This system model is considered for 

the signal construction and can be seen 
as the generator of the signal [ ]x n  on the 
left side of Figure 3, wherein weighting 
factors are stored in discrete integrators 
as initial values.

The observer, which can be seen on 
the right side of Figure 3, by mirroring 
the system model’s structure, estimates 
the [ ]x n  input signal’s Xk  weighting 
factors in its internal state variables Xkt  
through signal decomposition. For the 
refinement of this estimation, a negative 

feedback is created with a reconstruct-
ed signal [ ]y n  from the estimated Xkt  
weighting factors. This negative feed-
back also acts as a stabilizing control 
loop for our state observer [6], [9].

The kth  state variable can be 
expressed as
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where [ ]y n  can be expressed as
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(11)

Péceli proves the following four state-
ments in [6], which are crucial from the 
SDFT aspect:
1) The observer is convergent, if [ ]c nk  

and [ ]g nk  are basis-reciprocal basis 
systems for n N0 1f= -  with a 
normalization factor of / :N1

 [ ] [ ] , .
N

c n g n k1 1k k
n

N

0

1

6=
=

-

/  (12)

 Moreover, in this scenario the sys-
tem is deadbeat in N step (i.e., after 
N  steps [ ] ) .X n Xk k=t

2) The state variables Xkt  of the observ-
er are the DFT coefficients accord-
ing to (9), if [ ]g n Wk N

kn= -  and 
[ ] .c n Wk N

kn=  The modulated state 
variables [ ]X n 1k

C +t  are the sliding 
DFT components of the input signal 

x [n ]

WN
k

z −1

z −N
(−)

Xk  [n ]C

"

FIGURE 1. A single sliding discreet Fourier transform branch for the calculation of the kth frequency 
bin.
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FIGURE 2. A single mSDFT branch for the calculation of the kth frequency bin.
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[ ]x n  as presented in (2).
3) Based on the fact that the oSDFT 

structure is a control loop with a 
negative feedback, the transfer func-
tion of the kth  branch of the oSDFT 
can be expressed as

( )
( )
( )

( )

( )
,

H z
X z
X z

N
H z

H z

1 1

,k
k
C

k
k

N
k

0

1

oSDFT =

=
+

=

-

/
 

  
  
 (13)

where ( )H zk  is given in (6).
4) The oSDFT structure is equivalent 

to the SDFT structure presented in 
Figure 1 in such a way that their 
transfer functions of the kth  branch-
es are equal. The proof of the theo-
retical equivalence can be found in 
“Proof of the Equivalence of the 
SDFT and oSDFT.”

Resonator-based oSDFT
An alternative version of the oSDFT 
structure is depicted in Figure 4, which 
is based solely on resonators, which are 
IIR filters, without down- and up-con-
verters, similar to the SDFT structure. 
The proof of the equivalence of the two 
oSDFT structures is provided in “Proof 
of the Equivalence of Two oSDFT 
Structures.”

Complexity analysis
In this section we analyze the com-
putational complexity and memory 
requirements for the various SDFT 
structures when calculating all N  DFT 
components. The comparison will be 
performed based on the calculation of 
a single input sample. All elements are 
considered to be complex valued. The 
requirements are summarized in Table 
1.

Independent from the chosen algo-
rithms, N  registers are required for 
storing the state variables of the resona-
tors or the integrators. The SDFT and 
mSDFT algorithms used N  additional 
registers for the comb filter’s N-step 
delay line. Furthermore, the SDFT and 
the resonator-based oSDFT structure 
require N  memories to store the multi-
plication factors Wk

N^ h for all branches. 
The mSDFT and the oSDFT structures 
can obtain the values of the modula-
tors and demodulators signal WN

nk^  and 
WN

nk- h from a look-up-table (LUT). The 
LUT stores N  samples for each branch, 
as the values are periodic to .N

Resonator-based implementa-
tions (i.e., SDFT and resonator-based 
oSDFT) require N  multipliers, where-
as the demodulation and modulation 
approaches (i.e., mSDFT, oSDFT) use 
two N  multipliers.

For all algorithms, each branch 
requires one two-input adder. In case of 
the oSDFT structures, they both apply 

an N-input adder to calculate the feed-
back signal [ ]y n  and a two-input adder 
is used to calculate the difference of the 
input and the feedback signal as shown 
in (10).

The biggest advantage of these 
structures compared to the FFT-based 
block-wise calculation is that the opera-
tional load can be distributed between 
the incoming samples, as the SDFT 
structure can operate continuously. 
As soon as the Nth  sample of a block 
has arrived, the calculation with the 
last input sample can be executed in a 
single step with parallel calculations. 
The spectral components will be avail-
able faster compared to the block-wise 
operational FFT where this can be per-
formed in log N2  steps.

Simulations

Floating-point implementation
A simulation environment for the com-
parison of the aforementioned sliding 
DFT algorithms (i.e., mSDFT, oSDFT, 
and resonator-based oSDFT) was devel-
oped in MATLAB2017a (x64 PC). For 
the algorithms we applied 32-bit, single-
precision, floating-point arithmetic, and 
compared the numerical imperfections 
of the various methods to the results 
of a 64-bit, double-precision arithme-
tic sliding FFT, utilizing the built-in 
fft  function. We applied the following 

simulation scenario: within an N 64=  

1
N
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z −1

z −1

z −1

z −1

(−)

X0  [n ]C

X1  [n ]C

XN–1[n ]C

X0  [n ]C

"
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"

X1[n ]

"

XN–1[n ]

"

X1  [n ]C

XN–1[n ]

" C

"

c0[n ] c0[n ]g0[n ]

y [n ]

g1[n ]c1[n ] c1[n ]

cN–1[n ] cN–1[n ]gN–1[n ]

System Model Observer

X0

X1

XN–1

FIGURE 3. The observer theory model: system model and observer.
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frequency bin setup, an aperiodic white 
gaussian noise was used, where the 
noise signal was generated using the 
built-in randn function operating with 
default seed option and a unit variance 
as:

rng(‘default’); % setting 
the seed
var = 1; % variance of the 
noise signal
% noise signal with single 
precision
x  =  v a r  * 
randn(1,32000,‘single’);

The usage of white noise as excita-
tion signal ensures that all the branches 
system-wide are statistically equally 
excited, so the behavior of each struc-
ture can be better characterized and 
evaluated as a dynamic system.

The results of the various SDFT 
methods were compared through dou-
ble-precision arithmetic to the results of 
the sliding FFT, and the average error 
signal over the branches was formulated 

as

[ ] [ ] [ ]n
N

X n X n1
, ,k
C

k
C

k

N

0

1

xSDFT FFTf = -
=

-

,t t/  
 (14)

1
N

x [n ]

z −1

z −1

z −1

(−)

X0  [n ]C

"

XN–1[n ]

" C

X1  [n ]C

"

y [n ]

WN
0

WN
1

WN
N–1

FIGURE 4. A resonator-based oSDFT. 

To prove the equivalence of the SDFT and oSDFT struc-
tures, we will show that the transfer functions for each 
branch, ( )H z,k SDFT  and ( )H z,k oSDFT  are equal. The transfer 
function of the SDFT and the oSDFT structures are 
expressed according to (5) and (13) as:

 ( ) ( ) ( ),H z z H z1 ·,k
N

kSDFT = - -  (S1)

 ( )
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1 1
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k
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0

0

1oSDFT =
+

=

+
=

-

/
 (S2)

where ( )H zk  is the transfer function of the kth resonator 
and ( )H z0  is the transfer function of the open loop in the 
oSDFT structure. The transfer function ( )H zk  is determined 
as

 ( ) .H z
W z

W z
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N
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1

1
=
- -
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 (S3)

First, we will prove that
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As we unfold and rearrange the first part of (S4) using the 
formula for the sum of a geometric series, we obtain
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Emphasizing the fact, that for the sum of the powers of a 
unit root the following expression is valid

 W
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We can simplify (S5) using the formula for the sum of a 
geometric series to 
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(S7)

This is what we wanted to prove.
Now, if we substitute (S4) into (S2) we get the following 

simplified equation:
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 (S8)

As a result, we have proved that the transfer function of the 
two structures according to (S1) and (S2) are equivalent.  ■

Proof of the Equivalence of the SDFT and oSDFT
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where xSDFT stands for the mSDFT 
and oSDFT algorithms.

In Figure 5, the error progress in the 
function of the time index is compared 

in the case of mSDFT and oSDFT. The  
error of the mSDFT is not stable and 
slowly drifts over the time samples. On 
the contrary, the oSDFT algorithm is 

stable, but it is noisy as well due to the 
numerical errors.

In Figure 6 the error progress in 
function of the time index is shown 

Both oSDFT algorithms are built upon either one of the two 
main substructures, namely the down conversion–integra-
tor–up conversion or the resonator scheme as shown in 
Figure S1. Here, we intend to show the theoretical equiva-
lence of these two substructures. We present this statement 
through an alternative graphical method, while a mathe-
matical approach can be found in [3] and [12].

Starting from Step (a) in Figure S2: 
(b) Push the up-converting sequence into the loop, before 

the feedback exit point. To ensure the same functional-
ity, we have to compensate for the effect of the newly 
introduced in-loop multiplication into the feedback path 
as well.

(c) Move the up-converting sequence even further, through 
the delay element. Due to the delay element, only the 
time indexing has to be modified.

(d) Push the compensating term, introduced in Step (b), fur-
ther down the feedback-loop, until it stands after the 
feedback entry point. Additionally, to counter preserve 
the functionality, we have to also divide the input (i.e., 
signal) with the compensating term. Finally, as they are 
in the same position, we can contract the modulating 
and demodulating sequences into one term. As a result, 
we have reached the same structure as presented in 
Figure S1(b) based on the following equivalences:

 ·[ ] · [ ] ,g n c n W W 1k k N
nk

N
nk= =-  (S9)

 W .
[ ]

[ ]
[ ]

c n
c n

c
1

1
k

k
k N

k+
= =  (S10)

Proof of the Equivalence of Two oSDFT Structures

gk [n]

z −1

ck [n ]

(a)
ck [n ]

1

gk [n]

z −1

ck [n ]

(b)

ck [n ]

1

gk [n]

z −1

ck [n+1]

(c)

ck [n ]

ck [n+1]

z −1

(d)

gk [n] . ck [n ]

FIGURE S2. (a)–(d) The steps for proving the equivalence of the two oSDFT substructures.

gk [n]

z −1

z −1

ck [n ]

WN
k

(a)

(b)

FIGURE S1. Substructures of the oSDFT: the (a) down conversion–in-
tegrator–up conversion and (b) resonator scheme.

 ■



IEE
E P

ro
of

7IEEE SIGNAL PROCESSING MAGAZINE   |   November 2018   |

for the oSDFT and the resonator-based 
oSDFT algorithms. Both algorithms 
produce a stable-but-noisy error over 
the discrete time samples. Additionally, 
the oSDFT outperforms the resonator-
based oSDFT.

The observed performance differ-
ence between the two oSDFT structures 
has two attributes with a common root 
cause: multiplication within the reso-
nators with constant ,WN

k  at every time 
step. The two distinct differences expe-
rienced in Figure 6 are an offset and a 
higher noise variance.

The offset is caused by the fact that 
for every step of n  the WN

kn  modulator 
and demodulator values for the oSDFT 
are taken periodically from a precom-
puted sequence stored in a LUT, and 
within this LUT the error introduced 
by rounding (i.e., finite precision stor-
age) is averaged out over a sequence 
period. This way the oSDFT’s modula-
tion and demodulation process will be 
more precise regarding the average fre-
quency accuracy over a sequence period 
than the resonator-based oSDFT, where 
the numerical error in the constant WN

k  
pole can’t be averaged out over the same 
period, thus leading to a constant fre-
quency offset in the center frequency of 
the resonators.

The higher variance of the error sig-
nal comes from the fact that the finite 
precision multiplication by WN

k  within 
the resonator’s loop is an additional 
noise source which will dominate the 

variance due to the structure, thus it will 
lead to slightly misplaced WN

k  poles in a 
random manner over the complex plain.

Fixed-point implementation
As to further investigate and cover 
wider use-case scenarios, the results for 
fixed-point implementations are also 
presented. During the comparison sim-
ulations with the 32-bit, single-preci-
sion, floating-point variants, the signed 
fixed-point calculations were imple-
mented with a word length of 32 bits, 
from which 31 bits were used for the 
fractional part, and a rounding toward 
zero method was applied to maintain 
the stability of the feedback structures. 
Otherwise, the simulation environment, 
the test signals, and the error term defi-
nition were the same as with the float-
ing-point scenario presented earlier.

The error progress of the various 
SDFT structures for signed Q0.31 for-

mat fixed-point implementation can be 
seen in Figure 7. The results are simi-
lar to the case where the structures are 
implemented using single-precision, 
although the overall errors are slightly 
smaller for each method. The reason for 
this is that, the IEEE 754-2008 single-
precision standard, used by MATLAB, 
the fractional part is defined as only 
23 bits, thus within the same range, it 
offers lower resolution, resulting in 
more imprecise WN

kn  modulator and WN
k  

pole values.
Furthermore, the averaged error 

[ ]nf  over the samples n  for the fixed-
point implementation in function of the 
fraction part is shown in Figure 8. For  
both methods with an enlarged fraction 
part, the error is exponentially decreas-
ing.
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2

3

4

5

6
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× 104Time Index (n )

E
rr
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ε[

n
])

mSDFT

oSDFT

FIGURE 5. The error progress of the mSDFT and the oSDFT algorithms.
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E
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FIGURE 6. The error progress of the oSDFT and the resonator-based 
oSDFT algorithms.

Table 1. The complexity comparison of the various SDFT structures.

Memory Adders

Type 
Read-Only 
Memory 

Random-Access 
Memory  LUTN Multipliers Two-Input N Input 

SDFT N N + N 0 N N + 1 0 

mSDFT 0 N + N 1 2N N + 1 0 

oSDFT 0 N 1 2N N + 1 1 

oSDFT  
(resonator) 

N N 0 N N + 1 1 

<AU: Kindly confirm whether “res.” has been correctly spelled out as “resonator”.>
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Summary
In this article, an alternative structure 
for the calculation of the SDFT, the 
oSDFT, was presented, which is based 
on the observer theory, a method taken 
from control theory. The core structure 
of the oSDFT is similar to the other 
SDFT methods, but it applies a recursive 
overall feedback branch, which allows 
the elimination of the feed-forward 
comb filter and its N-tap delay line, 
achieving long-term stability in contrast 
to other well-known SDFT methods. 
The various SDFT structures were also 
compared based on their memory and 
arithmetical requirements.

It was also shown that the oSDFT 
structure has a lower sensitivity to 
numerical imperfections compared to 
other SDFT structures. The oSDFT is 
stable for input signals containing ape-
riodic white noise as well, due to the 
control-loop feedback structure, and 
keeps its stability and behavior with 
fixed-point implementations as well.

The application of the oSDFT struc-
ture can be especially advantageous 
not only for the long-term stability but 
because a large percentage of the N  
DFT components are required to be 
calculated in a sliding manner. From a 
practical aspect, the oSDFT structure 
can be advantageously used as a tunable 
filter [10] or as a nonlinear adaptive fre-
quency estimator [11].
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Although highly optimized 
and efficient FFT 
algorithms are available, 
their operation remains 
block oriented with 
nonrecursive operations.

The basic idea behind 
the SDFT algorithm is to 
recursively calculate the 
DFT spectrum of the input 
stream.

With this described 
technique, the resonators 
became stable integrators 
performing simple 
averaging.

Independent from the 
chosen algorithms, N 
registers are required for 
storing the state variables 
of the resonators or the 
integrators.

The biggest advantage of 
these structures compared 
to the FFT-based block-
wise calculation is that 
the operational load can 
be distributed between the 
incoming samples, as the 
SDFT structure can operate 
continuously.


