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Abstract
In this paper a subclass of generalized P colony automata is defined that satisfies a property
which resembles the LL(k) property of context-free grammars The possibility of parsing the
characterized languages using a k symbol lookahead, as in the LL(k) parsing method for context-
free languages, is examined.

1. Introduction

The computational model called P colony is similar to tissue-like membrane systems. In P colo-
nies, multisets of objects are used to describe the contents of cells and the environment. These
multisets are processed by the cells in the corresponding colony using rules which enable the
evolution of the objects present in the cells or the exchange of objects between the environ-
ment and the cells. These cells or computing agents have a very restricted functionality: they
can store a limited amount of objects at a given time (the capacity of the cell) and thus they
can process a limited amount of information. For more information on P colonies, consult
summaries [12, 2].

P colony automata were introduced in [3]. They are called automata, since these variants of
P colonies accept string languages by assuming an initial input tape with an input string in
the environment. The available types of rules are extended by so-called tape rules. These
types of rules in addition to processing the objects as their non-tape counterparts, also read
the processed objects from the input tape.

Generalized P colony automata were introduced in [9] to overcome the difficulty that different
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tape rules can read different symbols in the same computational step. The main idea of this
computational model was to get the process of input reading closer to other kinds of membrane
systems, in particular to antiport P systems and P automata. The latter, introduced in [6] (see
also [5]) are P systems using symport and antiport rules (see [13]), describing string languages.
Generalized P colony automata were studied further in [11, 10].

A computation in this model defines accepted multiset sequences that are transformed into
accepted symbol sequences/ strings. Generalized P colony automata have no input string, but
there are tape rules and non-tape rules equally for evolution and communication rules. In a
single computational step, this system is able to read more than one symbol, thus reading a
multiset. This way generalized P colony automata are able to avoid the conflicts present in P
colony automata, where simultaneous usage of tape rules in a single computational step can
arise problems. After getting the result of a computation, that is, the accepted sequence of
multisets, the sequence is mapped to a string in a similar way as shown in P automata.

In [9], some basic variants of the model were introduced and studied from the point of view
of their computational power. In [11, 10] the investigations were continued by structuring the
previous results around the capacity of the systems, and different types of restrictions imposed
on the use of tape rules in the programs.

Since P colony automata variants accept languages, different types of descriptions of their
language classes are of interest. One possible research direction is to investigate their parsing
properties in terms of programs and rules of the (generalized) P colony automata. In this
paper, we study the possibility of deterministically parsing the languages characterized by
these devices. We define the so-called LL(k) condition for these types of automata, which
enables deterministic parsing with a k symbol lookahead as in the case of context-free LL(k)
languages. As an initial result, we show that using generalized P colony automata we can
deterministically parse context-free languages that are not LL(k) in the “original” sense.

An extended version of this short paper has been submitted for publication, see [4].

2. Preliminaries and Definitions

Let V be a finite alphabet, let the set of all words over V be denoted by V ∗, and let ε be the
empty word. We denote the cardinality of a finite set S by |S|, and the number of occurrences
of a symbol a ∈ V in w by |w|a.

A multiset over a set V is a mapping M : V → N where N denotes the set of non-negative
integers. This mapping assigns to each object a ∈ V its multiplicity M(a) in M . The set
supp(M) = {a | M(a) ≥ 1} is the support of M . If V is a finite set, then M is called a
finite multiset. A multiset M is empty if its support is empty, supp(M) = ∅. The set of finite
multisets over the alphabet V is denoted by M(V ). A finite multiset M over V will also be
represented by a string w over the alphabet V with |w|a = M(a), a ∈ V , the empty multiset
will be denoted by ∅.
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A genPCol automaton of capacity k and with n cells, k, n ≥ 1, is a construct

Π = (V, e, wE, (w1, P1), . . . , (wn, Pn), F )

where

• V is an alphabet, the alphabet of the automaton, its elements are called objects;

• e ∈ V is the environmental object of the automaton, the only object which is assumed to
be available in an arbitrary, unbounded number of copies in the environment;

• wE ∈ (V − {e})∗ is a string representing a multiset from M(V − {e}), the multiset of
objects different from e which is found in the environment initially;

• (wi, Pi), 1 ≤ i ≤ n, specifies the i-th cell where wi is (the representation of) a multiset over
V , it determines the initial contents of the cell, and its cardinality |wi| = k is called the
capacity of the system. Pi is a set of programs, each program is formed from k rules of the
following types (where a, b ∈ V ):

– tape rules of the form a
T→ b, or a

T↔ b, called rewriting tape rules and communication
tape rules, respectively; or

– nontape rules of the form a → b, or a ↔ b, called rewriting (nontape) rules and
communication (nontape) rules, respectively.

A program is called a tape program if it contains at least one tape rule.

• F is a set of accepting configurations of the automaton which we will specify in more detail
below.

A genPCol automaton reads an input word during a computation. A part of the input (possibly
consisting of more than one symbol) is read during each configuration change: the processed
part of the input corresponds to the multiset of symbols introduced by the tape rules of the
system.

A configuration of a genPCol automaton is an (n+1)-tuple (uE, u1, . . . , un), where uE ∈M(V −
{e}) is the multiset of objects different from e in the environment, and ui ∈M(V ), 1 ≤ i ≤ n,
are the contents of the i-th cell. The initial configuration is given by (wE, w1, . . . , wn), the initial
contents of the environment and the cells. The elements of the set F of accepting configurations
are given as configurations of the form (vE, v1, . . . , vn), where vE ∈ M(V − {e}) denotes a
multiset of objects different from e being in the environment, and vi ∈ M(V ), 1 ≤ i ≤ n, is
the contents of the i-th cell.

Let c = (uE, u1, . . . , un) be a configuration of a genPCol automaton Π, and let UE = uE ∪
{e, e, . . .}, thus, the multiset of objects found in the environment (together with the infinite
number of copies of e, denoted as {e, e, . . .}, which are always present). The sequence of
programs

(p1, . . . , pn) ∈ (P1 ∪ {#})× . . .× (Pn ∪ {#})

is applicable in configuration c, if the following conditions hold: (1) The selected programs
are applicable in the cells, (2) the symbols to be brought inside the cells by the programs are
present in the environment, (3) the set of selected programs is maximal.
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Let us denote the applicable sequences of programs in the configuration c = (uE, u1, . . . , un) by
Appc, that is,

Appc = {Pc = (p1, . . . , pn) ∈ (P1 ∪ {#})× . . .× (Pn ∪ {#}) | where Pc

is a sequence of applicable programs in the configuration c}.

A configuration c is called a halting configuration if the set of applicable sequences of programs
is the singleton set Appc = {(p1, . . . , pn) | pi = # for all 1 ≤ i ≤ n}.

Let c = (uE, u1, . . . , un) be a configuration of the genPCol automaton. By applying a se-
quence of applicable programs Pc ∈ Appc, the configuration c is changed to a configuration

c′ = (u′E, u
′
1, . . . , u

′
n), denoted by c

Pc=⇒ c′, if the following properties hold. (For a program
p, we denote by create(p), import(p), and export(p) the multisets of objects created by the
program through rewriting, brought inside the cell from the environment, and sent out to the
environment, respectively.)

• If (p1, . . . , pn) = Pc ∈ Appc and pi ∈ Pi, then u′i = create(pi) ∪ import(pi), otherwise, if
pi = #, then u′i = ui, 1 ≤ i ≤ n. Moreover,

• U ′E = UE −
⋃
pi 6=#,1≤i≤n import(pi)∪

⋃
pi 6=#,1≤i≤n export(pi) (where U ′E again denotes u′E ∪

{e, e, . . .} with an infinite number of copies of e).

Thus, in genPCol automata, we apply the programs in the maximally parallel way, that is, in
each computational step, every component cell nondeterministically applies one of its applicable
programs. Then we collect all the symbols that the tape rules “read”: this is the multiset read
by the system in the given computational step.

For any Pc sequence of applicable programs in a configuration c, let us denote the multiset of
objects read by the tape rules of the programs of Pc by read(Pc). Then we can also define the
set of multisets which can be read in any configuration of the genPCol automaton Π as

inc(Π) = {read(Pc) | Pc ∈ Appc}.

Remark 2.1 Although the set of configurations of a genPCol automaton Π can be infinite
(because the multiset corresponding to the contents of the environment is not necessarily finite),
the set inc(Π) is always finite.

A successful computation defines this way an accepted sequence of multisets: u1u2 . . . us, ui ∈
inci−1

(Π), for 1 ≤ i ≤ s, that is, the sequence of multisets entering the system during the steps
of the computation.

Let Π = (V, e, wE, (w1, P1), . . . , (wn, Pn), F ) be a genPCol automaton. The set of input sequen-
ces accepted by Π is defined as

A(Π) = {u1u2 . . . us | ui ∈ inci−1
(Π), 1 ≤ i ≤ s, and there is a configuration

sequence c0, . . . , cs, with c0 = (wE, w1, . . . , wn), cs ∈ F, cs halting,

and ci
Pci=⇒ ci+1 with ui+1 = read(Pci) for all 0 ≤ i ≤ s− 1}.
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Let Π be a genPCol automaton, and let f :M(V )→ 2Σ∗ be a mapping, such that f(u) = {ε}
if and only if u is the empty multiset. The language accepted by Π with respect to f is defined
as

L(Π, f) = {f(u1)f(u2) . . . f(us) ∈ Σ∗ | u1u2 . . . us ∈ A(Π)}.

Let V and Σ be two alphabets, and let MFIN(V ) ⊆ M(V ) denote the set of finite subsets
of the set of finite multisets over an alphabet V . Consider a mapping f : D → 2Σ∗ for some
D ⊆ MFIN(V ). We say that f ∈ FTRANS, if for any v ∈ D, we have |f(v)| = 1, and we
can obtain f(v) = {w}, w ∈ Σ∗ by applying a deterministic finite transducer to any string
representation of the multiset v (as w is unique, the transducer must be constructed in such
a way that all string representations of the multiset v as input result in the same w ∈ Σ∗ as
output, and moreover, as f should be nonerasing, the transducer produces a result with w 6= ε
for any nonempty input).

Besides the above defined class of mappings, we also use the so-called permutation mapping.
Let fperm :M(V )→ 2Σ∗ where V = Σ be defined as follows. For all v ∈M(V ), we have

fperm(v) = {aσ(1)aσ(2) . . . aσ(s) | v = a1a2 . . . as for some permutation σ}.

3. P Colony Automata and the LL(k) Condition

Let U ⊂ Σ∗ be a finite set of strings over some alphabet Σ. Let us denote for some k ≥ 1, the
set of length k prefixes of the elements of U by FIRSTk(U), that is, let

FIRSTk(U) = {prefk(u) ∈ Σ∗ | u ∈ U}

where prefk(u) denotes the string of the first k symbols of u if |u| ≥ k, or prefk(u) = u
otherwise.

Definition 3.1 Let Π = (V, e, wE, (w1, P1), . . . , (wn, Pn), F ) be a genPCol automaton, let f :
M(V )→ 2Σ∗ be a mapping as above, and let c0, c1, . . . , cs be a sequence of configurations with
ci =⇒ ci+1 for all 0 ≤ i ≤ s− 1.

We say that the P colony Π is LL(k) for some k ≥ 1 with respect to the mapping f , if for any
two distinct sets of programs applicable in configuration cs, Pcs , P

′
cs ∈ Appcs with Pcs 6= P ′cs ,

the next k symbols of the input string that is being read determines which of the two sequences
are to be applied in the next computational step, that is, the following holds.

Consider two computations

cs
Pcs=⇒ cs+1

Pcs+1
=⇒ . . .

Pcs+m
=⇒ cs+m+1, and cs

P ′cs=⇒ c′s+1

Pc′s+1
=⇒ . . .

Pc′
s+m′

=⇒ c′s+m′+1

where ucs = read(Pcs) and ucs+i
= read(Pcs+i

) for 1 ≤ i ≤ m, and similarly u′cs = read(P ′cs)
and uc′s+i

= read(Pc′s+i
) for 1 ≤ i ≤ m′, thus, the two sequences of input multisets are

ucsucs+1 . . . ucs+m and u′csuc′s+1
. . . uc′

s+m′
.
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Assume that these sequences are long enough to “consume” the next k symbols of the input
string, that is, for w and w′ with

w ∈ f(ucs)f(ucs+1) . . . f(ucs+m) and w′ ∈ f(u′cs)f(uc′s+1
) . . . f(uc′

s+m′
),

either |w| ≥ k and |w′| ≥ k, or if |w| < k (or |w′| < k), then cs+m+1 (or c′s+m′+1) is a halting
configuration.

The P colony Π is LL(k), if for any two computations as above, FIRSTk(w)∩FIRSTk(w
′) = ∅.

Let us illustrate the above definition with an example.

Example 3.2 Let Π = ({a, b, c, d, f, g, e}, e, ∅, (ea, P1), F ) where

P1 = {〈e→ b, a
T↔ e〉, 〈e→ e, b

T↔ a〉, 〈e→ c, a
T↔ e〉, 〈e→ f, a

T↔ e〉,
〈e→ d, c

T↔ b〉, 〈b→ c, d
T↔ e〉, 〈e→ g, f

T↔ b〉, 〈b→ f, g
T↔ e〉} and

F = {(v, ce), (v, fe) | v ∈ V ∗, b 6∈ v}.

The language characterized by Π is

L(Π, fperm) = {a} ∪ {(ab)na(cd)n | n ≥ 1} ∪ {(ab)na(fg)n | n ≥ 1}.

To see this, consider the possible computations of Π. The initial configuration is (∅, ea) and
there are three possible configurations that can be reached. Two of these are non-accepting
states, but the derivations cannot be continued, so let us consider the third one (we denote by
⇒u a configuration change during which the multiset of symbols u was read by the automaton).

(a, be)⇒b (b, ea)⇒a (ba, be)⇒b (bb, ea)⇒a . . .⇒b (bi, ea).

At this point, the computation can follow two different paths again, either

(bi, ae)⇒a (bia, ec)⇒c (bi−1ac, db)⇒d (bi−1acd, ce)⇒c . . .⇒d (acidi, ce),

or

(bi, ae)⇒a (bia, ef)⇒f (bi−1af, gb)⇒g (bi−1afg, fe)⇒f . . .⇒g (af igi, fe).

In the first phase of the computation, the system produces copies of b and sends them to the
environment, then in the second phase these copies of b are exchanged to copies of cd or copies
of fg. The system can reach an accepting state when all the copies of b are used, that is, when
an equal number of copies of ab and either of cd or of fg were produced.

Note that the system satisfies the LL(1) property, the symbol that has to be read, in order to
accept a desired input word, determines the set of programs that has to be used in the next
computational step.
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Let us denote the class of context-free LL(k) languages by L(CF,LL(k)) (see for example
the monograph [1] for more details) and the languages characterized by genPCol automata
satisfying the above defined condition with input mapping of type fperm or f ∈ TRANS, as
LX(genPCol,LL(k)), X ∈ {perm, TRANS}.

The following statement can be presented.

Theorem 3.3 There are context-free languages in LX(genPCol,LL(1)), X ∈ {perm, TRANS},
which are not in L(CF,LL(k)) for any k ≥ 1.

Proof. The language L(Π, fperm) ∈ Lperm(genPCol,LL(1)) from Example 3.2 is not in
L(CF,LL(k)) for any k ≥ 1. If we consider the mapping f1 ∈ TRANS, f1 : {a, b, c, d, f, g} →
{a, b, c, d, f, g} with f1(x) = x for all x ∈ {a, b, c, d, f, g}, then L(Π, f1) = L(Π, fperm), thus,
LTRANS(genPCol,LL(1)) also contains the non-LL(k) context-free language. 2

4. Conclusions

P systems and their variants are able to describe powerful language classes, thus their applica-
bility in the theory of parsing or analyzing syntactic structures are of particular interest, see,
for example [7, 8]. In [7], so-called active P automata (P automata with dynamically chan-
ging membrane structure) were used for parsing, utilizing the dynamically changing membrane
structure of the P automaton for analyzing the string. In this paper we studied the possibi-
lity of deterministically parsing languages characterized by P colony automata. We provided
the definition of an LL(k)-like property for (generalized) P colony automata, and showed that
languages which are not LL(k) in the “original” context-free sense for any k ≥ 1 can be charac-
terized by LL(1) P colony automata with different types of input mappings. The properties of
these language classes for different values of k and different types of input mappings are open
to further investigations.
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Research, Development and Innovation Office of Hungary, NKFIH, grant no. K 120558. The
work of K. Kántor and Gy. Vaszil was supported in part by the National Research, Development
and Innovation Office of Hungary, NKFIH, grant no. K 120558 and also by the construction
EFOP-3.6.3-VEKOP-16-2017-00002, a project financed by the European Union, co-financed by
the European Social Fund.

References

[1] A. V. AHO, J. D. ULMANN, The Theory of Parsing, Translation, and Compiling . 1,
Prentice-Hall, Englewood Cliffs, N.J., 1973.
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