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Abstract

A novel algorithm is proposed for computing matrix-vector products Aαv, where A is a symmetric positive semidefinite
sparse matrix and α > 0. The method can be applied for the efficient implementation of the matrix transformation
method to solve space-fractional diffusion problems. The performance of the new algorithm is studied in a comparison
with the conventional MATLAB subroutines to compute matrix powers.
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1. Introduction

In the last two decades, the numerical simulation of (space-) fractional diffusion became an important topic in
the numerical PDE’s starting with the poineering paper [1]. Fractional dynamics was observed in a wide range of life
sciences [2], earth sciences [3] and financial processes [4]. A frequently used and meaningful mathematical model [5]
of these phenomena is offered by the fractional Laplacian operator [6]. For solving these problems numerically, the so-
called matrix transformation method was proposed in [7] and [8]. Accordingly, a mathematical analysis was presented
to prove the convergence of this simple approach in case of finite difference [9] and finite element discretization.

The bottleneck of the matrix transformation approach is the computation of the fractional power of the matrices
arising from the finite element or the finite difference discretization of the negative Laplacian operators. This is why
many authors use a more technical approach [6].

Several algorithms were proposed to compute this matrix power. We refer to the latest approach in [10] and its
reference list on the earlier developments. Due to its importance, MATLAB has also a built-in subroutine mpower.m.

To bypass this costly procedure, the aim of the present article is to develop a simple and fast numerical method
to compute matrix-vector products of type Aαv. This idea was also used in [11] by developing the frequently used
Matlab subroutine expmv.m to compute matrix exponential-vector products.

1.1. Mathematical preliminaries
The main motivation of our study is the efficient numerical solution of the initial-boundary value problem{

∂tu(t,x) = −(−∆)αu(t,x) t ∈ (0, T ), x ∈ Ω
u(0,x) = u0(x) t ∈ (0, T ), x ∈ Ω,

(1)

where ∆ = ∆D or ∆ = ∆N denotes the Dirichlet or the Neumann Laplacian on the bounded Lipschitz domain Ω and
u0 ∈ L2(Ω) is given. Note that −∆−1

D : L2(Ω)→ L2(Ω) and −∆−1
N : L2(Ω)/R→ L2(Ω) are compact and self-adjoint,

so that its fractional power makes sense.
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According to the matrix transformation method, (1) can be semidiscretized as

∂tu(t) = −(A)αu(t) t ∈ (0, T ) (2)

where A is the discretization of the operator −∆D or −∆N either with finite differences or with finite elements.
Accordingly, A ∈ Rn×n is a symmetric positive semidefinite sparse matrix, v ∈ Rn is an arbitrary vector and we

consider the case of α ∈ (0, 1). The computational challenge is then to compute the products Aαv, when the solution
of (2) is approximated with some explicit time stepping.

If the spectral decomposition of A is known, such that x1,x2, . . . ,xn are the eigenvectors and λ1 ≤ λ2 ≤ · · · ≤
λn the corresponding eigenvalues of A then Aα has the same eigenvectors, while the corresponding eigenvalues are
λα1 , λ

α
2 , . . . , λ

α
n. Accordingly, if v = a1x1 + a2v2 + · · ·+ anxn then

Aαv = a1λ
α
1 x1 + a2λ

α
2 v2 + · · ·+ anλ

α
nxn. (3)

2. Main results

2.1. Motivation and main idea
For the first glance, the easiest way to approximate the matrix power Aα is to truncate the power series

Aα = (I +A− I)α =
∞∑
j=0

(
α

j

)
(A− I)j ,

which is satisfied for α > 0 if σ(A− I) ≤ 1, where σ denotes the spectral radius. To ensure this, we rather compute

Aα =
(
σ(A)

2

)α( 2A
σ(A)

)α
=
(
σ(A)

2

)α ∞∑
j=0

(
α

j

)(
2A
σ(A)

− I
)j

. (4)

Using the relation A ≥ 0, for an arbitrary eigenvalue λ̃ of 2A
σ(A) − I we have that −1 =≤ λ̃ ≤ σ(2A)

σ(A) − 1 = 1, so that
the binomial series in (4) converges for non-singular matrices A. The convergence, however, is very slow due to the
smallest and largest eigenvalues of A, which are transformed near to −1 and 1, respectively.

The basic idea is then to apply a spectral decomposition to A: in the subspace of Rn corresponding to the smallest
and largest eigenvalues of A, we apply the direct spectral definition in (3), while in the orthocomplement, the expansion
(4) will converge satisfactorily.

2.2. Method
The decomposition can be formulated by introducing an orthogonal projection Q : Rn → Rk, which maps to the

subspace span
{
x1,x2, . . . ,xj ,xn−(k−j−1), . . . ,xn−1,xn

}
with λ1 ≤ λ2 ≤ · · · ≤ λj ≤ λn−(k−j−1) ≤ · · · ≤ λn, where j

and k are some parameters. Also, henceforth we focus to the computation of Aαv, which can be given as

Aαv =
(
σ(A)

2

)α( 2A
σ(A)

)α
v =

(
σ(A)

2

)α(( 2A
σ(A)

)α
Qv +

(
2A
σ(A)

)α
(v −Qv)

)
. (5)

2.2.1. Computation of the first term in (5)
The projection matrix Q in (5) is defined with Q = XXT and the projection Qv can be given as

Qv = XXTv = a1x1 + · · ·+ ajxj + an−(k−j−1)xn−(k−j−1) + · · ·+ anxn (6)

with some coefficients a1, a2, . . . , an, where the matrix

X = [x1,x2, . . . ,xj ,xn−(k−j−1), . . . ,xn−1,xn] ∈ Rn×k (7)

is composed from the eigenvectors corresponding to the largest and smallest eigenvalues of A. Observe that, according
to the spectral definition of the matrix power in (3), we have

AαQv = λα1 a1x1 + · · ·+ λαj ajxj + λαn−(k−j−1)an−(k−j−1)xn−(k−j−1) + · · ·+ λαnanxn = XΛXTv, (8)

where Λ is a diagonal matrix with the entries λ1, . . . , λj , λn−(k−j−1), . . . , λn. This gives the first term in (5).
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2.2.2. Computation of the second term in (5)
We should simply apply here (4) to get(

2A
σ(A)

)α
(v −Qv) =

∞∑
n=0

(
α

n

)(
2A
σ(A)

− I
)n

(v −Qv) ≈
K∑
n=0

(
α

n

)(
2A
σ(A)

− I
)n

(v −Qv), (9)

where the vector Qv was already computed in (6). To accelerate the computation in (9) further, we observe that(
α

n+ 1

)(
2A
σ(A)

− I
)n+1

(v −Qv) =
α− j
n+ 1

(
2A
σ(A)

− I
)
·
[(
α

n

)(
2A
σ(A)

− I
)n

(v −Qv)
]
,

i.e., a new term in (9) can be computed using only one sparse matrix-vector multiplication.

2.3. Analysis: Estimation for the number of terms in the Taylor expansion (9)
The accuracy of the approximation in (9) will be given using the error indicator

µmax =
∥∥∥∥( 2A

σ(A)
− I
)

(I −Q)
∥∥∥∥ = max

{∣∣∣∣2λj+1

σ(A)
− 1
∣∣∣∣ ; ∣∣∣∣2λn−k+jσ(A)

− 1
∣∣∣∣} = max

{
1− 2λj+1

σ(A)
;

2λn−k+j
σ(A)

− 1
}
,

which measures the error of the truncation in (9) and can be decreased by choosing suitable (large enough) parameters
j and k.

Theorem 1. Assume that the eigenvalues for X in (7) and the eigenvectors for Λ in (8) are computed exactly. Then

an upper bound for computational error in Aαv is the term

α

(
σ(A)

2

)α exp (−(K + 1)(1− µmax))
(K + 1)(1− µmax)

‖v‖.

In practice, to ensure a precision ε of Aαv , the number K of the terms in (9) should satisfy

K ≤ 1
1− µmax

G
(
ε

α

(
2

σ(A)

)α)
− 1,

where G is the inverse of the function R+ 3 s 7→ e−s

s .

Proof: The computational error in Aαv can be expressed in the following form.

Aαv −

AαQv +
(
σ(A)

2

)α K∑
j=0

(
α

j

)(
2A
σ(A)

− I
)j

(v −Qv)


=

Aα − (σ(A)
2

)α K∑
j=0

(
α

j

)(
2A
σ(A)

− I
)j (v −Qv) =

(
σ(A)

2

)α ∞∑
j=K+1

(
α

j

)(
2A
σ(A)

− I
)j

(I −Q)v.

(10)

Therefore, we first derive an upper bound for the matrix series in the last line. Observe that(
2A
σ(A)

− I
)j

(I −Q)v =
(

2A
σ(A)

− I
)j

(I −Q)jv =
((

2A
σ(A)

− I
)

(I −Q)
)j

v. (11)

Since we use symmetric matrices, the matrix norm ‖ · ‖ in the following refers both to the spectral norm and the
l2-norm. Since 0 < α < 1, we easily get the inequality∣∣∣∣(αj

)∣∣∣∣ =
∣∣∣∣( α

j − 1

)∣∣∣∣ ∣∣∣∣α− j + 1
j

∣∣∣∣ ≤ ∣∣∣∣( α

j − 1

)∣∣∣∣ j − 1
j
≤
∣∣∣∣( α

j − 2

)∣∣∣∣ j − 1
j

j − 2
j − 1

≤ · · · ≤
∣∣∣∣(α0

)∣∣∣∣ αj =
α

j
,
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which can be used in (10) with (11) to get the following estimate

(
σ(A)

2

)α ∥∥∥∥∥∥
∞∑

j=K+1

(
α

j

)(
2A
σ(A)

− I
)j

(I −Q)

∥∥∥∥∥∥ ≤
(
σ(A)

2

)α
α

K + 1

∥∥∥∥∥∥
∞∑

j=K+1

(
2A
σ(A)

− I
)j

(I −Q)

∥∥∥∥∥∥
≤
(
σ(A)

2

)α
α

K + 1

∞∑
j=K+1

∥∥∥∥( 2A
σ(A)

− I
)

(I −Q)
∥∥∥∥j ≤ (σ(A)

2

)α
α

K + 1

∞∑
j=K+1

µjmax

=
(
σ(A)

2

)α
α

K + 1
· µK+1

max

1− µmax
=
(
σ(A)

2

)α 1
(K + 1)(1− µmax)

(
(1− (1− µmax))

1
1−µmax

)(K+1)(1−µmax)

≤
(
σ(A)

2

)α (K + 1)
(1− µmax)

exp (−(K + 1)(1− µmax)) ≤ α
(
σ(A)

2

)α exp (−(K + 1)(1− µmax))
(K + 1)(1− µmax)

,

(12)

as stated in the theorem. �

Example. If A is the five-point discretization of ∆N on (0, 1)2, then for h = 1
60

σ(A)
2
≈

8
h2

2
=

4
h2
≈ 14590.

Ignoring the first eight eigenvalues, λ9 is approximately (2π)2 + (2π)2 ≈ 79 so that 1 − µmax ≤ λ9
2

σ(A) ≈ 0.005412.
Therefore, the condition

α

(
σ(A)

2

)α exp (−(K + 1)(1− µmax))
(1− µmax)(K + 1)

≤ 10−5

gives with α = 0.3 that for this precision, we should have

exp (−0.005412(K + 1))
0.005412(K + 1)

≤ 10−5 1
0.3 · 145900.3

≈ 1.878 · 10−6,

so that 0.005412(K + 1) ≈ 10.81, i.e. we need K ≈ 1996. This corresponds to line 3 (right) in Table 1.

2.4. Numerical experiments
In the experiments, the matrix A is the five-point finite difference approximation of −∆N on (0, 1)d using N

uniformly distributed grid points in one direction. We measure the CPU time and the memory usage of the different
approaches. To investigate the accuracy, we use the error indicator r = ‖A1−αAαv − Av‖max with a random vector
v. The CPU time and the error indicator are computed from the average of ten independent runs.

2.4.1. Experimental analysis of our method
The main parameters in the algorithm of Section 2.2 are the following. N : the number of the grid points in one

direction; k: the number of the eigenvectors used to the computation in the first term (6); j: the number of the
smallest eigenvectors among the k extreme ones; K: the number of the terms in the Taylor approximation in (9); res:
the residual in chdav.m for approximating the eigenvectors and eigenvalues (the default value is 10−8).

Table 1: Performance of the method in Section 2.2 using the error indicator r with N = 60, d = 2 and α = 0.3.
k j K time [s] r res k j K time [s] r res
20 10 20 0.544 13.3 10−8 40 20 2000 1.21 1.88 · 10−4 10−8

20 10 200 0.526 9.75 · 10−3 10−8 40 20 20000 1.78 2.36 · 10−4 10−8

20 10 2000 0.568 1.88 · 10−4 10−8 16 8 2000 0.44 1.72 · 10−5 10−14

20 10 20000 1.23 2.00 · 10−4 10−8 12 6 2000 0.36 2.05 · 10−5 10−14

20 10 200000 8.88 1.96 · 10−4 10−8 16 8 20000 1.16 1.91 · 10−10 10−14
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The experiments confirm some of our expectations:
It is necessary to compute both the smallest and the largest eigenvalues. If the set {2λj/σ(A)− 1 : j = 1, 2, . . . , n} is
symmetric, then the optimal choice is j = k

2 .
The convergence of the Taylor series in (9) is slow: we need at least a few hundred terms to get an acceptable

accuracy. See lines 1-4 (left) in Table 1. The result in line 3 (left) confirms our estimation in the example.
The optimal number of k is a few tens. For larger values of k, the computation becomes slow and the inaccurate

eigenstructure results in a relatively large error contributions to (8). The decomposition in (5) becomes then also
inaccurate, such that increasing k further gives an even worse approximation. See the lines for k = 40 in Table 1.

A cornerstone of the algorithm in Section 2.2 is an efficient eigensolver. We compared the performance of the
built-in Matlab subroutine eigs.m and the special subroutines jdcg.m (see [12]), chdav.m (see [13] and its improved
version bchdav.m. For matrices of moderate sizes (up to a few thousands of non-zero elements), all subroutines
perform equally well. For large 2-dimensional cases, eigs.m became the most efficient with an appropriate setting of
the tolerance and the iteration number in the algorithm. For large 3-dimensional cases, if multiple eigenvalues are
expected, we advice to use the bchdav.m subroutine. An experimental comparison of the effect of these eigensolvers
can be found in Table 2.

Table 2: Performance of the method in Section 2.2 using different eigensolvers using the error indicator r with α = 0.3.
N eigs.m jdcg.m chdav.m bchdav.m

r time [s] r time [s] r time [s] r time [s]
2-dimensional case

20 2.9 · 10−12 0.26 1.9 · 10−12 0.27 2 · 10−12 0.25 1.8 · 10−12 0.28
40 8.6 · 10−12 0.44 1.1 · 10−11 1.4 1.2 · 10−12 0.94 1.1 · 10−11 0.76
100 6.7 · 10−12 4.9 5.3 · 10−3 4.3 1.7 · 10−10 10 1.3 · 10−10 11.2

3-dimensional case
20 3.1 · 10−12 2.3 3.7 · 10−12 3.9 3.7 · 10−12 2.4 3.7 · 10−12 2
30 1 · 10−11 13.8 9.9 · 10−11 18.9 7.6 · 10−12 11.8 8.9 · 10−12 15
40 1.8 · 10−11 86 1.9 · 10−11 69 1.8 · 10−11 43 1.9 · 10−11 38

2.4.2. Comparison with the standard method in 3-dimensional case
Since the real computational challenge is to deal with 3-dimensional problems, we focus now on this case. Our

approach to compute Aαv directly is compared now with the standard way: computing Aα first (over time t1) using
the mpower.m subroutine and multiplying Aα with v (over time t2) for α = 0.3. Results are displayed in Table 3.

Table 3: Performance of the method in Section 2.2 with different parameters using the error indicator r with d = 3 and α = 0.3.
conventional method proposed method

N t1[s] t2[s] memory[MB] precision j time[s] memory[MB] precision
10 0.28 0.002 16 2.1 · 10−11 8 0.132 0.12 5.2 · 10−12

20 145.9 0.80 1 · 103 5.9 · 10−10 8 0.84 0.99 2.6 · 10−11

25 1251 128 2.6 · 103 4.5 · 10−11 8 3.32 5 7.9 · 10−12

30 7.6 · 105 370 1.5 · 104 1.1 · 10−11 8 6.75 8 8.2 · 10−11

35 - - overflow - 8 8.84 16 5.85 · 10−11

40 - - overflow - 8 20.68 30 6.83 · 10−7

3. Conclusions

The present algorithm to compute matrix power-vector products completes the favor of using matrix transformation
methods, which delivers an elegant and easily accessible scheme and optimal convergence rate for the finite element
and finite difference discretization of space-fractional diffusion problems. Also, as pointed out in the present work, a
fast numerical procedure can be constructed to solve the fully discrete schemes using explicit time stepping.
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