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Abstract 

The present paper describes the merits of the combined neutron-based elemental analysis 

and neutron imaging techniques, called prompt-gamma activation imaging – neutron 

tomography (PGAI-NT), and illustrates its application to cultural heritage science with 

relevant case studies. The approach is proven to be best applicable to samples with 

corroded/layered/gilded/painted/coated structures where the surface weighted response 

would bias the analysis results obtained with simpler, more widespread, but less 

representative techniques (such as X-ray fluorescence spectroscopy or laser-ablation ICP-

MS), as well as to answer questions related to the inner composition of a sealed object. 
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Highlights 

 Integration of neutron imaging and elemental analysis functionalities into a single 

instrument, NIPS-NORMA at the Budapest Neutron Centre (BNC) 

 Synergetic effects of the multi-technique approach at the data interpretation stage 

 Non-destructive analysis of archaeological iron, bronze and pottery was completed 
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1. Introduction  

1.1 Evolution of neutron-analytical techniques towards use by the cultural heritage 

community 

One of the priorities at the Budapest Neutron Center (BNC) is to promote the collaboration 

between the cultural heritage (CH) experts and neutron scientists. This has been facilitated 

by several EU-funded transnational access (TNA) programs (NMI3, NMI3-II, 

CHARISMA, IPERION CH) as well as method-development projects (e.g. EU FP6 NEST 

ANCIENT CHARM) (Belgya et al., 2008b; Giorini et al., 2009; Schulze et al., 2010). 

The EU FP7 CHARISMA and EU H2020 IPERION CH projects offer integrated access to 

several instruments located on a single campus (e.g. at BNC: imaging at RAD (Z Kis et 

al., 2015) or NORMA (Z. Kis et al., 2015), elemental analysis at PGAA (Szentmiklósi et 

al., 2010) or NIPS (Szentmiklósi et al., 2013), and neutron diffraction at ToF-ND (Káli et 

al., 2007)), or even at different radiation sources, such as neutrons, ion beams and 

synchrotron radiation. An innovative question-answering approach, a user “welcome 

desk”, and the active support by the neutron experts throughout the entire workflow made 

the cultural heritage users able to answer many questions by use of neutron methods. 

There has been a second aspect of evolution at the facility level, also driven by the needs 

of the user community. Neutron techniques for elemental analysis and diffraction were 

originally developed to deal with point like, or at least regularly shaped, pure and 

homogeneous samples (Mackey et al., 1996), (Kudejova et al., 2015). In particular, prompt-

gamma activation analysis (PGAA) (Molnár, 2004) has always been an excellent technique 

for the fully non-destructive characterization of valuable (and preferably homogeneous) 

artifacts, such as stone tools, glassware, pottery, bronze alloys, and coins. This research 

has resulted in over one hundred publications in this field (Szentmiklósi et al., 2016). A 

significant proportion of the cultural heritage samples are, however, neither regular-shaped 

nor homogeneous, e.g. painted ceramics, precious stone inlays of metals, gilding, surfaces 

with corrosion or patina. To make PGAA capable of analyzing such objects, an extension 

of the base technique was needed, where instead of bulk average composition a local 
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elemental analysis is done and the composition determined is linked to a definite part of 

the object.  

Another prominent technique, neutron imaging is perfect to reveal the internal structure of 

the heterogeneous objects (Lehmann, 2017; Lehmann et al., 2017; Schillinger et al., 2018; 

Szilágyi et al., 2016), with a spatial resolution far better than what neutron-based elemental 

analysis can ever offer. It cannot, however, provide unambiguous evidence about the 

materials used, since by coincidence more than one material can have the same 

macroscopic attenuation property. An object’s internal structure and its production 

technology can sometimes be understood only if multi-modality imaging (Thermal neutron 

vs. cold neutron, Neutron vs. X-ray imaging) is applied. 

1.2 Best practices, synergies and complementarities 

Experience has showed that a multi-technique approach (Edge et al., 2015; Kasztovszky et 

al., 2016; Kiss et al., 2015), even if they carried out separately, offers synergies when 

interpreting the results. E.g., for alloys with more than two components, like ancient bronze 

artefacts, Vergard's law for binary alloys (Vergard, 1921) is not applicable. It can be 

extended to ternary alloys if the object is classified to a proper subcategory, such as lead-

bronze, brass, tin-bronze, where different calibration curves apply (Sidot et al., 2005). With 

the information on the bulk average composition from a PGAA experiment, this can be 

done successfully (Gliozzo et al., 2017). Conversely, oxygen is hard to quantify in corroded 

iron by PGAA due to the low analytical sensitivity for oxygen, whereas the diffraction data 

can provide the experimental team with information about phases and proportions of 

metallic iron, oxides and hydroxide.  

Reliable bulk elemental composition from PGAA or in-beam NAA can also be used on a 

routine basis to keep the activation risk of subsequent experiments under control (Kardjilov 

and Festa, 2017). For instance, the activity of 1 gram of Cu, Au, Sb or Mn irradiated for 3 

hours in a beam of 108 cm-2 s-1 thermal-equivalent slow-neutron flux (typical for PGAA) 

decays below the legal clearance limit within 24 hours. However, if the same material 

would be exposed to neutrons at a beamline with a significant epithermal component (e.g. 
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at RAD station) for 10 hours during a full tomography, the sample would remain active for 

two weeks due to Sb-122 and Au-198 isotopes (with half-lives of 2.7 days and significant 

resonance integrals). This has to be considered when planning the experimental work, as 

the precious objects can be borrowed from museums only for a limited time and they have 

to be declared inactive by or shortly after the end of the user’s stay at the neutron center. 

When applying different neutron instruments at different beamlines, or even at separate 

neutron centers, to the same CH object, the sampling volumes are not necessarily 

geometrically coincident and the penetration depths of the various radiations might differ 

(fast/thermal/cold/monochromatic neutrons, X-rays, charged particles), making inexact the 

merging of the available data. So there is a clear advantage to integrate multiple 

functionalities into a single instrument and analyze the object in several ways at once at 

the same beamline, in the same position, but with multiple means of detection. This paper 

presents the recent efforts to integrate the non-destructive, position sensitive elemental 

analysis (prompt gamma activation imaging, PGAI) with neutron imaging (radiography, 

NR or tomography, NT) (Belgya et al., 2008b, 2008a) at the NIPS-NORMA station (Z. Kis 

et al., 2015) of the BNC.  

2. Experimental 

The Budapest PGAA lab has 20 years of experience with analysis of various CH objects. 

Most samples with masses of a few grams and size of a few cm could fit well into our 

sample chamber, and, thanks to its modular structure, it can be partially taken apart to 

accommodate objects up to 50 cm in diameter. The extension of this well-established 

technique towards non-homogeneous samples was facilitated by making simultaneous use 

of a well-shielded gamma spectrometer, a neutron imaging camera placed downstream and 

a computer-controlled sample stage, all aligned around the isocentre (the geometrical 

intersection of the beam axis, the perpendicularly placed gamma-detector’s symmetry axis 

and the vertical axis of the rotation stage of the sample positioner). PGAI-NT is therefore 

a combination of neutron imaging and element analysis, where the image is used i) as a 

visual feedback for sample positioning, ii) as a link between the structure and the local 
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composition, as well as iii) for correction for large-sample effects in non-destructive 

elemental analysis of non-homogeneous objects. 

It is often more time-effective to avoid the point-wise scan of the entire object (Belgya et 

al., 2008b) with a few mm-resolution and to probe selectively only certain well-defined 

parts, e.g. regions of interest in the 3D space. This approach is called 

Radiography/Tomography-driven PGAI. If a real object is made of only a few distinct 

homogeneous parts (e.g. a restoration patch on a restored object), then localized prompt-

gamma measurements made only at a few points could already be conclusive.  

NIPS-NORMA (Z. Kis et al., 2015), the completely redesigned successor of the Ancient 

Charm PGAI-NT pilot setup (Szentmiklósi et al., 2009), was commissioned in 2012 to 

become the first permanent and routinely operating PGAI-NT facility in the world. The 

major technical features of the NIPS-NORMA station have been published (Z. Kis et al., 

2015; Szentmiklósi et al., 2013); here only the most important facts are summarized. The 

samples can be accommodated in a sample chamber with dimensions of 200×200×200 

mm3, and irradiated by cold neutrons (flux: 2.7×107 cm-2 s-1
, beam cross-section up to 

43×43 mm2, beam divergence (L/D ratio): 233 – 1833). The images are taken with an 

Andor iKon-M camera with 16 bit bin depth and typical spatial resolution of 230 m. The 

prompt-gamma radiation is detected with a 23%-efficient, Compton suppressed high-purity 

germanium detector system placed inside 100–150 mm thick lead gamma-ray shielding. A 

neutron slit can shape the impinging beam to any rectangular form. 

The projections are flat-field and dark-image corrected and reconstructed with the 

OCTOPUS 8.9 software (Cnudde and Vlassenbroeck, 2017). Afterwards, the 3D rendering 

and visualization is performed using VG Studio MAX 3.1 (Volume Graphics, 2017). The 

gamma spectra are evaluated with Hypermet-PC (Fazekas et al., 1996) or with PeakFit 

(Szentmiklósi, 2017) if batch processing is required, and the elemental concentrations are 

calculated with the Excel macro ProSpeRo (Révay, 2009). 
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3. Results and discussion 

3.1.Analysis of archaeological iron 

In the very first cultural-heritage-related study of the newly constructed NIPS-NORMA 

station the earliest known iron artefacts, three small beads dated to 3200 BC, from Gerzeh, 

Egypt, presently owned by the University College of London, Petrie Museum of 

Egyptology (Inv. No: UC10738, UC10739 and UC10740), were investigated. We have 

demonstrated with the detection of specific element signatures that these beads were made 

of meteoritic iron, and shaped by hammering the metal into thin sheets before rolling them 

into tubes (Rehren et al., 2013). The study revealed the advantages of neutron and 

complementary X-ray methods to determine the nature of the material even after complete 

corrosion of the iron metal. Our conclusions were later confirmed by Johnson et al. 

(Johnson et al., 2013) using X-ray based techniques only.  

A similar methodology was used in another study, where it was possible to establish a 

correlation between the longitudinal chlorine profile and the degree of corrosion in 

archaeological iron nails (Watkinson et al., 2014). After excavation, oxidation forms 

ferrous chloride and hydroxide, which cause cracking, fragmentation and break-up of the 

objects. The thick corrosion layer and the intact iron core were easy to separate in the 3D 

neutron images, much more recognizable than in X-ray radiograms, allowing us to 

correlate the corroded layer’s thickness with the higher local chlorine content. This was a 

clear indication about the driving force of the corrosion. So the experiment confirmed that 

the PGAI-NT technique provides comparable results to the previously used chlorine-

analysis approach by ion-selective electrodes, but in a non-destructive way. 

3.2.Analysis of sealed pottery 

Neutron techniques have significant advantages in the analysis of archaeological materials, 

including greater penetration depth and lower elemental detection limits, over other 

modalities, not only for heavy-metals, but already for lower-Z materials, found e.g. in 

ceramics and organics. A good example is an Eighteenth Dynasty (XVth c. BC) Egyptian 

sealed pottery vessel stored at the Museum of Aquitaine (Bordeaux, France, inventory 
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number 8608) that has been investigated using Terahertz-frequency (THz) electromagnetic 

radiation, X-rays and neutrons. The internal mobile content of the pottery was identified 

using neutrons as dried organic material, whereas the bottle sealing was found to contain 

an external red clay layer on the top of an internal bunch of linen (Abraham et al., 2014). 

The other two modalities suffered either from missing contrast, or from missing resolution; 

clearly the neutron imaging provided the most useful visualization. 

3.3.Analysis of archaeological bronzes 

3.3.1. The South-Levantine bronze sculpture: The Naked Goddess 

The Collection of Egyptian Antiquities at the Museum of Fine Art in Budapest possesses 

a statuette composed of a naked goddess with palm trees and sitting monkeys on both sides 

(Inv. No. 2007.2-E), with suspected South-Levantine origin. Based on the visual 

appearance and religious iconography of the object it was dated to the Late Bronze Age I 

(1550-1400 BC). It was suspected that its broken palm stubs are filled with an iron-

containing material, possible with meteoritic origin, to emphasize its celestial nature. The 

goals of the study were to determine the elemental composition, to assess whether the 

different parts share the same composition (i.e. one-step manufacturing) or not, and to 

identify the related parts within the composition. The object was analyzed with PGAI for 

bulk composition (Maróti et al., 2017), neutron radiography and neutron tomography for 

its structure and spatial inhomogeneity (Maróti et al., 2017) and with hhXRF (Innov-X 

Delta Premium handheld XRF spectrometer (Olympus, 2011), using its Alloy Plus mode) 

for the first-glance, rapid material identification needed to optimize the neutron experiment 

and determine the surface composition. Literature suggested that a compositional 

difference between surface and bulk is relevant for the production technique of the object 

(Szabó, 2002, 1998). Measurement spots are depicted in Fig 1, on the left for handheld X-

ray Fluorescence Spectrometry, and at the right for imaging-driven PGAI. The 

corresponding concentration data are given in Table 1. 
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Figure 1 The analyzed spots with hhXRF (left) and radiography-driven PGAI (right). See 

Table 1 for the compositions of the indicated measurement positions 

Analyzed region 
ID Number in 

Figure 1. 

Sn/Cu mass 

ratio PGAI 

Sn/Cu mass 

ratio hhXRF 

Left Monkey head 1 0.157 ± 0.005 - 

Goddess leg 2 0.164 ± 0.004 - 

Goddess belly 
3 

- 
0.209  ± 0.001 

0.255  ± 0.001 

Right side bottom palm stub 4 0.165 ± 0.004 - 

Left side bottom palm stub 5 0.16 ± 0.01 - 

Right side upper palm stub 6 0.131 ± 0.005 0.152  ± 0.001 

Left side upper palm stub 7 <LOD 0.150  ± 0.001 

Left side palm stub (middle) 8 0.227 ± 0.009 - 

Goddess right hand 9 - 0.175  ± 0.001 

Goddess crown 10 - 0.201  ± 0.001 

Table 1. Sn/Cu mass ratios at several spots of the sculpture. The data in bold are in 

agreement within the standard deviation, proving the common raw material of these parts 

and proving the authenticity of the broken fragment, consisting of the left-hand monkey 

and the palm stub. 

Using prompt-gamma activation analysis, the base alloy of the sculpture group was 

identified as tin-bronze with 86 weight percent (wt%) Cu and 14 wt% Sn (corresponding 

to ~0.163 Sn/Cu mass ratio). Based on the analyses carried out at different parts of the 

sculpture group it was concluded that the goddess and the monkey figurines, the base and 
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the lower parts of the palm stubs are all made of the above mentioned material. The 

handheld XRF data scattered much beyond their uncertainties. It is very sensitive to the 

patina and other surface effects, since it has only a limited sampling spot size and 

penetration depth. This case study demonstrated that neutron-based elemental composition 

data are more robust and more representative than the more commonly used hhXRF results, 

unless the surface is properly cleaned before the analysis. It was also proven that the 

common raw material composition of the goddess and the monkey-parts is a strong 

evidence for the authenticity of the broken fragment. 

Based on the synthesis of the elemental composition data and 3D neutron attenuation data, 

one could interpret the complex layout of the object with some confidence. The lower part 

of the palm stub is hollow, while the monkey figures and the base are solid castings (shown 

with yellow in the third panel of Figure 2). The palm stub consists of stacked pieces of 

corroded iron (shown with red in the third panel of Figure 2) with void volumes and a 

filling material inside. The comparison of surface (hhXRF) and bulk (PGAI) composition 

data at the upper palm stub indicated an excess of Mn, Pb and S in the bulk compared to 

the surface (see Table 2). This, in combination with the visual structural information led to 

the conclusion that they are components of the filling material. 

Left side upper palm stub PGAI hhXRF PGAI/hhXRF 

Mn/Fe 0.174 ± 0.007 0.0051 ± 0.0003 34 

Pb/Fe 0.89 ± 0.08 0.017± 0.001 5 

S/Fe 0.43 ± 0.01 0.050 ± 0.002 10 

Table 2. Comparison of the bulk (PGAI) and surface (hhXRF) mass ratios for elements 

more abundant in the filling material 

The tomography data was visualized and segmented with the volume rendering software 

to differentiate between adjacent materials. Finally, the volumetric tomography data was 

converted to a surface mesh that approximates the surfaces with a set of tiny triangles (T 

Biró et al., 2014). This STL file can be loaded to a modeling, animation and rendering 

software package to create a textured, realistic-looking digital representation or to CAD 

software to obtain properties like linear extent, volume, surface area or center of gravity. It 

can also be excellent input for a “virtual exhibition”.  
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Moreover, with a Stratasys Mojo type 3D printer (“Stratasys Mojo 3D printer,” 2017) we 

were able to create a plastic replica of the object. This emerging technology, heavily used 

in rapid industrial prototyping, has the potential to: 

 offer a tangible presentation about the anatomy of even a fragile object to a broad 

audience (e.g. students);  

 allow designing custom sample supports for each valuable CH object at a large-

scale neutron facility. 

 fabricate templates in order to replicate objects (e.g. museum souvenirs) 

 

Figure 2. The workflow of the data processing 

3.3.2. Ottoman bronze weights 

In most cases, the inner structure and elemental composition of Ottoman balance weights 

from the 16th-19th century are poorly described in the literature. Some pieces were dated to 

the Roman age and kept in the Roman collection of the Hungarian National Museum, based 

on their visual appearance. Therefore, the objects that can confidently be dated to the 

Ottoman (Turkish Empire) occupancy of Hungary, based on the archaeological context 
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and/or excavation site, can have special significance in re-classification of similar objects. 

To contribute to this effort of re-classification, we studied a well-documented object from 

the Turkish collection of the Hungarian National Museum, a balance weight from Ócsa 

(catalog number: 92.57.2.B). It is a pear-shaped object dated to the 16th century which has 

a mass of 165 g, equivalent to 50 dirhem (dirhem is a Turkish weight (3.2 g) and also 

currency unit). It was presumed that the object has a lead filling inside a bronze mantle 

(Fehér, 1993). 

Again, the comprehensive analysis procedure started with a hhXRF analysis carried out 

previously in the Museum’s vault (Table 3a).  

Position 1 2 3 4 

Element wt% ± wt% ± wt% ± wt% ± 

Cu 98.6 0.1 79.2 0.1 89.7 0.2 69.42 0.1 

Sn 0.68 0.01 4.15 0.04 5.09 0.07 3.45 0.04 

Pb 0.55 0.01 14.9 0.07 3.74 0.06 22.0 0.1 

Sb 0.07 0.01 0.79 0.02 0.38 0.04 0.70 0.02 

Bi <LOD   0.29 0.02 0.21 0.02 0.33 0.02 

Fe 0.10 0.007 0.57 0.01 0.61 0.02 3.73 0.03 

Mn <LOD   0.02 0.01 0.19 0.01 <LOD   

Table 3a. Handheld XRF results in mass percent unit. Top left panel of Figure 3 illustrates 

the positions of the measurement areas with red circles (LOD: limit of detection) 

These results, from several points on the surface, were not conclusive for the bronze alloy 

composition, likely because of previous restoration work and surface treatment processes, 

so a non-destructive bulk analytical method, the imaging-driven PGAI was used. With this 

approach, we found 84 wt% Cu, 3.8 wt% Sn and 10 wt% Pb in the hook, and 32 wt% Cu, 

1.5 wt% Sn and 59 wt% Pb in a volume containing both the mantle and the filling material. 

If these are recalculated in mass fraction units relative to Cu, elements that are part of the 

base alloy (Sn, Ag, Ni) agree well within statistics at the two sampling volumes. However, 

the Fe, Mn, and Pb mass fractions differ, far beyond the statistical uncertainty, between the 

mantle and the top part of the hook, showing that these elements are much more abundant 

in the filling material than in the mantle, assuming the same casted alloy for the hook and 

the mantle (Table 3b).   
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Element  
Hook (top 

part) 

Mantle+Filling 

material 
Hook (top part) 

Mantle+Filling 

material 

  

wt% ± wt% ± 
Element/Cu 

mass fraction 
± 

Element/Cu 

mass 

fraction 

± 

Cu 84 1.1 32 0.9     

Sn 3.8 0.3 1.5 0.1 0.045 0.004 0.047 0.003 

Pb 10 1 59 1 0.12 0.01 1.84 0.06 

Ag 0.17 0.01 0.068 0.005 0.002 0.0002 0.0021 0.0002 

Fe 0.76 0.05 6.7 0.2 0.009 0.001 0.209 0.009 

Ni 0.21 0.01 0.071 0.002 0.0025 0.0001 0.0022 0.0002 

Mn 0.31 0.03 0.77 0.2 0.0037 0.0003 0.024 0.001 

Table 3b. PGAI results in mass percent units and elemental mass fractions relative to Cu. 

  

Figure 3. The photo (1), cold-neutron radiograms (2) and tomographic cuts (3) of the 

bronze weight. Red circles in panel 1: hhXRF measurement spots; yellow symbols in panel 

2: PGAI measurement spots 
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3.3.3. Rivet of a bronze dagger 

A bronze dagger (Inventory number 56.15.1568) and three other fragments from the 

Füzesabony-Öregdomb settlement, dated to the 16th-15th century BC, i.e. Early or Middle 

Bronze Age were analyzed, out of the few available conical headed pins, daggers, flanged 

axes, socketed spearheads and seven moulds that indicate a local bronze metallurgy 

(Szathmári, 2003). The analyzed rivets were used to mount the handle of the dagger. 

From the elemental analysis results, we identified a clear difference between surface and 

bulk compositions. The surface-related hhXRF data showed an alloy of about 70 wt% Cu 

and a variable Sn content (0.7-8 wt%), whereas bulk results measured by PGAI were 86 

wt% Cu and 5.9 wt% Sn. These two major components do not sum up to 100%. Some 

lighter elements, e.g. Si, S and Fe were also present at 1% levels. The differences in 

elemental compositions found on the surface and in the bulk are attributed to soil 

contamination, or to near-surface corrosion, as well as to the concentration gradients 

caused by the fabrication.  

The horizontal and vertical cuts of the neutron tomogram clearly depicted a core (blue-

green) part and a surrounding, homogeneous base alloy (orange), as visualized in Fig 4. 

We came to the conclusion that the rivet #2, highlighted with a red frame in Figure 4, is in 

fact a broken piece of the dagger that came off together with the rivet. The rivet was created 

from a wire with a different tin-content, and was hammered from both sides to fix the 

dagger to the organic handle (wood or antler). Even the thickness of the missing handle 

can be assessed from the length of the rivet. The tomographic images clearly prove a 

compaction of the two ends of the rivet (blue regions). This is perfectly supported by the 

conclusions made in (Szabó, 2013) (pages 29 and 159), but there the destructive thin 

section analysis was used. The compaction induced a long-term corrosion due to the 

deformation of the lattice structure, resulting in the corroded middle (light green) regions.  

The experiment finally allowed us to better understand the layout of the dagger and how 

its handle was attached to the blade. 
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Figure 4. The structure and composition of the rivet #2 shown within the red frame.  

4. Conclusions 

We have demonstrated that neutron-based techniques, in particular elemental analysis 

(PGAA, PGAI) and imaging, are potent methods to characterize cultural heritage objects 

in a non-destructive way, and adequate to a large extent to avoid the issues related to 

sampling, mechanical thin sectioning, and sampling-volume representativity. It was also 
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pointed out that the integrated use of multiple techniques has a synergetic effect and these 

combined results can be more easily interpreted than separate data from independent 

experiments.  

If the surface composition is different from the bulk due to patina or oxide layers, or due 

to technical fabrication reasons, the composition of the base alloy can be more confidently 

determined from the bulk composition results by PGAI than using the surface sampling by 

hhXRF, whereas the differences found between surface and bulk compositions are 

indicative in some cases of the structure or the fabrication technology. 
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