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Abstract

In the present paper, the fuzzy c-means method is extended, and an algorithm

is proposed for fuzzy clustering of data lying in a feature space of arbitrary

dimensions, with one of them being periodic. To aid in determining the op-

timal number of clusters, the Xie-Beni validity index is extended, to account

for the periodicity. Furthermore, the relative weights of the dimensions in the

calculation of distances are investigated. The method is incorporated into a

procedure for processing turbomachinery beamforming maps. Thus, an objec-

tive, robust way of identifying the sound sources being present in such machines

is obtained. These properties are ensured by selecting the required parameters

through parameter studies. Presented through a case study, the method is used

to determine the most significant sound source mechanisms in an axial fan.
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a element of the weighting matrix

A weighting matrix

B number of fan blades

c number of fuzzy clusters

d distance metric

D number of data set dimensions

f frequency

i index of data points

I identity matrix

j index of clusters

J clustering objective function

k period tracking variable

l running index

m fuzzifier

N number of all data points to be clustered

p dimensionless amplitude

p periodic offset vector

P period

R dimensionless radius

s iteration step

w membership value

x generic vector

y generic vector

Greek letters

β angular position of base source

γ arbitrary periodic quantity

ε exit criterion residual

µ cluster centre

σ cluster amplitude

ξ data point for clustering
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Superscripts and subscripts
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A weighted using matrix A

min minimum

max maximum

P periodic distance measure

T transpose

Abbreviations

AMP & ADC Amplifier and analogue-to-digital converter

FCM Fuzzy c-means clustering

FCM4DD Fuzzy c-means clustering for directional data

LE Leading edge

PAM Phased array microphone

PC Personal computer

ROSI Rotating source identifier

SPL Sound pressure level

TE Trailing edge

XB Xie-Beni index

Others10

�̂ normalised to the 0 . . . 1 range

1. Introduction

The noise emitted by turbomachinery is a serious issue. To reduce it, the

noise generation mechanisms have to be identified, understood, and controlled.

Acoustic beamforming can effectively be used for indicating the areas where15

the strongest sources of noise are present [1, 2, 3]. Some approaches can han-

dle rotating systems [4, 5, 6, 7], enabling the investigation of turbomachinery.

Beamforming measurements are often carried out on aero-engines due to noise

emission limits becoming more strict. In the recent years, investigation of low-

speed axial fans has begun, as they operate in larger numbers and closer to20

people [8, 9, 10]. Combined with empirical analysis and numerical simulations,

as done in [11, 12, 13, 14, 15], the information regarding source locations can

aid in understanding noise generation mechanisms. Then an iterative redesign
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process can be started, within which, by modifying the blade geometry, the

noise emission can be reduced.25

The results of beamforming are usually presented in the form of contour

maps over the target, in the present case, over the rotor. These are called

beamforming maps. These maps are usually interpreted visually. This process

however includes subjective elements. Furthermore, such maps are usually gen-

erated for several frequency bands, in which case, drawing conclusions based on30

them is even more difficult.

The situation is further complicated by the presence of point spread func-

tions in the maps. Due to these, a point-like source appears with a spatial ex-

tension, and close-by sources become difficult to separate. Furthermore, peaks

may appear at locations where in reality no sources are present. These effects35

are usually treated using deconvolution methods, such as CLEAN-SC [16] or

DAMAS [17], however, in some cases, these algorithms may not be applicable.

Yet, the aforementioned problems have to be tackled in some way.

To do that, a novel algorithmic processing method was proposed in [18,

19]. It aimed at the identification of noise generation mechanisms through a40

data reduction and clustering procedure. This was illustrated in a case study,

and found adequate, however, still contained a subjective choice due to the

periodicity of the blading.

The main contribution of the present paper is to introduce a method for

fuzzy clustering, applicable when one of the dimensions of the data set has45

periodic attributes. This is applied for the analysis of turbomachinery beamform

maps as part of the aforementioned algorithm [19], aimed at objective and

reproducible identification of noise source mechanisms. The extended algorithm

is applied onto the beamform maps of an axial fan, to identify the dominant

noise generating mechanisms.50

In the present application, the novel procedure ensures that clustering takes

the periodicity of the blade passages into account, even if only one blade passage

is used for data analysis. However, it may be applied for any kind of data, where

a periodic dimension is present.
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The structure of the paper is as follows. First, the complete method for55

source identification is described. Second, the original fuzzy clustering algo-

rithm is presented, the meaning and the difficulty of clustering in the presence

of periodic dimensions is explained, and the modified clustering algorithm is

introduced. Third, details about the case study are given. Fourth, the results

of applying the new algorithm onto the beamforming data are presented and60

compared to those of the previous method. Finally, the conclusions of the work

are summarised.

2. Noise source identification method

To investigate and analyse turbomachinery noise, a novel algorithmic ap-

proach was proposed in [18, 19]. It aimed at identifying broadband noise gen-65

eration mechanisms in an axial fan, in an objective manner. The method was

designed to decrease the effects of both measurement noise and side lobes, with-

out deconvolution. The reason for omitting deconvolution methods was that a

microphone array with generic microphone placement was used in the measure-

ments, and thus the beamform maps were created using the Rotating Source70

Identifier (ROSI) [4]. As this method does not provide a cross spectral ma-

trix that would describe the source effects, the widely applied deconvolution

methods were not applicable.

The approach was illustrated on beamforming data taken from the tip radius

of an axial fan. The significant features of the beamforming maps were repre-75

sented as points in the circumferential angle (β) – frequency (f) plane [β, f ],

thus the identified base sources were described by their location around the ro-

tor, and by frequency of their emitted sound. Those data points that are likely

signatures of the same noise generation mechanism, were grouped through a

clustering procedure. The identified clusters were then assigned to known noise80

generation mechanisms based on previous literature.

In the previous paper [19], the algorithm was applied to one blade passage

only, as the periodicity of the noise sources was assumed and enforced in a filter-
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ing process. This was done to reduce sidelobe, large-scale turbulence ingestion,

inflow irregularity, local geometric irregularity, and measurement uncertainty85

effects.

The steps of the method were the following.

1. For each investigated frequency band, a circumferential source strength

distribution was extracted from the beamforming maps around the rotor

at a selected radius.90

2. The distributions obtained in the previous step were expanded into spatial

Fourier series.

3. From each Fourier series, only those modes were considered, whose cir-

cumferential wave number conformed to the periodicity of the blading.

This means that the number of periods of the harmonic wave in one blade95

passage is a positive integer. Through this step, noise sources not directly

related to the rotor are filtered out. This way, the effects of those peaks

in the maps are reduced, that do not have spatial periodicity: e.g. side

lobes, large-scale turbulence ingestion noise, and other artefacts.

4. Important components were selected using a significance criterion based on100

their p modal amplitudes. The significance limit was the largest amplitude

in the spectrum found at a circular wave number that does not agree with

the periodicity of the blades, i.e. the largest amplitude of those modes,

that have non-integer periods inside one blade passage. This reduces the

number of data points, and further reduces measurement uncertainties.105

5. Each significant mode was considered as a base source. A base source is a

point in the circumferential angle – frequency plane [β, f ].

6. Clusters were created from the base sources, based on the distances be-

tween them, using a fuzzy clustering procedure allowing for overlapping.

7. The source mechanisms corresponding to the clusters were identified.110

Application details and further explanation for the individual steps can be found

in [19].
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As mentioned above, only those sources are considered important, that con-

form to the periodicity of the blade passages. This periodicity was enforced

through the Fourier analysis and filtering. Therefore, choosing one blade pas-115

sage for analysis and clustering was sufficient, as they all contain the same base

sources. However, one had to choose the limits of the analysis window, i.e. the

part of the [β, f ] plane in which clusters are sought for. Physical arguments were

followed in the f direction, but in the angular β direction, due to the repeating

blade passages, no objective decision could be made as to where a blade passage120

periodic noise pattern begins. After a visual inspection, the beginning of the

analysis window, β = 0 was assigned to the blade trailing edge. This choice

however could have significant effects on the results of clustering, which should

be avoided.

A further problem regards the calculation of distances required by the clus-125

tering method. Even though the quantities are normalised before clustering,

the dimensions of β and f are different. Therefore no physical reasoning can be

given as to how to calculate the distance between two points in this plane.

To overcome these problems, a modified fuzzy clustering method is proposed,

being able to take periodicity in the data set into account. This way, the begin-130

ning of the analysis window, β = 0, can be assigned arbitrarily, as the resulting

clusters will not depend on that. Besides the present case, the method will suit

any application, where one of the dimensions is periodic. Furthermore, the ef-

fects of different dimensions in the distance calculations will be investigated in

a case study. In this paper, the method is applied not only onto the tip radius,135

but at other radii in the rotor annulus area, as well.

3. Clustering

Clustering is a process of assigning data points to groups, based on their

similar attributes. The general task is the following. Knowing the ξi, i = 1 . . . N

data points, lying in the so-called feature space of D dimensions, determine the140

prescribed c number of cluster centres µj , j = 1 . . . c, such that an objective
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function, the error regarding the replacement of the data points with the cluster

centres, is minimised. For the sake of simplicity, the data points are assumed

to be normalised onto the range 0, ..., 1 in each dimension.

This section summarizes the original fuzzy clustering method, the properties145

of periodic data, and introduces the modified clustering algorithm that accounts

for a periodic dimension.

3.1. Fuzzy c-means clustering

Several clustering methods have been proposed. Possibly the simplest al-

gorithm is the k-means method [20]. In this case, all data points are assigned150

to the closest cluster, while the cluster centres are determined as the weighted

average of the assigned data points. Since one data point belongs to one cluster

only, this clustering method is termed crisp.

Fuzzy c-means clustering (FCM) [21] is a method similar to k-means, but

in this case, the clusters are considered fuzzy. This means that one data point155

may belong to more clusters, and therefore the clusters may overlap.

As noted before, clusters are identified by minimising an objective function.

In FCM, this is the sum of the weighted squared distances between the cluster

centres and the data points. The objective function is shown in Eq. (1). The

aim is to find cluster centres µj , j = 1 . . . c that minimise this expression.

J =

N
∑

i=1

c
∑

j=1

wm
i,jd

2
(

ξi,µj

)

(1)

In Eq. (1), d denotes the distance measure between any two points in the

feature space. This will be investigated in detail later. wi,j ∈ [0, 1] values are

the so-called membership values, quantifying how well a data point ξi fits into

the j-th cluster. The sum of these for one data point over the c clusters is unity,

as shown in Eq. (2). The application of membership values gives the possibility

for overlapping clusters.
c
∑

j=1

wi,j = 1 ∀ i (2)
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The parameter m > 1 is the fuzzifier that controls the level of separation of

the clusters. Its behaviour will be discussed later.

The objective function J can be interpreted as follows, based on [21]. d2
(

ξi,µj

)

is the squared distance between data point ξi and cluster centre µj . The term160

wi,j d
2
(

ξi,µj

)

is the error – weighted by the membership raised to a certain

power – that arises when µj is taken to represent ξi. The two summations

mean that this error regarding one data point and one cluster centre has to

be added up considering each data point – cluster centre combination. Thus a

total error is obtained. Minimising this total error means finding cluster centres165

representing the data points at the best. This is achieved by the FCM algorithm

by iteratively calculating the cluster centres and the membership values.

The location of each cluster centre is determined by averaging the data

points, weighted by their membership values regarding that cluster. This is

shown in Eq. (3).170

µj =

∑N

i=1 w
m
i,j ξi

∑N

i=1 w
m
i,j

(3)

For the calculation of the wi,j membership values, Eq. (4) is used.

wi,j =

(

c
∑

l=1

(

d(ξi,µj)

d(ξi,µl)

)

2

m−1

)−1

(4)

The role of wi,j can better be understood by rewriting Eq. (4) in another

form, shown in Eq. (5).

wi,j =

(

1
d2(ξi,µj)

)
1

m−1

∑c

l=1

(

1
d2(ξi,µl)

)
1

m−1

(5)

By looking at Eq. (5), and considering the reciprocal of the squared dis-

tances, 1
d2 as a measure of closeness, one can see how wi,j behaves. This formula175

assigns a large membership value to a cluster – data point pair if they are close

to each other (their “closeness” is large), but a small one, if they are remote. It

also ensures that the condition in Eq. (2) is fulfilled, since the numerator is a
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normalisation by the sum of all membership values regarding the chosen data

point.180

How steeply the wi,j membership values changes with the distance is defined

by the fuzzifier. As m → 1, the exponents in Eq. (5) grow, therefore the cluster

centre being closest to the data point will dominate the denominator, thus that

membership value will be close to unity, and necessarily, the other ones will be

small. Therefore the overlap between the clusters decreases, and they become185

crisper. On the other hand, as m → ∞, the exponents tend to zero, therefore

the effects of different distances vanish, and all the terms in the denominator

will be similar in magnitude. Thus all wi,j → 1/c, meaning that the clusters

spread out, the overlap grows, and the ability to differentiate between clusters

disappears [21].190

In FCM, the aforementioned expressions are used until the results converge

to final wi,j and µj values. Details on convergence can be found in [21]. The

algorithm is the following.

1. wi,j values are initialised randomly, but fulfilling the constraint in Eq. (2)

2. Cluster centres are calculated using Eq. (3)195

3. Membership values are updated using Eq. (4)

4. The process is continued from Step 2 using the new values until conver-

gence is reached.

Convergence is checked by comparing the matrices composed of the wi,j

values obtained in the present and the previous step. If the norm of the difference200

of these matrices is smaller than a pre-specified limit ε, the algorithm terminates.

This method has proven its capability to identify clusters in several cases,

some relevant ones being the following. FCM was applied for microphone array

measurements in reverberant environments [22, 23], to aid in source localisa-

tion. The vortex field behind an oscillating cylinder was analysed in [24], while205

turbulent flow patterns were investigated in [25].

Two effects require further analysis regarding the application of FCM in the

present case. First, the relative importance of frequency and angular data in
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identifying clusters should be investigated. This is done in the next section in the

form of the distance metric. Second is the periodicity of the fan blading, causing210

the noise patterns to be periodic. Due to this, it is sufficient to investigate the

noise pattern in one blade passage only. To do clustering in one blade passage,

one has to assign the passage a beginning β = 0 angular position, which can not

be done in an objective way. Furthermore, this choice may change the result

of clustering if periodicity is not taken into account. To avoid the influence of215

this arbitrary choice, the FCM clustering algorithm was extended to handle a

periodic dimension. This way the result of clustering will be the same for a data

set, regardless of where β = 0 was chosen. This problem and its solution will

further be discussed in later subsections.

3.2. Distance weights220

FCM relies on the d distance between any two points in the feature space,

here denoted by x and y. This may be the Euclidean norm in the simplest case,

e.g. d(x,y) = ||x − y|| =
√

(x− y)
T
(x− y). However, the dimensions of the

feature space before non-dimensionalisation may have different physical units,

or have significantly different ranges. In this cases, one may have to alter the225

way the distances are calculated even after the data was made dimensionless,

to modify the importances of the different dimensions in clustering. This is

achieved by using weights in the calculation of distances. These weights are

incorporated into the matrix A.

The weighting is introduced through the following scalar product definition:

〈x,y〉 = xTAy [21]. With this, the distance metric induced by matrix A is

that shown in Eq. (6).

dA(x,y) = ||x− y||A =

√

(x− y)
T
A (x− y) (6)

In the simplest approach, A = I, the identity matrix. In this case, the230

Euclidean norm is obtained. Some other approaches are described in [21]. In

the present case, a diagonal matrix is applied, shown in Eq. (7), with a1 = 1

as the weight for the first dimension, and adjustable ak, k = 2 . . . D values for
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the other dimensions. In this case, the ak parameter controls the weight of the

k-th dimension compared to the first one.235

A = diag(1, a2, a3, . . . aD) (7)

This is a flexible approach, allowing to set how much influence one dimen-

sion has in clustering. However, there are no generally valid guidelines about

the choice of the ak weights. This problem is especially relevant, when the data

consists of quantities that are not physically comparable. To this end, a pa-

rameter sensitivity study is proposed to determine the ak values that provide240

an acceptable clustering result, being in agreement with the properties of the

clustering validity method, detailed later.

3.3. Periodicity

When periodic and non-periodic dimensions are both present, the data set is

termed hybrid, following ref. [26]. The present subset, with exactly one periodic245

and one non-periodic dimension, is termed cylindrical [27]. FCM has been

widely used for clustering different types of data, however, it cannot directly be

applied onto data with periodic attributes, such as the noise pattern according

to the periodicity of the blades in the present case.

To apply FCM onto cylindrical data, one has to consider only one period250

of the infinitely long periodic dimension. This is termed the analysis window.

Where this analysis window begins in the periodic dimension, is a subjective

choice, that can seriously influence the result of clustering. This effect is shown

on an illustrative hybrid data set in Fig. 1. There, a hybrid data set is shown,

with the horizontal axis being periodic with a repeating data pattern, while the255

vertical dimension is non-periodic. The crosses indicate the data points. In

order to do clustering, one has to define the position of the analysis window, i.e.

choose the origin of the β coordinate. This cannot be done based on a physical

argument, due to the periodic nature of the dimension. However, this choice

may determine the result of partition.260
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Windows A and B show two possible choices for β = 0 and thus the location

of the analysis window. Note however, that just by visual observation, one can

conclude that in window A, two clusters exist, while window B contains three.

This illustrates the possible problems of clustering periodic data.

One may decide that window A is beneficial, as it does not cut a cluster into265

two pieces. This would however be a subjective choice, which may not even

be applicable when the number of data points N is high. Furthermore, this

approach disregards the periodic nature of the data set, leading to incorrect

membership values. To avoid this, the clustering method is to be modified

to handle cylindrical data. The task is then to cluster data sets lying in a270

periodic/hybrid domain, in a way that the resulting clusters are invariant to

the choice of the analysis window. To reach this, in case of a purely periodic

or hybrid data set, distances required for clustering have to be calculated by

taking the periodicity into account.

n
o
n
-p

er
io

d
ic

 d
im

en
si

o
n

periodic dimension

P

window A window B

Figure 1: Illustration of the effects of arbitrarily assigned analysis windows in case of hybrid

data. The horizontal axis is a periodic dimension, while the vertical is non-periodic. Shaded

areas indicate two possible analysis windows. If periodicity is not considered, two clusters are

observed in window A, while in B, three.

An approach for clustering periodic data using the k-means algorithm is275

treated in [26]. Besides some other methods, the authors propose the following
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metric, defined along a periodic dimension γ with period P , shown in Eq. (8).

dP (γ1, γ2) = min {|γ1 − γ2|, P − |γ1 − γ2|} (8)

Furthermore, they discuss the treatment of hybrid data, as well. The method

is suitable for k-means clustering, however, it was not extended for fuzzy clus-

tering.280

For FCM, the fuzzy c-means algorithm for directional data (FCM4DD) was

proposed in [28]. The method was compared against other methods, reported

in [29] and [30], and performed favourably, giving better results, while requiring

less computational effort. However, in this algorithm, only periodic dimensions

can be taken into account, e.g. FCM4DD is not suitable for hybrid data.285

Thus, solutions exist for non-fuzzy clustering of hybrid data, and fuzzy clus-

tering of purely periodic data. The novelty of this paper is an approach to create

fuzzy clusters in hybrid data sets. The idea behind the method is illustrated

by Fig. 2. It shows the same points as in Fig. 1, however, now the data set

is wrapped around a cylinder. If the surface of the cylinder is considered for290

calculating distances and for clustering, periodicity can successfully be taken

into account. While Fig. 2 illustrates a two-dimensional hybrid case, the same

idea can be applied for more dimensions, as well.

To implement this idea, the distance norm is modified similarly to Eq. (8).

This way, distance can successfully be calculated in a periodic/hybrid data set,295

and the results are not dependent upon the arbitrary selection of the analysis

window.

3.4. Method for fuzzy clustering of hybrid data

The proposed method is able to create fuzzy clusters similarly to FCM, with

a hybrid data set, where exactly one dimension is periodic. In the following,300

without loss of generality, the first dimension is considered as being periodic,

with period P .

All dimensions are to be normalised to the range 0 . . . 1. A D-dimensional

periodic offset vector is introduced, shown in Eq. (9), with the period being
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P

Figure 2: Interpretation of the periodic distance norm. The analysis window is wrapped onto

a cylinder. ♦: cluster centre, +: data point. The two possible lines connecting cluster centre

µj and ξi are shown.

unity after normalisation. Therefore p is the unit vector in the periodic dimen-305

sion, regardless of D.

p = [1, 0, . . . 0]T (9)

The periodic, weighted distance metric dA,P is to be applied, shown in Eq.

(10). It is based on Eq. (6), but was extended for a hybrid case using p. This

includes the diagonal weighting matrix shown in Eq. (7).

dA,P = min{dA(ξi,µj − p), dA(ξi,µj)} (10)

This means that every time the distance between data point ξi and centre

µj is required, it has to be considered that a counterpart of µj exists in the

previous data window as well. The position of this counterpart is µj − p. For

the algorithm, the smallest of the two distances are to be considered. This is310

analogous to finding the distance on the cylinder shown in Fig. 2, where two

points on the surface can be connected from two directions, but the length of

the shorter path is defined as their distance.
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This distance norm however will often impede convergence. The reason is

that when the new cluster centres are calculated, in Eq. (3), the averaging315

of the data points will again place the µj somewhere in between them. To

reach convergence even in this case, it is necessary to track, whether the data

point ξi is closer to centre µj from the current analysis window, or to its periodic

counterpart µj−p in the previous analysis frame. In the analogy of the cylinder,

this means considering, in which direction were the two points closer to each320

other. Keeping track of this is done by a new variable ki,j ∈ {−1, 0}. Its possible
values are shown in Eq. (11).

ki,j =











−1 if dA(ξi,µj − p) < dA(ξi,µj)

0 otherwise

(11)

ki,j is used to indicate if point ξi is closer to µj in the present analysis window

(ki,j = 0), or to its periodic counterpart in the previous window (ki,j = −1).

The k values are shown in Fig. 2 together with the two paths. ki,j = −1325

belongs to the case, when the line connecting ξi and µj crosses the generatrix

corresponding to the 0 value of the periodic dimension. By using ki,j , the

cluster centres can successfully be calculated following Eq. (12). This way,

the algorithm takes into account, which periodic counterpart of the data point

is closer to the centre, and will use that for the calculation of the new centre330

location.

µj =

∑N

i=1 w
m
i,j (ξi + ki,jp)
∑N

i=1 w
m
i,j

(12)

When these are obtained, the membership values can be updated. This is

reached by using Eq. (4), but by taking the periodic weighted distance norm

dA,P into account, as shown in Eq. (13).

wi,j =

(

c
∑

k=1

(

dA,P (ξi,µj)

dA,P (ξi,µk)

)

2

m−1

)−1

(13)

The algorithm is the following.335
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1. Set c, m, A, p, ε, ki,j = 0, and initial wi,j values. Then repeat the

following steps for s = 1, 2 . . . smax

2. Compute centres µ
(s)
j , j = 1, 2 . . . c using Eq. (12). If the periodic

coordinate of µj leaves the domain [0, 1), reintroduce it to the other side

by taking its fractional part.340

3. Compute k
(s+1)
i,j using Eq. (11).

4. Compute membership values w
(s+1)
i,j using Eq. (13).

5. Compare the matrices constructed from the wi,j membership values at

steps s and s + 1. If the norm of their difference is less than ε, exit.

Otherwise, increment s and return to step 2.345

3.5. Xie-Beni index

A limitation of FCM is that the number of clusters c is to be known in

advance [31]. This information is, however, generally not available. Therefore

the suggested procedure is to employ a parameter sensitivity study by varying

c. During that, a measure of clustering goodness is to be investigated. These350

measures are called validity indices. Many kinds exist, some of them being

summarised in [31]. In the original method in [19], the Xie-Beni (XB) index [32]

is used, as it is easy to compute, yet able to quantify the two most important

aspects of good clustering:

• compact clusters are sought for,355

• being well-separated from each other.

The XB index is defined in Eq. (14).

XB =

∑N

i=1

∑c

j=1 w
m
i,j d

2(ξi,µj)

N min
j 6=l

d2(µj ,µl)
(14)

In Eq. (14), the numerator is in relation to the error introduced by replacing

the data points with the cluster centres, therefore the lower this value, the more

compact the cluster. The denominator contains the distance of the two clusters360

lying closest to each other, being a measure of cluster separation. In this case,
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the higher its value, the better the clustering. Based on these, the minimum

XB value indicates the optimal clustering, and the optimal choice of c.

The periodicity in the data set has to be accounted for in the calculation

of XB, as well. This is straightforward, as only the distance measures have to365

be changed to the new, weighted and periodic ones. The periodic XB index is

shown in Eq. (15).

XBP =

∑N

i=1

∑c

j=1 w
m
i,j d

2
A,P (ξi,µj)

N min
j 6=l

d2A,P (µj ,µl)
(15)

3.6. Summary of the proposed clustering method

The outline of the method for fuzzy clustering of cylindrical data is the fol-

lowing. First, an arbitrary analysis window is to be chosen, and the normalised370

ξi values are to be calculated. Then hybrid fuzzy clustering is to be applied,

using the algorithm above. This is to be repeated with all combinations of the

investigated c, m and ak values. Following that, parameter studies are to be

carried out to determine the optimal settings for these variables. The optimal

one, based on the XBP index and physical considerations, is to be chosen and375

accepted. Finally, clustering results can be used and interpreted corresponding

to the selected settings.

4. Case study

The present investigation concerns the same axial fan and the same measure-

ment data as in [19]. Relevant details of the measurement setup are as follows.380

The investigated fan was an axial flow industrial cooling fan, in a free-inlet free-

exhaust rotor-only configuration. It was mounted in a short duct with a short

inlet cone. The tip diameter of the fan was 0.3 m, the hub-to-tip ratio was 0.35,

and the number of blades was 5. The rotor speed was measured by means of an

optical probe, and found to be 1430 revolutions per minute. The tip gap size385

was 7 mm. The blades were manufactured from steel plates with a circular arc

camber profile. The blade tip, the trailing, and the leading edges were rounded.
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An OptiNav, Inc. Array 24 phased array microphone was used for measuring

the noise. This unit has 24 omnidirectional electret microphones mounted flush

against the array surface. They are arranged along logarithmic spiral arms.390

The diameter of the circumscribed circle is 0.95 m [3]. The array was placed

perpendicularly to the fan axis of revolution, while the distance between the

array and the fan inlet plane was 1.83 tip diameters. This distance was chosen

to improve the spatial resolution of the beamforming maps, while avoiding inflow

disturbances. The latter was confirmed in [14] for the same configuration. The395

inlet velocity profile with and without the array was measured, and no significant

difference was found. Measurements taken on the suction side are processed; in

this case, the flow field has negligible impact on the microphones, as proved by

vane anemometer measurements. A sketch of the measurement setup is shown

in Fig. 3.400

PC

AMP&ADC

FAN

PAM

Figure 3: Sketch of the measurement setup. PAM: phased array microphone. AMP&ADC:

amplifier and analogue-to-digital converter. PC: personal computer. The microphone posi-

tions are for illustrative purposes only; they do not correspond to those of the actual array.

The electric signals were amplified, digitised, and recorded by the accompa-
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nying signal processing unit. A sampling frequency of 44.1 kHz was applied and

data was acquired for 20 s, corresponding to more than 2000 blade passages.

The measurements were carried out in a laboratory with no special acoustical

treatment. To remove the effects of rotation and create source maps in a sys-405

tem rotating together with the rotor, the ROSI method was used [4], as the

geometry of the array did not allow the application of frequency domain inter-

polation methods, e.g. [33]. Frequency-domain information was obtained by

cutting the data into blocks of 1024 overlapping by 50%, windowing them using

a von Hann function, applying a fast Fourier transform on each block, then410

averaging the spectra. Diagonal removal was applied to reduce the effects of

uncorrelated noise between the microphones [4]. The narrow-band source maps

were summed to create third-octave band maps centred on 2000, 2500, 3150,

4000, 5000, and 6300 Hz. Lower frequencies were omitted due to limitations in

spatial resolution.415

The sound pressure spectrum of the noise emitted by the fan, as measured

by one microphone of the array, is shown in Fig. 4. It can be seen that in the

investigated frequency range, the generated noise has broadband characteristics.

Therefore tonal noise was not investigated, and only broadband source mech-

anisms were considered. Furthermore, this is why analysis with third-octave420

band frequency resolution was considered appropriate.

The originally obtained beamform maps are shown in Fig. 5. Here one

can see that the most significant noise sources are often in the vicinity of the

rotor tip radius. However, the features are not completely periodic, which might

be the result of some surface inhomogeneity, inflow effects, background noise,425

measurement uncertainty, or side lobes from beamforming. These effects are

however to be filtered out, as at this stage, the basic behaviour of the fan is

to be investigated. The reason for applying the data reduction method is to

remove these effects, to be able to concentrate on the remaining phenomena.

A further aim is to reduce these maps, that can only be inspected visually,430

into a data set, that can easier be interpreted, in an algorithmic, reproducible

manner. This is done by constructing the base sources, clustering them to find
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Figure 4: Noise sound pressure level spectra in dB [19]

those that are the result of the same mechanism, and then finding the relevant

source mechanisms.

Possible broadband noise source mechanisms that may appear in low speed435

axial fans in general are the following [19].

• Small scale turbulence ingestion noise. Noise originating from the turbu-

lence of upstream flow, e.g. caused by a protection grid, impinging on the

leading edge.

• Noise due to ingestion of large scale turbulence. This source is due to the440

ingestion of large eddies, e.g. those shed by the housing, etc.

• Turbulent boundary layer noise. This noise originates from wall pressure

fluctuations due to turbulence in the boundary layer.

• Separated flow noise. It is a result of the pronounced flow unsteadiness in

case of flow separation.445

• Profile vortex-shedding noise. This originates from the vortices being shed

over the blade profile.

• Turbulent boundary layer – trailing edge interaction noise. This noise

is the result of scattering turbulence at the trailing edge in case of an
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Figure 5: Third-octave band beamforming maps [19] at mid-frequencies between a) 2 kHz and

e) 6.3 kHz. The colour bar shows the beamform levels in dB, while the circle indicates the

Rayleigh resolution limit at the mid-frequency of the third-octave band.
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attached boundary layer.450

• Tip leakage flow noise. This noise is generated by the highly turbulent tip

leakage flow coming from the preceding blade.

• Double leakage flow noise. Similar to the previous noise, but the flow is

coming from the second preceding blade.

• Blunt trailing edge vortex shedding noise. This noise source is the result455

of vortices being shed at the finite thickness of the trailing edge.

Out of these, the noise sources identified using the clustering method will

be presented in the Results section. The original beamform maps are treated in

detail and compared to computational fluid dynamics studies in [13, 14, 15].

Since third-octave band beamforming maps were filtered and evaluated, the460

base sources refer to the mid-frequencies of these bands. However, these repre-

sent the whole frequency range between the lower and the upper limit frequen-

cies of that third-octave band. Due to this, the normalisation procedure in Eq.

(16) was applied. Here (fmin) indicates the lower limit frequency of the lowest

third-octave band, while (fmax) is the higher limit of the highest third-octave465

band.

f̂ =
f − fmin

fmax − fmin
(16)

For the angular dimension, approach in Eq. (17) was followed. Here the

number of blades is B = 5, the angular extension of one blade passage is there-

fore 2π/B, and the values of the angle are β ∈ [0, 2π/B).

β̂ =
β

2π/B
(17)

The constructed data set consists of ξi =
[

β̂i, f̂i

]

base sources. Since the β470

dimension is periodic, the proposed hybrid clustering method was used. This

way, the results are independent of where the β = 0 angle was assigned to. For

the sake of comparability of the results to those published in [19], β = 0 was

assigned to the trailing edge also herein.
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5. Results475

The introduced method was applied onto the data set investigated in [19],

obtained after the procedure described above.

Data was extracted from the beamforming maps in Fig. 5 at four different

radii, covering the annulus area. These were the following values, normalised

by the tip radius: R = 0.4, 0.6, 0.8, 1.0. The Fourier-based filtering procedure480

was carried out for each of these radii. At R = 0.4, no base sources were found,

meaning that no significant blade-passage periodic sources exist. This can be

attributed to the vicinity of the hub at R = 0.35 and the shortness of the

circumferential path relative to the resolution of beamforming. At each higher

R, some base sources were identified. At R = 0.6, 0.8 and 1.0, their number was485

N = 5, 7 and 11, respectively. This is in agreement with the visual observation

of Fig. 5, in which blade passage periodic patterns are most spectacular around

the tip radius, R = 1.0. The m and a parameter studies were carried out for

the R = 1.0 case, as that contains most information, and its results can be

compared to those in [19].490

5.1. Results of R = 1.0

For the A distance weight matrix, shown in Eq. (7), the following parameter

sensitivity study was carried out atR = 1.0. SinceD = 2, only one element ofA,

denoted simply by a, is sought for. The effect of parameter a was investigated in

the range a ∈ {0.1, 0.4, 0.7, 1, 1.3, 1.6, 1.9}, as it includes the non-weighted case495

(a = 1), and two extremes from that: a high dependence on β (a = 0.1), and a

high dependence on f (a = 1.9). The possible number of clusters was c ∈ {2, 3},
following the guidelines in [34]. Specifically, at least two clusters are required for

XBP to give meaningful results, as it contains the distance between the closest

clusters, while the recommendation for the maximum c is that c ≈
√
N [34],500

giving
√
11 ≈ 3. To be able to show the trend in the values of XBP , this was

increased to 5, however, c = 4 and 5 are not real candidates for the optimum

c. The fuzzifier was investigated in the range m ∈ {1.4, 1.6, 1.8, 2.0, 2.2} as well.
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The range was chosen since it includes m = 2, the recommended setting in

absence of a priori information [34], and five different values were expected to505

give sufficient information on the behaviour of clustering. The XB index was

evaluated using these settings. The results are shown in Fig. 6, where the three

diagrams show XBP as a function of c with varying a weight at three different m

values. Subfigure a) was obtained with the smallest, m = 1.4 value, b) with the

standard m = 2, and c) with the highest, m = 2.2 value. These were selected510

only for illustration, as all the intermediate values show similar trends.
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Figure 6: XBP as a function of c and a, at varied m values. a) m = 1.4 b) m = 2.0 c) m = 2.2

♦ : a = 0.1, 5 : a = 0.4, + : a = 0.7, ∗: a = 1.0, 4 : a = 1.3, � : a = 1.6, × : a = 1.9

Comparing the three subfigures in Fig. 6, one can see that in most cases,

the effect of the fuzzifier is small, as the XBP values follow similar trends in

case of each m. This is in agreement with the findings of the previous study

[19], and therefore the standard value of m = 2 is accepted and applied in the515

following.

By looking for the minimum of XBP , one can see that for moderate values

of a around unity, ranging from 0.4 to 1.3, the optimal cluster number is c = 3.

These results are similar to those obtained with a non-periodic FCM in [19],
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reproduced here in part a) of Fig. 8. For a = 0.1, the minimum of XBP is520

found at c = 5 for each m, however, this should not be accepted as the optimum

c, since XB has a tendency to have decreasing values as c increases, regardless

of the goodness of clustering [32]. Furthermore, this is in contrast with the

previously mentioned recommendation regarding
√
N being the largest number

of clusters to be considered. Therefore such high c values should be treated525

with criticism. For values of a = 1.6 and higher, XBP again often reaches

its minimum at c = 5, but similarly to the previous case, this should not be

considered as the optimum c. In these cases, the real optimal cluster number

is probably c = 2. These a are significantly larger than unity though, and the

clustering results with these settings differ substantially from those obtained530

with a ≈ 1, therefore they should not be accepted.

The way a transforms the results is shown in Fig. 7. There the cluster

maps can be seen for various a = 0.1, a = 1, and a = 1.9 values, with c = 3

and m = 2 fixed. For lower values of a, the clusters are elongated in the f̂

dimension, while for higher values, the opposite occurs, and the cluster extend535

in the β̂ dimension.

Based on Figs. 6 and 7, the optimal weight is a = 1. This is because this

presents a good compromise between the elongation of the clusters along the two

dimensions. Furthermore, around this value, in a fairly wide range of a = 0.4

to a = 1.3, the value of XBP is stabilised and shows the theoretically expected540

tendency, with a global minimum inside the range, e.g. not at the limits of

the investigated c values, being independent of the choice of m. This a = 1

result means that β̂ and f̂ are to be taken into account with equal weights,

indicating the equal importance of spatial and frequency-wise extension of the

noise sources.545

The optimal cluster number at R = 1.0 belonging to a = 1 is c = 3, according

to Fig. 6. Therefore the cluster map with these parameters, m = 2, a = 1 and

c = 3, was evaluated in detail, and compared to the cluster map obtained with

the standard FCM algorithm in [19]. In the specific case study reported herein,

the periodic and non-periodic methods have both led to c = 3 as the optimal550
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Figure 7: Cluster maps for c = 3 and m = 2 with a varied. +: data points, ♦: cluster centres.

a) a = 0.1, b) a = 1, c) a = 1.9. The contour map shows the maximum membership value at

each point.
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cluster number. In general however, the introduction of periodic clustering may

give results that are substantially different from those of the original FCM, as

illustrated by Fig. 1.

At R = 1.0, the periodic and non-periodic cluster maps are visually similar,

shown in Fig. 8 as parts a) and b), respectively. There is some difference555

due to the periodic clustering though. The membership contour-lines of the

bottom-left cluster, termed Cluster 1 in [19], extend through the edge of the

diagram in case of periodic clustering. The membership iso-lines of the upper

two clusters have a modified shape, as well, being compressed in the β direction

in the periodic case, compared to the non-periodic one. This is the result of560

the periodicity being taken into account, as now these clusters influence each

other both from in between them, and from the limits of the angular dimension,

β = 0◦ and β = 72◦. The contour map shows the maximum membership

value at each point. These w values have changed, too, and their contours have

became continuous at the vertical edges of the diagram, due to periodicity being565

accounted for.

The similarity between the two figures shows that intuitively assigning the

trailing edge of the blade as β = 0 was an appropriate choice. However, this was

previously done based on a subjective visual evaluation, which is not required

any more, when applying the periodic clustering method, since in the present570

case, the results do not depend on the analysis window.

As the clusters have not changed significantly, their interpretation, given

previously in [19], is still considered valid. Here, due to the nature of the

spectrum shown in Fig. 4, only broadband source mechanisms were considered.

The identified mechanisms are summarised below. The cluster numbers refer to575

those in Fig. 8.

• Cluster 1 represents the turbulent boundary layer – trailing edge interac-

tion noise. There are three reasons leading to that conclusion [19]. First,

Cluster 1 is in the vicinity of the trailing edge of the previous blade. Sec-

ond, the frequency of this cluster centre, being about 2.8 kHz, is in fair580
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hub hub

Figure 8: Clusters for c = 3, m = 2 and a = 1. +: data points, ♦: cluster centres. a)

standard FCM clustering b) the proposed hybrid clustering method. The contour map shows

the maximum membership value at each point. The numbers indicate the cluster numbers.

At the bottom, the lines indicate the trailing edges (TE) and leading edges (LE) of the fan

blades, together with the tip radius.
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agreement with the peak frequency of this noise source, being about 1.2

kHz [35], especially considering that third octave bands below 2 kHz were

not processed here. Third, the derivative of the beamforming level with

respect to the frequency, which is about 7 dB/kHz, agrees fairly well to

the 8.6 dB/kHz obtained from models related to this noise generation585

mechanism [35, 36, 37].

• Cluster 2 represents the tip leakage flow noise. The reasons behind that

are as follows. First, the location, being positioned between two blades.

Second, the frequency of the cluster, being about 5.8 kHz, agrees well with

the frequency of 5.2 kHz reported for this source type in [35]. Furthermore,590

the frequency derivative of the beamforming level, being 2.3 dB/kHz, and

the shape of the beamforming level spectrum, is again in agreement with

references [35, 38] that report a value of 2.2 dB/kHz for tip leakage flow.

• Cluster 3 represents the double leakage flow noise. This type of noise

source originates from a tip leakage flow that that reaches the pressure side595

of the adjacent blade around the tip region, where it leaks again, reaching

the third blade [39]. The frequency of this cluster, and the frequency

derivative of the beamforming level in this cluster is similar to those of

Cluster 2, suggesting that the two sources are related. However, this is

located further downstream from the trailing edge, when compared to600

Cluster 2. This leads to the conclusion that Cluster 3 is related to the

double leakage flow noise. Similar observations, supported by numerical

and experimental fluid dynamics analyses, are reported in [13, 14, 15].

For more details on the analysis process, and for the reasons behind excluding

further generation mechanisms, the Reader is referred to [19].605

5.2. Comparative evaluation of multiple radii

The same approach was applied onto the two remaining radii. As noted

before, N = 5 and 7 base sources were identified after filtering at R = 0.6

and 0.8, respectively. Due to the small number of data points, only c = 2
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clusters were considered meaningful, following the recommendation regarding610

cmax ≈
√
N given in [34]. Therefore the XBP index was not applied, and for

these angles, maps with c = 2 clusters are shown in Fig. 9. There, Cluster 1

is due to the noise of the turbulent boundary layer – trailing edge interaction,

Cluster 2 is due to tip leakage flow, while Cluster 3 is due to double leakage

flow noise.615

0.4 0.6 0.8 1

a) b) c)

rotation

R=0.6 R=0.8
R=1

tip

hub

111

2 2

2 3

Figure 9: Cluster maps. +: data points, ♦: cluster centres. a) R = 0.6, b) R = 0.8, c)

R = 1.0. β = 0 indicates the location of the trailing edge of the preceding blade at R = 1.0.

The shaded areas indicate the fan blades, which are not to scale, however, the lines showing

the trailing and leading edges are placed according to their physical positions. w indicates

the maximum membership value at each point. Cluster 1: turbulent boundary layer – trailing

edge interaction noise. Cluster 2: Tip leakage flow noise. Cluster 3: double leakage flow noise.

To provide further information relating to the maps at different radii, cluster

amplitudes σ were introduced. The cluster amplitude σi represents the strength

of the source attributed to the i-th cluster. This is calculated as shown in

Eq. (18), using the data point amplitudes pi, which were obtained from the

Fourier expansion of the circumferential source strength distributions. As the620
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aim is to qualitatively compare the maps and not to quantify them, the exact

values of cluster amplitudes are not reported, only their relation to each other,

therefore the pi values are used in a dimensionless form. Cluster amplitudes

were determined separately for each cluster and each radius.

σi =

N
∑

j=1

wi,j pj (18)

As seen in Fig. 9, Cluster 1, connected to turbulent boundary layer – trailing625

edge interaction noise, was identified at all radii. Its location is similar in all

maps: the cluster centre is located about 20 degrees downstream of the trailing

edge, following its inclination due to blade skew, and its frequency is around

3 kHz. This trend, i.e. that base sources positions follow the skewed trailing

edge, is apparent in other maps, as well, from R = 0.5 throughout R = 1.0,630

which are not shown here. The amplitude of Cluster 1, σ1 was found to increase

monotonically with increasing radii: at R = 0.6, it reached 27% of the amplitude

at the tip radius, while at R = 0.8, this value was 62%. This may be connected

to the spanwise increase of circumferential velocity and flow velocity. Therefore,

the sets of Cluster 1 match the spanwise changes in trailing edge geometry and635

in flow conditions.

Cluster 2 was is also found in Fig. 9, where its frequency is around 5.5 kHz

in all three maps. Its location is consistently about 20 degrees downstream of

the trailing edge at R = 0.8 and 1.0. This cluster was connected to the noise

due to tip leakage (R = 1.0). Therefore, Clusters 2 of R = 0.8 and R = 0.6 are640

considered as the weakened signatures of the tip leakage flow appearing at these

lower radii, as well, due to the limited spatial resolution of the beamforming

technique. This view is supported by the fact that the σ amplitude of Cluster

2 decreases monotonically towards the hub: at R = 0.8, 54% of the amplitude

was found, while at R = 0.6, it was about 19%. The limit in spatial resolution645

causes a variance in the angular position of Clusters 2, as well.

At R = 1.0, Cluster 3 was found, as well, and it was connected to the noise

of double leakage flow. At lower radii, this cluster was not found. This is
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attributed to the limited spatial extent and strength of the double leakage flow.

In summary, three clusters were localised in the rotor annulus. These are650

in good agreement with those found earlier in [19], which represent turbulent

boundary layer – trailing edge interaction, tip leakage, and double leakage noise.

The clusters at the different radii are physically related, are found at similar

frequencies, and mostly follow the shape of the skewed trailing edge.

6. Conclusions655

A new method was presented for the fuzzy clustering of data points in a

hybrid data set. Its advantage is being able to identify clusters in a periodic

feature space, regardless of the number of total dimensions. It can only be

applied however, if there is exactly one periodic dimension.

Application of the algorithm was illustrated in a case study to investigate660

noise sources in axial fans, by analysing beamforming maps. For the sake of

robustness, sensitivity studies were carried out to determine the parameters.

The number of clusters was found with the help of the extended XB index,

taking periodicity into account. The effect of fuzzifier was investigated, and in

the present case study, was found to have little influence on the results in the665

usually suggested range. The relative importance of the different dimensions

was evaluated as well, again through a parameter study, to find the optimal

weights for the distance measure. These sensitivity studies on m and ak, also

in determining c via the XB index, are recommended on a case-specific basis in

every case for which the method is applied.670

The procedure was carried out for multiple radii on the blade surface, in

order to obtain spanwise information about the noise sources. The clusters of

turbulent boundary layer – trailing edge interaction noise were found to be in

accordance with the spanwise change in blade geometry and in velocity condi-

tions. The clusters of tip leakage flow were noise also appeared at radii further675

away from the tip, drawing attention to limitations in spatial resolution of the

applied beamforming technique.
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The results show that the proposed beamforming map analysis method is

robust, and the parameter sensitivity study provides objective choices for the

variables. Thus, it allows the analysis of beamforming maps in a concerted and680

objective way, allowing researchers to identify the dominant noise sources being

present in an axial fan. The periodic clustering method is however not restricted

to beamforming or fan data, and could see a wide range of applications.
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[18] B. Tóth, J. Vad, Fourier analysis of beamforming data at the tip of an axial

fan rotor, Periodica Polytechnica, Mechanical Engineering 60 (3) (2016)755

152–158. doi:10.3311/PPme.8935.
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