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ABSTRACT to ensure that the test subjects walk along a straight line an
In this paper, we present a performance analysis of variaterally to the camera [5], establishing view-invariamce
ous descriptors suited to human gait analysis in Rotatingo_dL_‘CeS major challenges. A possible solution is recgrdin
Multi-Beam (RMB) Lidar measurement sequences. The gaif@ning data for each pedestrian from multiple viewpoints

descriptors for training and recognition are observed anéf], however this requirement cannot be fulfilled in a survei
extracted in realistic outdoor surveillance scenariosenwh |ance scene, where the pedestrians have to be recognized dur

multiple pedestrians walk concurrently in the field of in- g their natural behavior. Another option could be taken by
terest, their trajectories often intersect, while ocdusi €xtracting 3D features from multi-camera configuratioris [7

or background noise may affects the observation. For thBowever installation and continuous calibrations of such s
Lidar scenes, we compared the modifications of five ap'gems needs significant efforts, which might be a bottlengck b

proaches proposed originally for optical cameras or Kinecfonitoring customized events. _
measurements. Our results confirmed that efficient person Applying depth sensors appears as a natural idea for cap-

re-identification can be achieved using a single Lidar sensoturing accurate 3D information for gait recognition. The
even if it produces sparse point clouds. cheap and widely used Kinect sensors have already been

investigated for gait analysis in a number of works [8, 9],
and a corresponding gait database has already been publishe
[10] for reference. However Kinects are still less efficient
1. INTRODUCTION for surveillance applications due to their small Field oéWi
(resolvable depth is between 0.8m — 4.0m), and the low qual-
The use of gait as biometric feature has been extensively eXy outdoor performance of the sensor, especially in direct
amined in the recent decades [1]. Recognizing people througsn|ight.
the way they are walking is a highly advantageous approach yjg|odyne’'s Rotating Multi-Beam (RMB) Lidar system
in video surveillance systems, where the identificationan g gpje to provide point cloud sequences from large outdoor
cooperative subjects is required. Although various tenptms _scenes with a frame-rate of 15 Hi#0° Field of View (FoV),
have been already proposed on gait based person identifiGsint cloud sizes of around 65K points/frame with a maximal
tion, their evaluation has been usually limited to stror@iyi- 5 js of 120m. The RMB Lidar sensor does not need any in-
trolled indoor or outdoor environments considering illwai  g5)ation or calibration process after being placed inbea
tion, background surfaces and background motions. In thgnironment, However, the spatial density of the point dlou
widely used gait recognition benchmarks, such asGR8IA s qjite sparse, showing a significant drop in the sampling
gait dataseq2], the USF databas¢3], or the CMU Motion  yensity at larger distances from the sensor, and we can also
of Body (MoBo)Database [4], typically a single pedestrian seq 4 ting pattern with points in the same ring much closer
walks alone in a test video, which simplification facilitate to each other than points of different rings. According to ou
gait print analysis and high quality discriminative fe@®@x-  aa5urement, the point cloud size of a person in a courtyard
traction. On the other hand, in a surveillance scenariogdlie  \ith 10-20m radius varies between 200-400 points, which is
features should be observed in an arbitrary scene, where myl, 5 orders of magnitudemaller than the figures of Kinect
tiple pedestrians are concurrently present in the field tlaey (10-20K points/person), and also significantly lower thae t
may partially occlude each other. System response should l&%nsity of the stereo camera measurements from [11].
real time_, so that the person assignment is performed during In this paper, we investigate the abilities of the RMB
the monitored ev_ent_. . . . .. Lidar sensor for visual gait analysis, supporting pedastri
. The clear majority of g.a't analysis technlqugs deal Wlthre-identifica’tion in realistic surveillance environmental-
video ﬂO\.NS of_standgrq optical cameras, or multi-camera Syﬁhough pedestrian detection and tracking tasks have gread
tems. Since in realistic scenarios, it is usually not pdesib been conducted on RMB Lidar measurements [12, 13], to
978-1-4673-8457-5/15/$31.¢492015 IEEE our best knowledge our research [14] has been the first at-
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(a) Silhouette print (b) GEI

Fig. 2. Extracted features of the (a) Silhouette print [6] and
(b) GEI [14, 15] techniques on Lidar data

tions of the silhouettes. Instead, we exploit an assumtian
the people walk forwards in the scene, always turning toward
Fig. 1. Silhouette extraction and projection the tangent direction of the trajectory. At each time frame,
project the point cloud segment of each person to the plane,
which intersects the actual ground position, it is perpeuldr
to the local ground plane, and it is parallel to the local tartg
tempt to involve such sensors in gait recognition. While we,ector of the Fourier-smoothed trajectory from top viewg(Fi
demonstrated the relevancy of Lidar based features in [14jl(d))_ The projected point cloud consists of a number of sep-
at a proof-of-concept level, we focus here on comparing feagrated points in the image plane, which can be transformed

tures used in earlier techniques, which have originallynbeejnto a connected 2D foreground region by morphological op-
proposed for gait analysis in optical or Kinect data. By eachyrations (Fig. 1(c)(d)).

selected method, we had to explore first how their expected
input feature maps can be derived from RMB Lidar streams.
All methods have been quantitatively evaluated on the pedes 3. FEATURE SELECTION

trian dataset of [12], which contains Velodyne measurement

sequences from multiple concurrently walking people in (,f_or comparison, we implemented five_ different modell_—free
courtyard scene. silhouette based approaches for our Lidar-based sunvedla

framework. The first four techniques are Lidar-focused ap-
plications of state-of-the-art approaches, proposedeedior
standard optical and Kinect data, while the fifth method is an

The proposed gait recognition process is embedded into tHrenproved modification of our model from [14].

Lidar-based surveillance system [12The framework is able ' '
to automatically detect and track multiple moving pedastri  3.1. Silhouette print

s based on measurement sequences of a RMB Lidar SENSPhle et al. [6] used the width of the outer contour of a bina-

which monitors the Field of Interest (Fol) from a fixed groundrizeol silhouette as the basic feature. In this method, adoun

position. As output, the 2D ground trajectories of the pedes. . . .
trians are provided (Fig. 1(a)). However in the basic systerr!1ng box is placed around the extracted silhouette patcighwhi

[12] several eritical issues were related to broken trajsct is divided intoD equal box-parts along the vertical axis. Then

segments during the person tracking process, caused by fr%‘-e width of the silhouette is stored in each box-part, yigd

) X . D dimensional (used = 20) width-vector at a given time
quent occlusions between the people in the scene, or simp

by the fact that the pedestrians mav temporarily leave the Fo Yame. The width-vectors of consecutive frames are contbine
y X y P y . _in an image called silhouette print (SP) image. Brighter pix

In this paper, we compare various 2D silhouette based ga('—:-tls refer to larger values in the width vectors. Similasitiee-

analysis approaches for person re-identification. Forrensu . ) o .
) . o . : o tween the prints are calculated using dynamic time warping
ing viewpoint invariant features, we interpolate the sicew (DTW) algorithm [6]

projections of the 3D human silhouettes in the RMB Lidar Before starting the evaluation in our Lidar dataset, we val-

point clouds (Fig. 1(b)). Since the FoV of the Velodyne sen- . . .
sor is circular, a straightforward projection plane at aegiv idated our implementation on the original CMU MoBo [4]

ground position could be taken as the local tangent of the cir(Optlcal) database, and reproduced similar efficient tesal

L . ILG]. Thereafter, the adaptation of the method to the moré cha
cle around the sensor position, however as Fig. 1(c) demo lenging Lidar-scene has been straightforward: we gerg:ate
strates, this choice would not ensure side view approxima- 9ing gntio ' gern

prints for every person for gallery (training) data, andidgr

IDemos:ht t p: / / web. eee. szt aki . hu/ i 4d/ denos. ht n the re-identification step we have chosen the person, whose

2. MODEL FRAMEWORK




Scenario | SP-DTW | GEI+VC | DGHEI | CGCI | GEI+NN
winter4 0.96 0.98 0.97 0.36 1.00
winter6 0.33 0.83 0.89 0.27 0.85
spring6 0.64 0.94 0.81 0.32 0.95
spring8 0.33 0.57 0.59 0.20 0.70
summer5| 0.39 1.00 0.59 0.40 0.99
‘B’ channel summer6| 0.33 0.67 0.83 0.29 0.79

(a) DGHEI features (b) CGCl feature maps (Al | 050 [ 0583 | 078 [ 031 0.88 |

Depth Map DGHEI ‘R’ channel ‘G’ channe

Fig. 3. Feature maps by the (a) DGHEI [16] and (b) CGCI [9] Table 1. Evaluation results of the five methods: rates of cor-
techniques on Lidar data rect re-identification.

galleries showed in average the lowest DTW distance fron?->- Gait Energy Image with Neural Networks

the current probe (test) data. As a modification of the original GEI approach, we intro-
duced in [14] the Lidar-based GEI technigue, which trained
3.2. Gait Energy Image with Vector Comparison a multilayer perceptron (MLP) for each detected person us-

ing the extracted GEI prints. As an improvement, we propose
The Gait Energy Image (GEI) was introduced by Han anchere using an ensemble of a single convolutional neural net-
Bhanu in 2006 [15] for conventional optical video sequencesyork (CNN) and a MLP, both ones having outputs, where
GEls were derived by averaging the binary person silhosette)y is equal to the number of people in the training scenario,
over the gait cycles: and each output value represents a person. The CNN inputs
. are the raw 2D GEls, while the feature vectors of MLP have
1 undergone dimensionality reduction through PCA and MDA
Glay) = T ZBt(m’y) (1) compression. For a training sample, the output of the repre-
=t sented person is labeled Bsthe other outputs as1. In the
where B is the binary silhouette and is the number of test phase, the trained network produces outputs within the
collected frames. Principle Component Analysis (PCA) andangeo € [—1,1], and anyo > 0 positive match is consid-
Multiple Discriminant Analysis (MDA) were applied to the ered a successful identification.
images for dimension reduction, then the Euclidean digsnc
between the gallery and probe feature vectors were cagzlilat 4. EXPERIMENTS AND DISCUSSION
to decide if the GEls are derived from the same person.
We have tested the above listed five methods in six outdoor
3.3. Depth Gradient Histogram Energy Image sequences captured in a courtyard by a Velodyne HDL 64-E
RMB Lidar sensor (sequence names in Table 1 refer to the
Following the averaging idea of the Gait Energy Image, thedate of capturing and the number of people in the scene) [12,
Depth Gradient Histogram Energy Image (DGHEI) [16] cal-14]. In all the sequences, the test subjects circulate in the
culates depth gradients with histogram binning, then it-ave scene, then they leave the FoV for a while, and re-appear late
ages the histogram bins of a full gait cycle. PCA+MDA andin a different order. The goal is to match the corresponding
nearest neighbor classifier were used for dimension restucti gait patterns collected in the firdtgining) and secondtés)
and classification. Instead of the binarized silhouett€d [1 parts of each test scenario.
used depth images captured with a Kinect sensor. All the methods (except the silhouette print) were trained
using 100 gallery (training) feature maps for each perseon, e
tracted from theraining parts of the sequences. In the evalu-
ation phase, we generated 200 probe (test) maps of each test
Tang et al. [9] used point clouds captured with Kinect sensubject from theéestsegments of the videos. Each probe sam-
sors for gait recognition. They used Gaussian curvature arle was independently matched to the trained person models,
mean curvature to extract 2.5D gait features and mappee thethus we use@00 - N test samples in a scenario with peo-
features and the density of point clouds to a 3-chaR@B ple. For evaluating the performance of the different meshod
image. Next, they applied 2D Discrete Cosine Transform angve calculated the rate of the correct identifications amding a
2D-PCA to the R, G and B components separately. Classtest samples, and listed the obtained results in Table 1.
fication was achieved by calculating a weighted sum of the As we can observe in Table 1, the CGCI method showed
absolute differences in the R, G and B feature components. the most significant drop in performance due to the low point

3.4. Color Gait Curvature Image



density of the Lidar sensor. While CGCI has been efficien-
t with Kinect measurements [9], the much sparser Velodyne =
point clouds caused a notably degraded efficiency of the ap '%
proach. [ ]
By testing the width-vector based SP+DTW approach [6], ﬁ - w ﬁ

we experienced that it only favored the first test scemia-
ter4), which included nearly complete silhouettes with noise- (@) Filtermask  (b) Droppedl  (c) Dropped2  (d) Kept frame
less contours. However as the quality of silhouettes deetka
due to frequent occlusions, and several holes and diseantinFig. 4. Demonstration of the automatic frame selection step
ities appeared in more crowded tests scenes, the SP+DTRoposed for the GEI+NN method (not used in Table 1)
approach provided quite low recognition rates.

The Depth Gradient Histogram Energy Image (DGHEI)

[16] proved to be the second best gait descriptor, outpextbm Scenario R F |[F+R
only by the two GEI based methods. The key point in the op- winter6 | 0.78 | 0.85] 0.81 | 0.95
eration of DGHEI is extracting high-quality depth images. A springé | 0.80| 0.95] 0.81 | 0.98
Fig. 3(a) demonstrates, with the 200-400 points of each per- summers| 0.99 | 0.99| 1.00 | 1.00
son, we can already get a clean depth map, and we expect summer6| 0.75] 0.79 ] 0.83 | 0.95
further quality improvements of the approach if newer gener average | 0.83| 0.90| 0.86| 0.97

ations of Lidar sensors appear in the future. , . .
We found GEI as the most efficient descriptor suited forTable 2. Performance improvements of rotating (R), filtering

the Velodyne Lidar measurements due to its robustness: eﬁﬁ'—:) and both steps (R+F) using the GEI+NN method.
cient GEls could be extracted even under challenging circum
stances with the presense of low quality or partially migsin

silhouette parts. However, based on our experiences, W hayy is slower due to running DTW comparison between the
modified the original approach of [15] at a number of points.,ohe sample and all stored gait print samples. The GEI+NN
To increase the robustness against occlusion and low y‘“a“gpproach needs relatively significant time for training set

measurement segments, we did not rely on preliminary gaffeneration and NN training, however the recognition step is
cycle extraction as proposed in [15]. Instead, we sele@®d 1 gyjj| yery efficient: less then 0.01sec/probe sample.
dom seed frames from the recorded gait sequence, and aver-

aged the upcoming 80 consecutive frames to get the person’s
GEL. In challenging scenes, such as the ‘crowdguing8and 5. CONCLUSION
summer6scenarios, the Vector Comparison [15] step did not

provide a robust recognition result, here the neural néwor\ye showed that various silhouette based gait recognition

based solution yielded more efficient performance. techniques can efficiently adopted to the measurement se-
For reducing further artifacts caused of frequent OCC|Uquences of a RMB Lidar sensor. The methods were tested

sions, we also developed a frame selection algorithm for thgp, challenging simulated surveillance scenarios, and tie G

best performing GEI+NN approach. A binary mask was CreEnergy Image + Neural Network solution proved to be the

ated by summing and thresholding the consecutive silhesiett 1,6st robust against degraded silhouette shapes.

for every person (Fig. 4(a)). For every silhouette we caitul Acknowledgment: This work was supported by theds

ed its internal and external area w.r.t. the mask. If theate Bolyai Research Scholarship of the Hungarian Academy of

area was less then the 40% of the mask’s area (Fig. 4(b)) Aciences

the area external area was more then the 30% of the mask’s
area (Fig. 4(c)) the frame was discarded for GEI calculation

As a result, we attempted to use the relevant frames only (Fig Training set| NN training | Recognition of
4(d)). In Table 2, we provide comparative recognition rates Method generation phase 100 test samples
for the GEI+NN method in four configuration, showing the| SP+DTW 8.43 — 43.7
improvements of the trajectory oriented projection (sele co| GEI+VC 1427 — 0.39

umn R, and also Fig. 1), and the frame selection filter (F) DGHE] 110.3 — 0.98

Note that the R step has already been used in the tests réporfecGC 108.9 _ 0.26

in Table 1, since it was not related directly to GEl generatio ["GE[+NN 142.7 246.9 0.98

The measured computational time requirements of the
main steps for the different approaches are listed in Tabl@able 3. Computational time (irsecond) of the main steps
3. Although the training of the SP+DTW approach is sig-of the different approaches for the Lidar based gait datbas
nificantly quicker than the other references, the recogmiti
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