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Abstract—In this paper we propose a general approach for
registration of point clouds obtained by various mobile lagr
scanning technologies. Our method is able to robustly match
measurements with significantly different density characgristic
including the sparse and inhomogeneous instant 3D (13D) dat
taken be self-driving cars, and the dense and regular pointlouds
captured by mobile mapping systems (MMS) for virtual city
generation. The core steps of the algorithm are robust scaneg-
mentation, abstract street object extraction, object base coarse
transformation estimation in the Hough accumulator space,
and point-level registration refinement. Experimental resilts are
provided using three different sensors: Velodyne HDL64 and
VLP16 I3D scanners, and a Riegl VMX450 MMS. Application
examples are shown regarding self localization of autononus
cars through crossmodal 13D and MMS frame registration, IMU-
less SLAM and change detection based on 13D data.

I. INTRODUCTION

1083, Pratend0/A, Budapest, Hungary

global positioning error of the vehicles may reach several
meters in city regions with poor GPS signal coverage.

New generation Geo-Information Systems (GIS) used by
city administrations maintain extremely detailed 3D point
cloud maps of the cities for road network management,
surveillance and urban planning applications. Recent Mobi
Mapping Systems (MMS), such as the Riegl VMX450 (Fig.
1(c)) are able to provide dense and accurate point clouds fro
the environment with homogeneous scanning of the surfaces
and a nearly linear increase of points as a function of the
distance [1]. The point density of MMS point clouds is with
2-3 orders of magnitude higher than the density of 13D scans.

In this paper, we propose a new general point cloud
registration method for mobile laser scanning applicatjon
focusing on challenging scenarios where one or both point
clouds are notably sparse having specific or irregular éensi

Mobile vehicle mountabléidar laser scanners are gainingharacteristics, or they may originate from different 13D o

ground in various application fields, since they are ableig®

MMS sensors. In particularly, our algorithm will give sdhuts

accurate 3D measurements from the surrounding environmggitine following three problems:
with a very high acquisition speed. Automatic point cloud

registration is a key step in many applications such as si-
multaneous localization and mapping (SLAM) and mobile

surveillance, especially if precise position informatiofthe

acquisition platform is not available due to lack of accerat

navigation signals. However answering different funcion

requirements and due to the manufacturer’s unique inngvati
approaches the available sensors may provide point cloud?)

with very different density characteristics [1], limitirtge gen-
eral usability of standard point cloud registration teciugs
[2], [3], or methods developed for specific sensors [4].

Autonomous vehicles (AV) demand instant 3D (I3D) data

acquisition and processing technigues operating onboard

mobile platforms. Since the decision of the navigation or
control unit of a AV must be instantly made depending on the

actually available environmental information actual fukw

point cloud frames must be generated with 10-15fps, and the

size of the transferable data should also be limited for Emgb

1) Crossmodal I3D and MMS point cloud registratiofV/s
could fully take the advantage of using a global and
detailed 3D map of the city for accurate self localization,
route planning and high level scene understanding. This
process needs the quick and precise registration of the
sparse 13D data to the dense MMS point clouds.
IMU-free SLAM based on sparse 13D dat#Vithout
reliable assistance of external navigation sensors such as
Global Positioning Systems (GPS) or Inertial Measure-
ment Units (IMU), SLAM based on 13D Lidars suffers
from challenges of automated matching inhomogeneous
and low density point clouds.

Registration of clouds from different I3D sourcd®eg-
istering scans from different AVs which may carry
different types of I3D Lidar sensors opens prospects in
change detection, dynamic environment surveillance and
co-localization of communicating vehicles. However,
this process needs matching scans which are both sparse

03)

real time processing. As a consequence the measuremeets hav

and also exhibit different distance-density charactierist

usually a low spatial density, which quickly decreases as a
function of the distance from the sensor, and the point douBor experimental evaluation of the algorithms, we used 13D
may exhibit particular patterns typical to sensor charétie, data by our institute’s Velodyne HDL64E (Fig. 1(a)) and
such as the ring patterns of the Velodyne sensor (see Fig. N&P16 (Fig. 1(b)) rotating multi-beam Lidar sensors, and
and 1(b)). Although the 3D measurements are quite accurM®S point clouds captured with a Riegl VMX450 system
(up to fewcns) in the sensor’s local coordinate system, th@ig. 1(c)) in urban roads under ordinary traffic. As shown in
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(a) 13D 64-beam scan (Velodyne HDL64E)  (b) 13D 16-beam scan (Velodyne VLP16) (c) MMS scan (Riegl VMX450 system)
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(e) 13D-16 point cloud segmentation (f) MMS cloud truncation & segmentation

Fig. 1. Top row: Point clouds of three different vehicle mounted Lidar systecaptured from the same scene at Févam tér, Buddgmsdm row:segmentation
results for each cloud by our proposed method presenteddn!Be

Fig 1(a) and (b), HDL64E and VLP16 records similar “ringpelow 10m due to the availability of coarse self localizatio
patterned” instant 3D data, however, VLP16 - working witinformation, but the orientation difference may be arhbitya

16 laser beams in contrast to the HDL's 64 scanning unitdarge, as demonstrated in Fig. 2. Our algorithm consistewf f
provides four times less points in a full rotation, and the twmajor steps: point cloud segmentation, abstract field objec
sensors also have different firing angles. extraction, object based coarse transformation estimagind

accurate registration refinement.
Il. PREVIOUS WORK

Although various established techniques do exist for poifit Point cloud segmentation

cloud registration, such as Iterative Closest Point (ICH) [ Point clouds captured by Rotating Multi-beam Lidar sensors
and Normal Distribution Transform (NDT) [3], these methodgontain characteristic ring patterns on the ground (see Fig
may fail if the two point clouds are not pre-aligned somehowa) and 1(b)), which is largely disadvantageous for stehda
and particular density characteristics may also mislea thoint cloud registration algorithms. Our experiences Fvs
matching step [4]. Various improvements have been puldishgat applying ICP or NDT on the raw Velodyne frames often
for the ICP algorithm, such considering color informatioiield erroneous registration where the concentric rings ar
[5], or geometrical features from the point neighborhoodgigned to each other, instead of finding the match between
[6]. However, these approaches still have large computatio the structural scene elements. On the other hand, by atjgnin
cost. Other techniques do not improve the core of the IGR|odyne to MMS scans the poor matching rate between the
algorithm itself, but use trajectory information for castidg terrain regions can also mislead the registration prodess.
ICP errors [7]. An enhanced ICP algorithm is introduced ithese reason, we start the procedure with ground removal: we
[8], which uses a point cloud segmentation step [9], then thgply a locally adaptive terrain modeling approach sirtyilar
nearest neighbor search of ICP is done only in associaf@gl which is able to accurately extract the road regiongnev
segments across scans. Non-ICP-based approaches havejfeigir surfaces are not perfectly planar. First we fit a tagu
been proposed e.g. [10] which exploits the nature of a ri@ati2D grid with fixed rectangle side length onto the horizontal
multi-beam Lidar (such as the Velodyne sensors) for plane_, plane, using the Lidar sensor's vertical axis as the
detection, and applies real-time registration of the eté@ direction. We assign each point of the point cloud to the
planes. Although this method could lead to real-time SLAMsorresponding cell, which contains the projectiop®® P,—_,.
we must note that in many real world scenarios the plane dgfe use point height information for assigning each grid eell
tection step may mean a significant bottleneck of the procegife corresponding cell class. Before that, we detect andvem
grid cells that belong to irrelevant clutter regions, sot tiva
neglect each cell from further calculation, which contdess

In this section we introduce a new registration algorithmoints than a predefined sensor-specific threshold. Aftetecl
for point cloud pairs captured with possibly different 1I3Bda removal, all the points in a cell are classified as ground, if
MMS sensors. Let us assume that the translational comple difference of the minimal and maximal point elevatioms i
nent of the frame displacement between the two cloudstiee cell is smaller than an elevation threshold (used 25cm),

IIl. PROPOSED POINT CLOUD REGISTRATION ALGORITHM
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(@) Extracted HDL and VMX obstacle clouds in initial positio Fig. 3. Demonstration of the optimal object based scan maiteln top-view

projection of the point clouds from Fig. 2, following Algthim 1.

individual objects within each group, while the computatib
requirement of the whole algorithm remains two order of
magnitude lower than kd-tree based 3D propagation methods.

C. Object based transformation estimation

Assume that in the previous step we have extracted two sets
of object center€1 andC2 from the two point cloud frames,
respectively. Following a similar approach to fingerprinhm
tia matching of [12], we attempt to find the best transforovati

, _ , _ in the sense that when applying the transformation to the
Fig. 2. Velodyne HDL64E to Riegl VMX450 point cloud regigicn results . . .
using our proposed method (Deak Ferenc tér, Budapest). objects of the seC1 as many of these points as possible

overlap with the objects from the s€2. Since moving, dis-

placed or misdetected field objects may occur in both frames,
moreover the average of the elevations in neighboring celleere may object center points in either set that do not match
does not exceeds an allowed height range. The result of drowvith any point in the other set. Similarly to [12] we estimate
segmentation is shown in Fig. 1(d)-(f), which confirms that o the transformation parameters using the generalized Hough
technique handles robustly the various 13D and MMS Lidaransform. We discretize the set of all allowed transforore,
point cloud types. Since with the considered 13D sensors wheen for each transformation we calculate a matcHitess
can only see the bottom parts of the building facades, weore. Finally the transformation with the highest scotaken
truncate the MMS scans at the elevation of 4 metres aboxe result.
the ground level (Fig. 1(f)). Since the Lidar point clouds reflect the true object distance
from the 3D world, we can consider the transformation as a
composition of translation and rotation only. Note as wedtt

Expecting that significant translation and arbitrarilyger since the vehicles carrying the sensors are moving on urban
orientation difference must be compensated by the proposegds, which rarely contain sudden steep slopes, orientati
registration technique, we estimate first the transfornwbenh difference is mainly expected around the verticabxis of
the pOin’[ cloud frames at Object level. FO”OWing the remov%e Captured point cloud’s local coordinate system, while
of clutter and ground points, our next task is to find distingtansiation in ther andy direction, along the._, horizontal
groups of points in the remainingpstaclescloud (marked by plane. Exploiting that this object level step only aims tadfin
blue point in Fig. 1(d)-(f)), which might belong to differen an approximate solution for the matching, we project thepoi
urban objects in the scene. For fast object separation Weuds to theitP,_, plane, and estimate the 2D translation and
use a grid-based approach with efficient dynamic processi§ghlar rotation in this image plane, as demonstrated inJig.
techniques [11]. In simpler scenes, disjoint field obje@s c |n this way, the searched transformation takes the follgwin
be separated with floodfill propagation on a standard grigrm:
lattice, starting from a random seed cell, which step should .

. . . x cosa  sina x dx
be repeated until evergbstaclecell receives a unique ob- wa,dy@( ) = { ] [ ] + [ d }
ject label. For handling more difficult scenarios with sever Y 4
nearby adjacent objects, we also adopted our earlier pespoghe space of transformation consists of tripléts;, dy, o),
hierarchical 2-level model [11]. This later method sepesatwhere each parameter is discretized into a finite set of galue
first large objects or object groups at a coarse grid level wit Fitness scores for the transformation candidates are col-
large cells, then in the refinement it can efficiently sepatia¢ lected in the accumulator array, where the Aldz, dy, o]

(b) Crossmodal registration result

B. Abstract field object extraction

—sina  cos«o



element counts the evidence for the concerfligg, o trans-
formation. TheA array can be filled in an iterative way. For

Accuracy analyis:
registration result
from top-view
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Fig. 4. Crossmodal Velodyne HDL64 to Riegl VMX450 regiswatresults using our proposed method (Févam tér, Bustape

D. Point level refinement of registration
Although the above object based scan matching process

each object paifol, 02) whereol = (x1,41) is a pointinthe ,roued to be largely robust for the considered urban point
setClando2 is a point in the seC2 we determine all possible ¢joyq scenes, its accuracy is limited by the consideredaplan

Tiz,ay.o transformations that mapl to o2 and we increment yransiation and rotation transformation constraints, amel

the evidence for these transformations in the array. Here Wgccuracies of object center estimation from the differen

exploit that for every possible rotation valughere is a unique point clouds. As detailed in [4], due to the special data
translation vectofdz, dy] " such thatl, 4y..(01) = 02, and

it can be calculated as:

The obtaineddz and dy values need to be quantized to th
nearest bins for appointing the actually increaseable @i¢iof
the A array. The complete pseudo code of the scan alignm%%p

dx cosa  sina
=02 — . ol
dy —sina  cosa

method is shown in Algorithm 1.

Algorithm 1 The cloud alignment algorithm. Takes two clouds
as inputs and calculates the transformation between the
Rot(«) represents the rotational matrix alongxis.

1: procedure SCANALIGNMENT(F'1, F'2, T)

acquisition technology used in mobile laser scanning, the
ground-lesbstaclescloud can be efficiently used for auto-
mated scene matching with the Normal Distribution Transfor
(NDT) [3] in case of a high quality initial transformation
gstimation, which is available in our case by taking the ottp
of the object-level step. Therefore in the proposed regfisin
roach, we transform first ttebstaclescloud according to
optimally, 4, Obtained in Sec. llI-C, thereafter we apply
NDT for the resulting clouds (see line 16 of Algorithm 1).

IV. EXPERIMENTS

Mne have evaluated the proposed registration algorithm in
the context of the three applications introduced in Sec. I.

o C1 « ObjectDetect(F1) A. Crossmodal I3D and MMS point cloud registration

3 C2 + ObjectDetect(F2) We obtained MMS scans from a Riegl VMX450 system
4:  Initialize 3D accumulatord containing eight different urban areas shown in Fig. 5, afd s

5: for all o1 € C1 do sequently recorded 13D measurement sequences from the same
6: for all 02 € C2 do regions with our Velodyne HDL64 and VLP scanners. Table
7: for « € [0,359] do 5 gives an overview on the scene types, and lists the global
8: ol” < Rot(a) x 0l initial offset and rotation values between the raw 13D and
9: (dz,dy) < 02 — o1’ MMS scans. We evaluated the proposed registration process
10: Aldzx, dy, o] < Aldx,dy, o] + 1 with matching the measurements of both Velodyne sensors to
11: end for the MMS point clouds. Qualitative results regarding theabe’
12: end for and Févam scenes are shown in Fig. 2 and 4 respectively,
13: end for and the quantitative analysis results of the matching p®ce
14: a,dx, dy < FindMazimum(A) is given in Table 5. Sincgyround truth transformation was

15: F1,T1 <+ TransformCloud(F1, o, dz, dy) not available, we calculated first the asymmetric Modified
16: F1,T2+ NDT(F1,F2) Hausdorff Distance (MHD) between t@3p Velodyne and

17: T+ T2xT1 Pums MMS clouds:

18: end procedure

1
min dist(p,q)

P q€Pums
#Pi3p =

MHD (Pizp, Pums) =




(e) Kalvinl N f) Kélvink2 | -(g) Muzeum (h) Gellért

Fig. 5. Test scenes for crossmodal 13D and MMS point cloudstedion. MMS point clouds were provided by Budapest oZft.

where #P denotes set cardinality. Columns 5-7 of Table £
contain the obtained MHD values initially, after the objec
based Hough matching step, and in the final stage followir
NDT-based registration refinement. We can observe that bc
steps significantly decrease the distances between the stan
almost all data sets. However, the absolute MHD values
not reflect properly the accuracy of the algorithm, since th|
presence of several moving objects (especially large t@ms
tracks) irrelevantly increase the calculated averageudéss.
For this reason, we also used a modified error metrics cal
Median Point Distance (MPD), where we sort the points
Pi3p from the lowest to the highest value ofin, dist(p,q), _ _ _

and take the median of the distances amongpatt Piap. Fig. 6. S_LAM results with Velodyne HDL64 in Kosztolénylr_téBudapest
As shown in the 8-10th columns of Table 5 the MPD value%'ZM points from 80 frames captured at 3fps from a movingicleh

are also significantly decreased during the registratioogss,
and in seven out of the eight scenes the resulting MPD erreffset range[—25m, 25m] between two consecutive frames.
are below 3cm, which fact was also confirmed by visudlhis choice ensured very low computational cost uplio
verification. Only the test scene Bajcsy yielded erroneouagistration error accuracy, which can already be handjed b
registration result both by visual and gquantitative (MHDthe NDT step of the process. Fig. 6 and 7 show efficient
MPD) analysis. In this sample both 13D point clouds contdingegistration results using Velodyne HDL64 and VLP16 sen-
several moving vehicles, including large buses which atetli sors, respectively. Future work will concern the quaritieat
various relevant scene structure elements. As future plan, evaluation of the SLAM usage of the proposed algorithm.
aim at developing an efficient frame dropping algorithm t
filter out such situations, which mislead the registratibhe .
11th (last) column of Table 5 lists for each scene the computa Ve €xamined at a proof-of-concept level, that the proposed
tional time of the complete matching process (varying betwe@PProach is highly appropriate for matching the Velodyne

0.3 and 2.2 seconds), which confirms that the approach ie cl6{PL64 and VLP16 sensor measurements from the same
to online usability. region (see a sample frame in Fig. 8), which fact opens

prospects for various sorts of information exchange anidifus
B. IMU-free SLAM based on sparse 13D data between the concurrently active autonomous car community.

e Registration of clouds from different 13D sources

Using the registration algorithm on selected consecutive V- CONCLUSIONS AND ACKNOWLEDGEMENT
frames of a single Lidar sensor, an accurate 3D map of theWe introduced a new automated registration algorithm for
urban environment can be constructed without the help of amobile laser scanning data, which can work efficiently with
external or internal navigation sensors such as GPS or IMtllfferent kind of sensor characteristics through the corabi
Assuming that the speed of the vehicle carrying the Lidar céion of segmentation, object level and point level matching
be constrained by the admitted range in urban traffic, we usstéps. The authors thank Budapest Kozlt Zrt (Road Man-
a compact4d accumulator size50 x 50 x 360) covering an agement Department) for the provision of the Riegl VMX



TABLE |

RESULTS OF CROSSMODAL3D AND MMS POINT CLOUD REGISTRATION(VELODYNE HDL64/VLP16 TO RIEGL VMX SCAN MATCHING)

Name Scene Sensor initia_l offset, ] MHD (m) ] ] MPD (m) ] Cqmput
type rotation Init Hough | Finalf Init Hough Final time

Astoria traffic HDL 2.2m, 62° 3.641 0.773 0.415 1.587 0.511 0.022 1.923
hub VLP 2.2m,99° 5.045 0.582 0.221 3.623 0.231 0.008 0.665

Bajcsy main HDL 2.0m, 92° 5.657 11.441 | 10.105 1.177 2.702 4.539 0.992
road VLP 10.3m,72° 6.971 20.115 | 17.796 | 4.179 17.319 | 14.341 0.329

Deak road & HDL 1.4m,32° 3.638 0.717 0.338 1.516 0.345 0.004 1.960
square VLP 3.6m, 127 7.348 0.870 0.911 5.502 0.143 0.101 0.769

Eévam square HDL 2.0m, 134° 8.404 3.494 2.870 6.143 1.339 0.008 3.796
VLP 0.Im,20° 5.143 1.849 1.431 3.393 0.216 0.010 1.182

Kalvin road & HDL 1.4m,118° 9.891 0.774 0.205 5.808 0.469 0.005 1.159
part 1 square VLP 2.0m,42° 11.427 | 7.016 8.178 5.007 0.752 0.014 0.573
Kalvin road & HDL 5.8m,104° 19.445 | 2.252 2.002 4.968 0.437 0.023 0.288
part 2 square VLP 6.1Im,56° 19.663 | 2.901 5909 | 16.826 | 0.817 0.065 0.221
Mazeum | boulevard HDL 2.2m,70° 14911 | 3.358 1.373 12.354 1.315 0.009 2.574
VLP 5.0m,917 6.970 2.489 3.412 1.477 0.312 0.018 1.403

Gellert square HDL 1.0m,125° 3.180 0.949 1.046 1.238 0.224 0.014 1.045
VLP 0.0m, 347 5.241 2.438 1.574 4.037 1.173 0.029 0.852

HDL 2.3m, 92° 9.016 1.760 1.178 4.802 0.663 0.012 1.821

‘ Average valuep H VP I 3.7m,68° 8.691 I 2592 I 3.091 I 5.695 I 0521 I 0.035 I 0.809 I
Error measures: MHD: Modified Hausdorif distance, MPD: naedpoint distance.

tFinal result refers to the Hough+NDT cascadBajcsy was excluded from averaging, due to unsuccessfigtraion

(1]

(2]

(3]
Fig. 7. SLAM results with Velodyne VLP16 in Bartok Beéla, Budapest
(0.3M points from 200 frames captured at 5fps from a movingiale).
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O v [10]
Side-view Top-view
(b) Registration results
[11]
Fig. 8. Velodyne VLP16 and HDL64 point cloud registratiorsuks.

MLS test data. The work was supported by the Janos BoI);zlizi]
Research Scholarship of the Hungarian Academy of Sciences,
and by the National Research, Development and Innovation
Fund (NKFIA).
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