On process damping induced by vibration-dependency of cutting direction in milling

Tamas G. Molnar*a, Daniel Bachrathyab, Tamas Inspergerb, Gabor Stepana

aDepartment of Applied Mechanics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
bDepartment of Applied Mechanics, Budapest University of Technology and Economics and MTA-BME Lendület Human Balancing Research Group, H-1111 Budapest, Hungary

* Corresponding author. E-mail address: molnar@mm.bme.hu

Abstract

The process damping effect is analyzed for regenerative machine tool chatter in milling via a velocity-dependent cutting force model. This model takes into account that the effective cutting direction depends on the vibrations of the machine tool-workpiece system, which modifies the effective rake angle, the chip thickness, and the cutting force. The model was originally introduced for turning operations where it results in a process damping term that improves the stability of metal cutting at low cutting speeds. Now this model is extended to milling. It is shown that the vibration-dependency of the cutting direction induces a time-periodic process damping term that is negative when the radial immersion is low. This decreases the stability at low cutting speeds, thus the low-speed stability improvement phenomenon in low radial immersion milling can be explained by extended process damping models only.

Keywords: milling, dynamics, machine tool chatter, process damping

1. Introduction

This paper is devoted to the stability analysis of delay-differential equations describing milling in order to predict harmful vibrations (chatter) during metal cutting. Milling experiments reported in the literature [1–6] have shown that the maximum chatter-free axial depth of cut typically increases for decreasing spindle speed. We call this low-speed stability improvement phenomenon. The phenomenon is often explained by an additional damping – called process damping – which is inversely proportional to the spindle speed [1–8]. Most papers dedicate process damping to the interference between the tool’s flank face and the wavy surface finish [1–7], while in other models velocity-dependent chip thickness and cutting force expressions give rise to process damping [2,8]. Alternatively, the low-speed stability improvement can be explained by the distribution of the cutting force along the tool’s rake face [9–11].

In [2,8], process damping is explained for turning by taking into account the fluctuation of the cutting direction due to the vibrations of the tool. This effect results in velocity-dependent chip thickness and cutting force expressions [12,13]. Now these results are extended by recognizing that the cutting direction affects the effective rake angle, which leads to velocity-dependent cutting-force coefficients.

2. Mechanical model of milling

We investigate the single-degree-of-freedom model of milling shown in Fig. 1a, where the tool is rigid and the workpiece is compliant in the feed direction. Using the modal mass \(m \), the undamped natural angular frequency \(\omega_n \), and the damping ratio \(\zeta \), the motion of the workpiece is described by

\[
\ddot{x}(t) + 2\zeta\omega_n\dot{x}(t) + \omega_n^2x(t) = -\frac{1}{m}F_x(t). \tag{1}
\]

Here, \(F_x(t) \) is the \(x \)-directional component of the cutting force acting on the mill, which is associated with the cutting velocity and the chip thickness at the cutting edges.

Consider an \(N \)-fluted tool of radius \(R \) rotating with angular velocity \(\Omega \). The angular position of the \(j \)th tooth is \(\varphi_j(t) = \Omega t + (j-1)2\pi/N \). If the feed velocity is negligible, \(\dot{\varphi}_j(t) \) describes the direction of the nominal cutting velocity \(\dot{v}_j(t) \) of magnitude \(R\Omega \) (see Fig. 1b). This direction is the nominal tangential direction \(\vec{t}_j \), the perpendicular one is the nominal radial direction \(\vec{r}_j \). When machine tool vibrations occur, the vibration velocity \(\ddot{x}(t) \) modifies the velocity of the \(j \)th cutting edge and the cutting (tangential) direction. The magnitude \(v_j(t) \) and direction \(\varphi_j(t) \)
of the actual cutting velocity are given by

\[v_j(t) = \sqrt{\left(R\Omega \cos \varphi_j(t) + \dot{x}(t)\right)^2 + \left(R\Omega \sin \varphi_j(t)\right)^2}, \]

\[\cos \varphi_j(t) = \frac{R\Omega \cos \varphi_j(t) + \dot{x}(t)}{v_j(t)}, \quad \sin \varphi_j(t) = \frac{R\Omega \sin \varphi_j(t)}{v_j(t)}. \]

(2)

Note that quantities related to the nominal cutting velocity are indicated by tilde, while those without tilde (such as directions \(t_i \) and \(r_j \) in Fig. 1b) correspond to the actual cutting velocity.

Since the angle of the cutting direction changes from \(\varphi_j(t) \) to \(\varphi_j(t) \) during chatter, the rake angle is modified from the nominal value \(\bar{\alpha}_r \) to the actual value \(\alpha_{r,j} = \bar{\alpha}_r + \varphi_j(t) - \varphi_j(t) \), cf. Fig. 1b. The fluctuations of the cutting direction also affect the actual chip thickness \(h_j(t) \), which is the projection of the feed per tooth to the actual radial direction. For prescribed feed per tooth \(f_z \) and tooth passing period \(\tau = 2\pi/(N\Omega) \), the instantaneous feed per tooth becomes \(f_z + x(t) - x(t - \tau) \), and we can write

\[h_j(t) = (f_z + x(t) - x(t - \tau)) \sin \varphi_j(t), \]

(3)
cf. Fig. 1b. Note that the actual chip thickness \(h_j(t) \) is velocity dependent, since \(\varphi_j(t) \) depends on \(\dot{x}(t) \) as shown by Eq. (2).

3. Cutting Force Model

For reference, consider first orthogonal cutting with a linear cutting force model: \(F_j(t) = K_j a_h(t) \), where \(a \) denotes the chip width and \(K_j \) is the feed-directional cutting-force coefficient. It is well-known that cutting-force coefficients strongly depend on the rake angle \(\bar{\alpha}_r \). According to Eqs. (2.42) and (2.47) of [8],

\[K_j = \tau_i \frac{\sin (\beta_s - \bar{\alpha}_r)}{\sin \Phi \cos (\beta_s + \bar{\alpha}_r - \bar{\alpha}_i)}, \]

(4)

where \(\beta_s \) is the average friction angle and \(\tau_i \) is the shear stress along the shear plane located at shear angle \(\Phi = \pi/4 - (\beta_s - \bar{\alpha}_r)/2 \). The cutting-force coefficient \(K_j \) is shown in Fig. 2 as a function of the rake angle \(\bar{\alpha}_r \) for various friction coefficients \(\mu = \tan \beta_s \).

The cutting-force coefficient becomes negative for large rake angles, which has key importance in the subsequent analysis of milling with vibration-induced fluctuation of the rake angle.

Now the cutting-force coefficients are derived for milling following [8] via Merchant’s circle shown in Fig. 3. The cutting force \(F_j \) on the \(j \)th cutting edge is decomposed into four component pairs: \(x \) and \(y \)-directional \((F_{j,x}, F_{j,y}) \); actual tangential and radial \((F_{j,t}, F_{j,r}) \); parallel and normal to the rake face \((F_{j,\alpha}, F_{j,\beta}) \); parallel and normal to the shear plane \((F_{j,s}, F_{j,n}) \).

Following [8], the shear stress \(\tau_s \) along the shear plane located at shear angle \(\Phi_j(t) \) is assumed to be constant during cutting. Therefore, the cutting force component \(F_{j,s}(t) \) is the product of the shear stress and the shear plane area:

\[F_{j,s}(t) = g_j(t) \tau_s \frac{h(t)}{\sin \Phi_j(t)}, \]

(5)

\[g_j(t) = \begin{cases} 1 & \text{if } \varphi_{es} < \langle \dot{\varphi}_j(t) \mod 2\pi \rangle < \varphi_{ex}, \\ 0 & \text{otherwise}. \end{cases} \]

(6)

Here, \(g_j(t) \) is a screen function that indicates whether the \(j \)th tooth is currently engaged in cutting, mod is the modulo function, while \(\varphi_{es} \) and \(\varphi_{ex} \) are the enter and exit immersion angles.

The angle between the cutting force \(F_j(t) \) and the rake face normal is the average friction angle \(\beta_s \), which is assumed to be constant. The cutting force magnitudes \(F_j(t) \) and \(F_{j,s}(t) \) can be obtained from \(F_{j,s}(t) \) by considering the rectangular triangles in...
Note that Eqs. (2) and (9) imply velocity-dependent shear angle.
in Eq. (11) for dimensionless feed per tooth $f_xN/(2R\pi) = 0.01$ and 0.05 in cases A and B, respectively. In case B, the process damping coefficient $G_2(t)$ is always nonnegative, thus the stability lobes shift upwards at low spindle speeds similarly to the models of constant process damping [1–8]. In case A, $G_2(t)$ takes negative values, and the stability lobes shift downwards with a decrease in low-speed stability instead of improvement.

Note that for a two-fluted tool, a single tooth is engaged in cutting at any time. In such cases, the process damping is negative ($G_2(t) < 0$) at certain angular positions of the teeth according to Eq. (12). Process damping is negative if cutting takes place within angular positions 0° and $\pi/2 + \beta_a - \tilde{\alpha}_t = 110^\circ$, which involves up-milling processes; or within angular positions $3\pi/4 + (\beta_b - \tilde{\alpha}_t)/2 = 145^\circ$ and 180°, which implies low radial immersion down-milling. Process damping is negative also for $\phi(t) = 90^\circ$, i.e., for orthogonal cutting. In these cases, the chatter-free technological region shrinks for low cutting speeds. Note that the sign of process damping is also affected by the modal direction (which was now assumed to be the feed direction x) and the corresponding directional factor.

In conclusion, the vibration-induced fluctuations of the cutting direction act against the low-speed stability improvement phenomenon for orthogonal cutting and low-immersion milling. In order to explain the phenomenon for any cutting condition, one may introduce improved models for the shear angle or the friction angle (see an example in [17]). An alternative explanation is the interference between the tool’s flank face and the wavy surface of the workpiece [1–7]. Since the flank contact is intermittent, this in fact yields complicated non-smooth dynamics [7] that cannot be described by linear models including constant process damping. A different approach is considering the distribution of the cutting force along the tool’s rake face [9,10], which improves low-speed stability both for turning [9,10] and for milling with any radial immersion [11].

Our future research involves the experimental investigation of process damping via chatter tests in milling and the measurement of cutting forces during fluctuating the cutting direction in orthogonal cutting.

Acknowledgements

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007–2013) / ERC Advanced Grant Agreement n. 340889.

References

Fig. 4. The coefficients $G_1(t)$ of the delayed term and $G_2(t)$ of process damping (a); the corresponding stability charts for two different cutting conditions (b,c).