MULTIPLICATIVE BASES AND AN ERDOS PROBLEM
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Abstract
In this paper we investigate how small the density of a multiplicative basis
of order h can be in {1,2,...,n} and in Z*. Furthermore, a related problem

of Erdés is also studied: How dense can a set of integers be, if none of them
divides the product of h others?
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1. Introduction

Throughout the paper we are going to use the notions [n] = {1,2,...,n} and
An) = ANnin] forn € Nand A C Z*. Let h > 2 and S C Z'. We say that
the set B C Z% forms a multiplicative basis of S, if every element of s € S can
be written as the product of h members of B. The set of these multiplicative
bases will be denoted by M By (S). While the additive basis is a popular topic
in additive number theory, much less attention was devoted to the multiplicative
basis. It is easy to see that every multiplicative basis B € M By([n]) contains the
prime numbers up to n. Let Gp(n) denote the smallest possible size of a basis in
M By, ([n]). Chan [1] proved that there exists some ¢; > 0 such that for every h > 2

2
we have |Gy (n)| < 7(n) +c1(h+1)2 ﬁ);;; (in fact, he did not use the terminology
multiplicative basis). In the first theorem we determine the order of magnitude of
Gr(n) — m(n) in the sense that h is not fixed, the only restriction is that n has to

be large enough compared to h.

Theorem 1. Let h,n € Z* such that h < 1/12&%. Then for the smallest
possible size of a multiplicative basis of order h for [n] we have

n2/(h+1) n2/(h+1)
m(n) +0.5h——5— < Gi(n) < 7(n) + 150.4h——5—
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Raikov [5] proved in 1938 that a B € M Bj,(Z") must be dense sometimes.

Theorem 2. (Raikov, 1938) Let B € M B,(Z™). Then

B 1\~
limsupuz)tzI‘() .

On the other hand, for every h > 2 there exists a By, € MBR(Z1) such that
|B(n)]

lim sup ———45— < o0.
n—00 n/ logT n

In the lower bound the quantity I" (%) is asymptotically h. Our next theorem
determines the previous limit superior for multiplicative bases of order h up to a
constant factor (not depending on h).

Theorem 3. Let B € MB(Z*1). Then

B
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On the other hand, there exists some C' > 0 such that for every h > 2 one can find

B
a By, € MBy(Z") such that lim sup % =C.

n—oQ n/ 1og h n

On the other hand, a set B € M Bj,(Z") may be thin as our following theorem
shows:

Theorem 4. Let 1 < h € Z+. If B € MBy(Z*1), then liminf Z8L > 1. On the
n—oo

log n

other hand, for every € > 0 there exists a B € M By (Z™1) such that

|B(n)]

n
logn

lim inf <l+e.
n— oo
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The logarithmic density of a set B C ZT is defined as the limit lim bEIBL')
n—o00 ogn
(if it exists). Our following theorem determines the possible lower densities of the
quantity > for a B € MBy(Z").
beB(n)

Theorem 5. Let h > 2 and B € M By(Z"). Then
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On the other hand, there exists a constant C' such that for every h > 2 there exists
a B € MBL(Z") such that

If one looks at the paper [3] of Erdds, it seems that he deals with a quite different
problem. However, by a closer look it turns out that his problem is closely related
to the multiplicative bases. We say that A C S possesses property Py, if there are

no distinct elements a, ay, ...,a, € A with a dividing the product a; ...ay. Denote
the set of these A’s by P (S). Let Fp(n) = N Iga()[( ) |A]. Clearly the set of prime
cP,([n

numbers satisfies property Py, therefore Fj(n) > w(n). The case h = 2, that is,
such sets of integers where none of the elements divides the product of two others,
was settled by Erdés [3]. Chan, Gyéri and Sarkézy [2] studied the case h = 3.
Furthermore, recently Chan [1] determined the order of magnitude of Fj(n) — w(n)
for every fixed h.

Theorem 6. (Chan, 2011) There exist absolute constants ca,c3 > 0 such that, for
any positive integers n > e*® and 2 < h < %, / 101;1%,

ey n2/(hHD)

(h+1)? log*n

n2/(h+1)

m(n) + < Fu(n) < m(n) +cz(h +1)3

logZn
Our next theorem provides a better estimation for Fj,(n). Here, the ”error term”
in the lower and upper bounds differ only by a constant factor not depending on h.

Theorem 7. Let h,n € Z* such that h < ,/1211%. Then
glogn

n2/(h+1) n2/(h+1)
m(n) +0.2——5— < Fy(n) < w(n) +379.2———.
log“n log“n

Our following two results show us that a sequence A € P,(Z*%) must be thin
sometimes, but it may be as dense as allowed by the obtained upper bound in the
finite case.

Theorem 8. Let 2<h € Z and A € P,(Z"). Then for every e >0
A(n) —m(n)

n— o0 net

On the other hand, there exists a constant ¢ > 0 such that for every h > 2 a set A €

cvTog h
Pn(Z7) can be constructed in such a way that |A(n)| > m(n)+exp {(1og n)' " Vi foe }

holds for every n.



Proposition 9. For every h > 2 there exists an Ay, € Pp(Z) such that

. |Ap(n)| — w(n)
lim sup T 2/hrh > 0.
n—oo Tog®

The proof of this proposition is going to be omitted because the construction
can be easily built up by repeating the construction of the finite case for bigger and
bigger blocks.

Finally, let us mention that the logarithmic density of a set in P,(Z%) can be
easily treated because the prime numbers imply that for every A € Py(Z") we

1
have Z — > loglogn — c. On the other hand, by Theorem 7 we have for every
a

acA(n)
Ae Ph(Z+)
Z Z|A |—|A —1)] Z |A(n)|<
a€A(n) k<n k<n-—1 k k + 1 n
7T( ) + Chk2/3
————— + 1 < logl .
k§1 ) + oglogn + cp,

The main part of the paper is organized as follows. In Section 2. we prove
Theorems 1 and 7 about the finite case and Section 3. contains the proofs of the
results about the infinite case.

2. Finite case

At first it is going to be considered how small a multiplicative basis of order h for
[n] can be. During the calculations the following well-known estimates [6] are going

to be used:
Lemma 10. For every x > 17 we have 1021 < w(x). For every x > 1 we have
m(x) < 1. 2610“

Now the proof of Theorem 1 is going to be presented.

Proof of Theorem 1. Let nﬁl(logn)*1 = s. We start by proving the first
statement. Let us assume that B is a multiplicative basis of order h for [n]. Clearly,
all the prime numbers not greater than n (and 1) have to be in B. Our aim
is to show that there are at least hs?/2 elements in B that are the product of
at least two primes. Let V denote the set of primes not greater than n!/(*+1):

= {p | p < n""+D) and pis a prime}. According to Lemma 10, the size of
V is at least (h + 1)s. If {p1,pa,...,Prs1} is an (h + 1)-element subset of V,
then @ = pipa...phe1 < n, so a € B" implies that there exists a subset H of



{p1,p2,-..,Prt1} containing at least 2 elements such that [[ p; € B. Let G
pi€H
be the hypergraph with vertex set V' and edge set H, where H contains those

at least 2-element subsets H of V for which [] p; € B. We have already seen
p,€H
that each (h + 1)-element subset of V' contains at least one hyperedge of H. As
|B| > w(n) + |H|, our aim is to give a lower bound for |H|. If each set in H is
replaced by one of its 2-element subsets — the new set of subsets is denoted by H' —,
then it still remains true that each (h + 1)-element subset of V' contains an element
of H'. Moreover, |H| > |H'|. Let G’ be the graph with vertex set V and edge set
H'. The graph G’ does not contain an independent set of size h+ 1, or equivalently,
the complement of G’ is Ky y1-free. By Turdn’s theorem [7], the number of edges of

the complement of G is at most (1 — 1/h)((h + 1)s)?/2. Therefore, the number of

(h+1)s((h+1)s—1) (1 N l) (h+1)2s% _ (h+1)? .n2/(h+1) _ (htD)s
2 h 2 - :

edges of G’ is at least 2h " (logn)? 2

2/(h+1)
Hence, |B| > 7(n) + % ’ Tzlogin)z'

For proving the second statement our aim is to define a multiplicative basis of
order h for [n] of the claimed size. We are going to look for this basis in the form
B = PUX UQ where P consists of the primes up to n, X contains the integers up
to s and @ contains certain 2-factor products of primes:

P={p|p<nandpisaprime}, X = {z | v <s*},Q = U Qi,
—4<i<v

where the Q; sets (and v) are defined as follows. At first we are going to define @
in the case h > 14. Let Q_1 = {q1¢2 | 1,42 € P, 1 < (h+ 1) 2/ (4D ¢, <
2nt/ (DY and Q_y = {pq | p,q € P,p < n/q",q > 2n*/ DY For defining Q_s,
let us divide the set S of primes not greater than 2'-%n/ (1) into r = |0.61(h +
1)] almost equal parts: Si,...,S,. That is, for every 1 < I < r we have |S;| =

1.8, 1/(h+1) 1.8, 1/(h+1)
V(z - )J or | T - )—‘ , and S is the disjoint union of the sets Si,. .., S;.

Let Q_3=S7U---US2 (For h>14let Q_y =0.)

Let v = [logy(h + 1) 4 log, 0.07]. Now, if 0 < i < v let us divide the set R; of
primes not greater than 2=%n'/("+1) into ; = [0.07-27%(h+1)| almost equal parts:
Ri1,...,Rip,. Thatis, for every 1 <[ < r; we have |R; ;| = {MJ or

T4

—inl/(h+1))

|Rii| = [w@ = —‘ and R; is the disjoint union of the sets R; 1,..., R;,,. Let
Qi=R} UR},U---UR}

Z,T'ri'

If 2 < h < 13, then let Q@ = Q_2 U Q_y4, where Q_4 = {pq | p,q € P,p <
pl/ (1) g < o1/ (b)Y,

Now, we prove that B is a multiplicative basis of order h for [n]. Let a < n be
arbitrary. Let us write a as a = p1p2...p:, where p; > pa > --- > p; are the prime
factors in the canonical form of a. At first we show that a € (P U X)" unless h < t
and ppppi1 > s2. If t < h, then a € P* C (P U X)" trivially holds, so assume

that A < t and pppry1 < s2. Our aim is to distribute the primes appearing in the



canonical form of a into h groups in such a way that in each group containing at
least two elements the product of the primes is at most s2. The primes are going
to be distributed into h sets with a greedy algorithm. Let the products in these h
sets be Ay, As, ..., Ap. At the beginning Ago) = Ago) =...= Ago) = 1. Then we
put py in the first set: A(ll) = p1. If p1,po,...,pi_1 are already distributed, then
we put p; into the j-th group, if A;l_l) = min (Agl_l), Ag_l), e 7Ag_l)>, that is,
if A; is currently one of the smallest products. (If there are more than one such
Jj-8, we choose one arbitrarily.) So, after the first h steps we have h many 1-factor
products: Agh) = pl,Agh) =po,..., Al(lh) = pp, then pr41 goes to the h-th group:
A;lhﬂ) = prpri1 < s2. We claim that by following this process at the end all of the
products Agt), Aét), ey A;lt) lie in PU X. For the sake of contradiction assume that
at least one of them is not in P U X. Let p; = g be the first prime which created a
product (with at least two prime factors) larger than s2. Let us assume that after
distributing the primes pi,ps,...,p;—1 the products are A, < Ap_1 < -+ < A;.
Note that according to the indirect assumption pppny1 < s the number [ has to
be at least h + 2. As Anq > 52, we have s2/q < A, < Ap_1 < --- < A;. Hence,
(s2/q)"q < A1 Ay ... Apg < n, thus

g2h\ /(1) pl/(h+1)
7= <n> = (logn)2h/t-1)°

Since I > h+2, we have ¢ < n'/("*+2) which implies that n'/(*+D(+2) < (log n)2h/(h=1),

however this contradicts the assumption h < 4/ 1211%.
glogn

It is obtained that if a ¢ (P U X)", then pppp11 > s2. Therefore, pips...pn_1 <
n/s?, which implies that p, < pp_1 < (n/s?)V/=1 = pl/(+1)(Jogn)2/(h=1),
Therefore,

Phs1 > 82 /pp, > nl/ (D) (log ) =20/ (h=1)

and
pr < n/pjg < 0t/ (log n)2h*/(h=1),

Summarizing these bounds we obtain that

nl/(h+1)(log n)2h2/(h71) Spr>py > > Phot > nl/(thl)(lOg n)72h/(h71)' (1)

Furthermore,
a' <n/(p1p2 - -pry1) < n/(papnia) P2 <n /s = (logn)" 1, (2)
since the geometric mean of the numbers pi,...,pr4+1 is bounded from below by

the geometric mean of the two smallest elements: pj, and pp41.
Hence, if a € [n], but a ¢ (P U X)", then a = p; ...pus1a’, where the primes
D1, - - -, Pht1 satisfy (1) and o' satisfies (2). We claim that if for all primes p1, ..., pp+1



satisfying (1) and p1ps...pr+1 < n there exist some indices 1 <4 < j < h+ 1 such
that p;p; € Q, then B = P U X U Q is a multiplicative basis of order h for [n].
To prove this, let us assume that a = py...pp11a" satisfies these conditions and
pip; € Q for some 1 < ¢ < j < h+1. Let! < h+ 1 be maximal such that
1 ¢ {i,j}. Then ! € {h —1,h,h+ 1}, hence, p; < pp_1 < n/P+)(logn)?/ (=1,

As h <\ mgistie mal < 00D (log) WD/ <2 et qu, g

be the list of primes from pi,...,ppr41 excluding p;,pj,p; (only one appearance
of each of them is excluded). Then ¢i,...,qn—2 € P,pip; € Q,ma’ € X, so
a=q... qu-2(pip;)(ma’) € B".

It only remains to show that for every primes pi,...,pp+1 satisfying (1) and
D1 -..DPrt1 < n there exist some indices 1 <4 < j < h 4 1 such that p;p; € Q.

We start with the case 14 < h. At first let us assume that ppy1 < (h +
D)2/ (HD Tf gy, < 202D then pyipn € Q_1, and we are done. Other-
wise, pp > 2nY/ (D and ppo < n/pﬁ, hence, pppp+1 € Q@—_2. Thus it can be
assumed that pj 1 > (b + 1)"2n/ (A1),

Let us denote the multiset of p1,...,ppr1 by T. For i > 0 let N; denote the
number of such elements of T" that are at most 27*n!/("+1) At first let us assume
that there exists some 0 < i < v such that N; > 0.07-27%(h + 1) > r;. Since T
contains more than r; elements of the set R;, by the pigeonhole principle there exist
some indices /; and l» such that p;,,p;, € R;; for some j. Then p;,p;, € @4, and
we are done.

Now let us assume that for every 0 < i < v we have N; < 0.07 - 27%(h + 1).
Specially, N,, < 1, that is, T' contains at most one element (namely, pj+1) less than
2-vpt/ (M) however, this element is at least (h + 1)~2n/ ("D Let the multiset
Ty contain those elements of 7' that are at most n'/("*1) the remaining elements
of T are in Ty. Note that h + 1 = |T| = |T1| + | T3]

Now, a lower bound is going to be given for [] p;. Since all the elements of T}
pi€Th

except pn41 are in the interval (2*”n1/(h+1),n1/(h+1)], the double-counting of the
size of the set

{G,5) | pi <2790 po e Ty \ {pria},0 < j is an integer}

yields the estimate

v

[I  pi>n(miv/eeng &

pi €T1\{ph+1}



Therefore,
- Z N; - Z 0.07-27%(h+1)
H pi > n(T11=1)/(r+1)o = Pha1 > pUTi=1/(h+1)g = Phil >
p €Ty

> p(T11=1)/(h+1)9—0.14(h+1) |/(h+1)9=0.69(h+1)

phg1 >0l
where we used that (h + 1)2 < 20-55(*+1) for every h > 14. Note that |T}| = Ny <
0.07(h +1). As p1...ppt1 < n, the following upper bound is obtained for the
product of the elements of Ts:

[ p: < T/ r0009041)
pi€T>

Therefore, Ty contains less than 0.39(h+1) elements larger than 2'-¥n!/("+1) Hence,
more than 0.61(h + 1) elements of Ty are at most 285n/ ("1 Then, by the pi-
geonhole principle two elements of 75 lie in the same set S}, therefore their product
is in (Q_3 and we are done.

Finally, if 2 < h < 13, then p;, > 20"+ implies ppppy1 € Q—2 and p, <
20/ (1) implies pppni1 € Q—4.

Hence, it is shown that B is a multiplicative basis of order h for [n].

Finally, an upper bound will be given for the size of B. Clearly, |P| = m(n),
|X| < s%

For the size of Q_; we have that |Q_1| < 1.262 - 25? < 0.3hs? for every h > 14.

As Q2 = {pq | p,q € P,p < n/q",q¢ = 20"/} = J{pq | pq € P,p <

1<j

n/q" 2/ < g < 2R OHL € (pg | pog € Pp < 27t/ g <

1<5
2i+1n1/h+1} e have that [Q_o| < 1.262 3 279h+i+1 (h41)2s2 = 1,262 M- 20 02
1<j

14.3hs? for every h > 2.
If h > 14, then 9 < r, so |0.61(h + 1)] > 0.61(h + 1)(9/10). Hence, |Q_35| <

1.262(5/4) (e 52, that s, we have [Qs| = M25GHIET - 43052 < 37,62,
If 0 <i<w,thenr; >1,s0 [0.07-27"(h+1)] >0.07-27"(h + 1)/2. Therefore,

2 .
|Qi| < 2%2"’(11 + 1)s?, so for the size of the union of the sets Qo,...,Q, we

obtain that: " |Q;| < 97.2hs? for every h > 14.
0<i<v

If 2 < h <13, then |Q_4| < 1.26%2(h + 1)%s < 47.9hs?.

Hence, |B| < |P|+ |X|+|Q| = 7(n) + 150.4hs?, if 14 > h and |B| < |P| + | X| +
|Q| < m(n) +63.2hs?, if2<h<13. W

Now we continue with the problem of Erdds, estimating Fj(n). We start with
proving two lemmas.

IN



Lemma 11. Let k be a fized positive integer. Let S be a set of size n > 2k?. Then
for every 1 <t < k one can choose | many k-element subsets S1,S%,...,5 C S
such that for every i # j we have |S; N S;| <t and I > (%)t

Proof of Lemma 11. By Bertrand’s postulate there exists a prime number ¢
n

between g and 7. It can be supposed that S O F, x [k]. That is, it can be
assumed that S contains k disjoint copies of F,. All the k-element sets are going
to contain one element from each copy of Iy in such a way that the intersection
of any two of them has size smaller that t. These ¢¢@ > (%)t suitable sets .S;
are defined in the following way: Let p(z) = ag + ajx + -+ + a;_12'~1, where

ag,ay,...,a;—1 € [0, —1).

Spy = |J (0(3), ).

1<i<k

It remains to prove that for different polynomials p;(x) and pa(x) we have [S},, (z) N
Sps(x)| < t. For the sake of contradiction, let us assume that [S,, ) N Sy, )| > .
Then there exist 1 < 1 < @2 < -+ < ¢ < k such that p;(z;) = p2(z;) for every
1 < i < t, which contradicts that the degree of p; — py is at most t — 1. W

Lemma 12. Let A C [n] possessing property Pp and B C [n]. Then there exists a
one-to-one mapping ANB" — B such that for a — b there exist integers by, ..., by, €
B such that a = bby ... by. As a special case, if B is a multiplicative basis of order
h for [n], then there is a one-to-one mapping A — B such that for a — b there exist
integers ba, ..., b, € B such that a = bby ... by,.

Proof of Lemma 12. Let us write each element in Ay = AN B" as a product of h
(not necessarily distinct) elements of B. (If there are more than one possibilities, let
us choose one arbitrarily.) Let a € A, and the representation of a be a = bi‘l e bg’“
where \; 4+ --- + A\ = h. We claim that for some 1 < ¢ < k the factor b; appears
in the representation of any element of Ag \ {a} at most A; — 1 times. For the
sake of contradiction assume that for every 1 < ¢ < k there is an a; € Ap \ {a}
such that b; appears in the representation of a; at least A; times. Let af,...,a] be
the distinct elements of the multiset {a1,...,ar}. (That is, the elements are listed
without repetition, ! < k.) Then ala] ...qa}, which contradicts that A possesses
property Py, since | < k < h. Therefore, there is an ¢ for which the multiplicity of
b; in the representation of a is maximal. Let us assign such a b; to a. Clearly, this
is a one-to-one mapping.

In the special case when B is a multiplicative basis of order h for [n], we have
Ay=AnNBr=4 1
Now, we are ready to prove Theorem 7.

Proof of Theorem 7. Let nﬁ(log n)~! = s. At first we prove the lower bound.
Let S be the set of primes not greater than n'/(*+1) Since |A| > 2h?, Lemma 11
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[S|
2(h+1)

way that the intersection of any two of them contains at most one element. Let
2
these subsets be S4,...,S,,, where m > ( 5] ) . Now, let s; = [] s for every

2
implies that we can choose ( ) many subsets of S of size h + 1 in such a

2(htD) 1

SES;
1<i<mand A={s;: 1 <i<m}U{q] pt/(h+1) < g < m,qisaprime}. We
claim that A possesses property Pj. Since, if a, a1, ..., ap are distinct elements of A,

and a is a product of h+ 1 primes, then every a; is divisible by at most one of these
prime factors implying that a can not divide ajas . ..ap. On the other hand, ifa € A
is a prime, then a > n'/("*1) and there is no other element in A which is divisible

2
by a, hence a { ayas . .. ay. Furthermore |A| > 7(n) —x(n'/(+1) 4 (%)
m(n) + 0.2s%

Now we continue with the upper estimate. Let A C [n] be a set possessing
property Pp. Lemma 12 implies that |A| < Gp(n). In the proof of Theorem 1
we showed that for h < 6 we have G (n) < m(n) + 63.2hs?, therefore, Fj,(n) <
7(n) + 379.2s% also holds. From now on, we assume that 7 < h.

Let P be the set of the primes up to n and X contain the integers up to s%:
P={p|p<mnandpisaprime}, X = {z | x < s?}.
Now a mapping from a subset of A to P U X is going to be defined in 3 steps:

(i) If a € A and there exists a prime p € P(s?) and an exponent « such that
p“|a, but p® t a’ for every a # a’ € A, then let us assign such a p to a.

(ii) Let us write each element of AN (P U X)" as a product of h elements from
PUX. If a € A does not have an image yet, moreover, there exists ay € PUX
and an « € ZT such that y occurs « times in the representation of a, but it
occurs at most a— 1 times in the representation of any other a’ € AN(PUX)",
then let us assign such a y to a.

(iii) Finally, if an element a € A does not have an image yet, but there exists an
x € X such that z|a, but x { o’ for every a # a’ € A, then let us assign such
an r to a.

Let A; C A contain those elements of a that has an image and Ay := A\ A;. If an
element of P U X is assigned to more than one element of A;, then it has to be a
prime which is at most s2, and it is assigned to exactly two elements: one according
to rule (i) and one according to rule (ii). Therefore, |A;| < |P|+2|X| < m(n) + 252
According to Lemma 12 we have AN (P U X)" C A;.

Finally, our aim to show that |As| < 357.2s2. Let a € Ay. As we have seen
in the proof of Theorem 1, since a ¢ (P U X)", the number a can be written as
a = p1ps - ..ppr1a’, where the primes pi,po, ..., prr1 satisfy the condition

nl/(h+1)(10g n)2h2/(h71) Spr>py > > Phit > nl/(thl)(lOg n)72h/(h71)7 (3)
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moreover a’ < (log n)h‘H and pipy...pp+1 < n. Let us denote the multiset
{p1,...,pny1} by T = T,. Note that all elements of T, are less than s2. We
claim that for every a € As the multiset T, contains h + 1 distinct primes. For
the sake of contradiction assume that the multiset T, contains A; many g¢i’s, A
many ¢o’s, and so on, \; many ¢;’s, where ¢1,¢s,...,q are distinct primes and
t < h. That is, a = qf‘l ...qt)“a’, where \y + -+ A = h+ 1. Asa ¢ A, there
exist by,...,bs, b1 € A\ {a} such that qi\1|b1, .. ,q,f‘t|bt,a’|bt+1. Let the multiset

{b1,...,bs4+1} contain the pairwise different elements ¢y, ..., c,, where u < ¢t + 1.
Then aley .. . ¢y, since qi\l, cel, qt)‘t and a' are pairwise coprimes. If ¢ + 1 < h, then

this contradicts the assumption that A possesses property Pp. Therefore, it can
be assumed that ¢ = h. Then a = ¢?qs...qna’, and without the loss of general-
ity, it can be assumed that go > g3 > -+ > qp. Since qn € {Ph—1,Dh,Pht1}, We
have g, < n'/("*D(logn)?/(=1) hence, qna’ < s2, that is, gna’ € X. As a ¢ Ay,
there exist by,...,b, € A\ {a} such that ¢?|b1,q2|b2, ..., qn_1|bn_1,qna’|bp. Let
the multiset {by,...,by} contain the pairwise different elements cy,...,c,, where
u < h. Then alc; ... ¢y, since ¢3,qs,...,qn_1,qna’ are pairwise coprimes, however
this contradicts the assumption that A possesses property Pj. Therefore, for every
a € As the multiset T, contains h + 1 distinct primes.

Now we claim that for any two different elements a,b € As the intersection of
T, = {p1,p2,---,pn+1} and T}, contains at most one prime, that is, |7, N Ty| < 1.
For the sake of contradiction assume that for some a,b € Ay we have |T, N T}| > 2.
Namely, let 1 < i < j < h + 1 be the two indices for which p;,p; € Ty. Let [
be maximal such that [ ¢ {i,j}. Then ! € {h — 1,h,h + 1}, thus pja’ € X. Let
{a1,92, ..., qn—2} = To \ {ps,pj, i} As a € Ay, for every 1 < m < h — 2 there
exists b,, € A such that ¢, |b,, and there exists bp_1 € A such that p;a’|by_1. Let
€1,...,¢y be the distinet elements of the multiset {b,b1,...,bp—1}, so u < h. Then
aley ... ¢y, since qu, ..., qn—2,pip;, 1@’ are pairwise coprimes. This contradicts the
assumption that A possesses property Py,.

Therefore, each T, (where a € As) contains h + 1 distinct primes, moreover the
intersection of T, and T} contains at most one element (if a,b € Ay and a # b).

Let C contain those elements a of Ay for which min{T,} < (h + 1)~2n!/(h+1),
Let Q1 = {qg2 | q1,02 € P, ¢ < (h+1)72n/ (") gy <2p/ (D} and Q5 =
{pq | p,q € Pp < n/q",q > 20D} Let a = pipa...phpaa’ € C. If pp <
20t/ +D) “then pp,y1pn € Q_1. Otherwise, p, > 2nt/ (") and pj, 1 < n/pl, hence,
Prphe1 € Q_o. Therefore |C| < |Q_1] + |Q_2| < 31.8s%, where the upper bounds
for the sizes of @_1 and (Q_5 can be obtained similarly as in the proof of Theorem 1.

From now on, it is assumed that a € Ay \ C. For i > 0 let us denote by P; the
set of primes not greater than 2~/n'/("+1) Moreover, let N; = N;(a) denote the

size of T, N P;. Let v = {%—‘ —1 > 0. Let A} be the set of those

elements a € Ay for which N;(a) > r; = 0.17-27%1.2¢(h +1). If i < v, then 7; > 1
and (N 1'2(‘1)) > (g) > 0. Each 2-element subset of P; is contained in at most one Tj,.
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T3

2) many 2-element subsets of P;, therefore

However each T, contains at least (

= r(2-inl/ (D)
< G0 )
(5) (5)
Furthermore, Y |A%| < %82 < 179.852.

Now, ifa € A* = Ay \ |J A, then in T, the number of elements smaller than
0<i<v

2=t/ (P s Ny < 1y = 0.17-2771.2°(h+ 1) for every 0 < i < v. Specially, N, < 1,
that is, p1, pa, ..., pn are all at least 27t/ (Pt Let Tél) contain those elements
of T, that are at most /(1) and let T<§2) =T, \Tél).
Now, a lower bound is going to be given for [[ p;. Since all elements of
pieTV
M (possibly) except pp41 are in the interval (2-vn'/(*+1) p1/(A+1] the double-
counting of the size of the set

< 1.26%-0.17721.27%42.

{(4,7) | pi <277 BHD e TWN\ {pr41},0 < j is an integer}
yields the estimate
I »> A(Ti=1)/(h1) g~ 2N
Pi €T\ {pria }

Therefore,

1 »> pTOI-D g™ BN (T g T B 1T D

pieT?

> TV =1/ (h+1)g—c(h+1) L > n|Tt§1)|/(h+1)27(c+0.75)(h+1)7

Ph+
where ¢ = 0.17 - (1 — 1.2/2)~' = 0.425 and we used that (h + 1)? < 20-7(+1) for
every h > 7. Note that \T£1)| =Ny <0.17(h+1). As p1...prt1 < n, the following
upper bound is obtained for the product of the elements of T¢52):

H pi < n\Tf)|/(h+1)21.175(h+1).

Pi ETé2>

Therefore, Ty contains at most 0.51(h + 1) elements larger than 223/ (*+1) S0 at
x(22-3p1/ (h+1)y

least 0.49(h+1) elements of T are at most 22:3p1/(h+1)  Hence, |A*] < W

IN

2 2:2.23

L2 —s? < 145.65%.
Therefore, it is obtained that |A| < 7(n) + 359.2s%, if h > 7. B

We note that in the proofs of Theorem 1 and Theorem 7 with a more careful

and lengthier calculation better constants can be obtained, especially, if A is large

enough.

Ph+1 =2
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3. Infinite case

In this section the following lemma of Erdds is going to be used ([3]).

Lemma 13. The set B = {k k< n2/3} U{p:p < nandp is a prime} forms a
multiplicative basis of order 2 for [n].

Our first lemma generalizes Erdés’ previously mentioned lemma.

Lemma 14. Leth > 2. Theset BM = {k:k < nﬁ}u{p :p<n andp is a prime}
forms a multiplicative basis of order h for [n].

Proof of Lemma 14. We prove the statement by induction on h. The base case
h = 2 was shown by Erdés.

Now let us suppose that for every N the set {k : &k < N?"} u{p : p <
N and p is a prime} forms a multiplicative basis of order h — 1 for [N]. We show
that B® = {k: k < nh%l} U{p:p < nandpisa prime} forms a multiplicative
basis of order h for [n]. Let m < n. If there exists a prime divisor p of m such that

m

1 h
p > nh+i, then m =p- x where % < n%+1. Therefore, using the induction step

for N = n™T we get that % = by ... by, such that either b; < N# =n#7 or b; is a
prime, so m = bybs ... b, for some b; € BM.

If every prime divisor of m is at most nﬁ, then let m = p1ps...ps such that
p1 > pa > -+ > ps. We show that the multiset {p1,pa,...,ps} can be split into h

parts, A; U Ag U---U Ay, such that every number of the form b; = [] p is at most
PEA;

niii. Let Agh) ={p1},... ,Agh) = {pn}. Now assume that for some h < i < s we

have already defined the multisets A%, ..., A" Let b5 = ] pand j is chosen
pEAf,i)

in such a way that min{bgi),béi), ce bg)} = b;i). Then let Agﬂ) = Agi) for every

g # j and Ag.iﬂ) = Ay) U {pi+1}. We claim that bg»ijll) < n#+i. For the sake of

contradiction let us assume that bg.fll) > 1. Then n >m > bgiH) . bSH) >

bgiﬂ) . b;ijll)bE-i_:rll) e b;l”l)nh%l, therefore n i1 > bgi) . b§-i_)1b§-21 e b;li). Thus
min{bgi),bgi), . .,bgj)} < 71, Hence by“) = b§i)pi+1 < 7T is a contradiction.
Thus always adding the following prime to the set in which the product is currently
the smallest gives us an appropriate representation. l

Now, we prove Theorem 4.

Proof of Theorem 4. We start with proving the first statement by induction on
h for every h > 1. First of all, note that the unique multiplicative basis of order
1 for ZT is B = Z*, hence, for h = 1 the statement is trivially true. Now assume
that h > 2 and for h — 1 the statement holds. Let B C Z* be a multiplicative
basis of order h for Z*. Without the loss of generality it can be assumed that B is
not a multiplicative basis of order h — 1, otherwise the statement follows from the
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induction hypothesis. So, it can be supposed that there exists some m € Z*\ B"~1.
Clearly, all the primes (and 1) have to belong to B. Now let n be an arbitrary integer
large enough. Let m < p < n/m be an arbitrary prime. Since pm € B", the number
pm can be written as pm = b1bsy...by in such a way that by,bs,...,b, € B. As
p is a prime, it divides some b;, so let us assume that p|b;. Then b; > p, since
by = p would imply that m = bybs ...b, € B"~!. Therefore, b; € B is a multiple of
p, moreover, by /p < m. Hence, b; is a composite number and has a unique prime
factor larger than m. For each prime from the interval (m,n/m) we get such an
element of B and these elements are distinct, thus B(n) > 7(n) 4+ w(n/m) — w(m).
Hence, lim inf @%)l >1+4+1/m.

To prove theoégcond statement, it is enough to do so in the special case h = 2,
since a multiplicative basis of order 2 is a multiplicative basis of order h for every
h > 2. Let € > 0 be arbitrary. We are going to find an increasing sequence (n;)52;
of positive integers and sets B; C [n;] in such a way that the following conditions

hold for every i > 1:

(i) B; is a multiplicative basis for [n,],

(i) |Bi| < (1 +¢e)p=

logn;?

(111) Bz N [ni,l] = Bifl.
If such numbers and sets are found, then let us define a sequence of positive integers

oo

by B = U B;. We claim that B is a multiplicative basis for Z* satisfying that
i=1

lim inf % < 1+4e¢€. At first we show that B is a multiplicative basis. Let a € Z+

logn

be arbitrary. If i is large enough, then a € [n;]. Since B; is a multiplicative basis for
[n;], there exist b, ¢ € B; such that a = be. As B; C B, the number « is a product
of two elements of B. This is true for every a € Z™, so B is a multiplicative basis.
Condition (iii) implies that B(n;) = B;, hence, by condition (ii) it follows that
for every i > 1 we have
|B(n:)]

n;
logn;

<l+4e.

From this the desired statement follows.

Now it remains to find appropriate n; numbers and B; sets. Let ng = N =
[max((32/(3¢))?, (16/¢)?)] and By = [ng]. Now we define the numbers n; and the
sets B; (for i > 1) satisfying conditions (i), (ii), (iii) recursively. Let us assume that
n; and B; are already defined in such a way that B; C [n,] is a multiplicative basis
for [n;]. Our aim is to find n;4; > n; and B;+1 C [n;41] satisfying conditions (i),

(ii), (iii). For simplicity let us introduce the notion = := n;,y := n;+1. Let us define
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B;+1 in the following way:

Biv1=BiU{i|z<i<y*?x}U{pv|y*? <p<y/x,pisaprime, v < /z}U

U{pv | y/z <p <y/N,pis a prime, v < \/y/p}U
U{p | y/N <p<uy,pisaprime}.

If y > 22, we have min(y%/3,y/x) > z, so every element of B;y; \ B; is larger than
x, therefore condition (iii) holds.

Now we show that B;y; is a multiplicative basis for [y]. Let a <y be arbitrary.
According to Lemma 13 the number a can be represented in the form a = uv, where
v < u and either u < /3, or u > y?/ is a prime. At first assume that u < y?/3.
If # < v, then both u and v lie in (x,y*/%z], so u,v € Biy1 and a = uv € BZ . If
v < x, then we distinguish two cases.

1. If £ < uwv, then a = 1- (uv) is a good representation, since uw lies in (z, y2/3$].

2. If wv < z, then @ = wv can be written as a product of two elements from
the set B; C Bj;1, since B; is a multiplicative basis for [z] by the induction
hypothesis.

Secondly let us assume that u > 42/3 is a prime, denote it by p. As the first case

let %/3 < p < y/x. Since a < y, we have that v = a/p < y/p < y'/3. If z < v, then
v € Bi11,s0a=pv € Bi2+1' If v <z, then v = vyvy for some vy, vy € B;, since B;
is a multiplicative basis for [r]. Without the loss of generality it can be assumed
that v1 < wvy. Then v; < \/v1v2 = /v < \/z, therefore both pv; and v, lies in B;;1,
hence a = (pvy) - v2 € BZ;.

Now, as the second case let y/z < p. If y/N < p, then v = a/p < y/p < N,
so a = p- v is a good representation, since [N] C B;11 and p € B;;1. Finally, if
y/x <p <y/N, then v = y/p < x. Since B; is a multiplicative basis for [z], there
exist some vy, v € B; such that v = vivy. It can be assumed that v; < ve and in
this case v1 < /v < \/g% Therefore, a = (pv1) - vy € Bfﬂ. Thus we obtained
that condition (i) holds.

Finally, it is going to be proved that B;y; and n;iq satisfies condition (ii), as
well. If 2% < y, then

|BZU{Z | 1’<Z§y2/3$}| §y2/3m<y11/12 < §L7
4 logy

if y is large enough. Moreover,

{pv | v*/* <p <y/a,pis a prime, v < Vz}| < 7(y/z)Vo <
y/x 1

y 1
< =2 —
~ log(y/x) VT logy /o 1 — logz

logy

< Yy ,
~ 4dlogy

=1 m




16

since #* < y and > N > (32/(3¢))2.
Let us continue with the estimation of the next term:

{pv | y/x <p <y/N,pis aprime,v < \/y/p}| <
<Hpv|3j: N<j<az-1y/(G+1) <p<y/jpisaprimev <./j+1}<

<2 (r(8) -+ ()

J

Il
2

If z is fixed and y — oo, then 7 (%) =% 4o (j(1ogyy)1«5)v therefore we obtain

jlogy
that

" (?) o (j—yrl> - j(j1+ 1) gy (j(logyy)m) '

(For instance it suffices to take y = |2 |.) Hence,

5 () () v (S ) ol () o

J=N

Therefore,

. . € Y
{pv | y/z <p <y/N,pisaprime,v < \/y/p}| < 1logy’
if N > (16/¢)? and y is large enough.
Finally,

. . £ Y
H{p|y/N <p<y,pisaprime}| <n(y) < (1 =+ 1) 7

if y is large enough. Adding up the estimates we obtain that
Y

By < (1 —
Benl < (L+) 2

holds, if y is sufficiently large. B
1

b
The logarithmic density of a set B C Z% is defined as the limit lim beBln)
n—oo logn

(if

it exists). Now, we prove Theorem 5 which determines how small Y % can be
beB(n)

for a multiplicative basis of order h.
Proof of Theorem 5. In order to prove the first statement let B € M B, (Z"),
moreover let B = {b1,ba,...}, where 1 < b < b < .... Let us denote by sp (k)
that how many ways k can be written as a product of h elements of the set B, that
is,

spu(k) = {(ir,...,in) € (Z): by - by, = K}
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Clearly,

Z 1 > Z SBJI(I{) > Z SB’h(k)
b k<n,|u(k)|= K

b<B(n) b k<n 1
where g is the Mobius-function, that is, the summation ranges over the squarefree
integers. If there exists a representation k = b;, ...b;,, with b;, <b;, <--- < b;,,
then sp p(k) > h! holds. On the other hand, if for some squarefree integer k a
representation k = b;, ...b;, with b;, < b;, < --- < b;, does not exist, then every
representation of k£ as a product of A factors contains b; = 1. Hence,

h—1
SBh(k) h! 1
. < — < h! —
> PS> pER > g
k<n, (k) =1, k<, (k) =1, bEB(n)
SB)h,(k‘)<h! SBﬁh(k)<hI
Thus
h
1 SBh(k)
- > 2 =
>3]z X
beB(n) k<n,|u(k)|=1
_ sB,h(k) sp n(k)
= ¥ et > =
k<n,|u(k)|=1, k<n,|u(k)|=1,
sB,n(k)>h! sg,n(k)<h!
h—1
h! h! 1
=D D DO 1l B D
k<n,lu(k)|=1, k<n,lu(k)=1, beB(n)
SByh(kJ)Zh! SByh(k})<h!

After some ordering we obtain by the binomial theorem that
h

1 Al
ZE +h=-1r = Y e

bEB(n) k<n,|u(k)|=1
Applying the well-known estimate > + = (% +o0(1))logn and the in-
k<n,|u(k)|=1
s h . . .

equalities \/% <t % and h! > (%) we obtain the bound claimed in the first
part of the theorem.

To prove the second statement of the theorem let us denote the set of prime
numbers by P and the kth prime by pi. First we show that the set P can be
partitioned into h subsets, P = P; U---U P4, in such a way that

1 1
E ~ % — mi E ~ 3 <0.
lrgiasxh P 1r§nz'1£h p =05 )
PEP; (k) PEP; (k)
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hold for every k € Z*. Let P; = {pitnm : m > 0} for every 1 < i < h. Then it is

easy to see that max{ > 1}: > %and min{ > 11)}: > %,

: ; |
1<i<h | pePi(h) PP (k) FSEEh pepih) PEPu (k)

vebut) " per N2y "
defined partition of the set of prime numbers satisfies (4).

For this partition P = P, U --- U P}, we also have

> oY H<os

perimy P " pepm) P

moreover Y % > > 1= ( > 1] — 0.5, which proves that the
PE P (k)

Now let us choose the sets A; for 1 < i < h in such a way that in the set A; every
integer k has prime factors only from the set P;, that is,

A; = {k € Z" : each prime factor of k belongs to P;}.

h
Finally, let B = U A;. Tt is easy to see that B is a multiplicative basis of order
i=1
1
h. Therefore, it remains to prove that Z 7 < Ch?{/logn for some absolute
beB(n)
constant C. Obviously,

> =
Il

=

S| =

>

beB(n) i=1beA;(n)
so it is enough to show that ) % < CR/logn. Clearly,
beA;(n)
1 1 1
s < I (t4=+5+.. ).
b pop
beA;(n) pEP;(n)

Moreover, the following inequality holds for every prime number p:

1+14+ 54+ 141 L 2
l< —2 P = — Pl cerTTE < et
er er

By the inequality > 1% < % we obtain that

1 1

H (1+1+12+...> <e H 6% §e%ehl’ep<"> ,
pepimy ~ PP pEPy(n)
X 3
but the well-known estimate Y % = loglogn + O(1) gives that e »eF(m " —

pEP(n)
O(*/logn), which completes the proof. B
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We continue with proving Theorem 3 which strengthens Raikov’s result.

|B(n)] V6

Proof of Theorem 3. To verify the lower bound limsup ————— > —, by
n—oo nf/log * n em
1
- . beB(n) . |B(n)]
Theorem 5 it is enough to show that limsup ——— < limsup ———=—. Let
& 7k%oop hm@10g71 o 7r%oop n/loghgl n
B
B = {b1,bg,...}, where 0 < by < by.... If limsup|(772|1 = ¢, then for
n—00 n/log‘?"n
B
every £ > 0 there exists an ng = ng(e) such that % < c+ ¢ for n > ng.
n/log = n
|B(bn)| noa het
Hence, ————%5— < ¢ + ¢, therefore (¢ + )b, > nlog™ * b, > nlog * n, that
bn/log * by,
1 1 n n
is,bn>—nlogthfornZn0. Thus >, %g > bi: > bi+ > bi<
c+e beB(n) k=1 k k<ng k k=ngo k
n n
Cot+ Y —F5— < Ci+(cte) [ —F=dr < Ca+ (c+ e)hlog™ n, which
k=ng klog h k 10 zlog =z

completes the proof of the first part.
To prove the second statement it is enough to construct a multiplicative basis B of
order h for which lim sup |B(7ZZ|1
n—00 n/log‘ﬂ"n
are going to show that Raikov’s construction (see [5]) is a suitable choice for B. The
set of prime numbers is denoted by 2 = p; < p2 < p3 < .... The prime numbers are
h

= cp, where the sequence c;, is bounded. We

distributed into h subsets in the following way: P = |J P;, where P; = {pjxnm :
i=1
m > 0}. For 1 <i < hlet N; ={a € Z" : each prime factor of a belongs to P;}.
h
We have already seen in the proof of Theorem 5 that the set N = [J N; forms a
i=1

1=
o0

multiplicative basis of order h. Let n;(s) = [] (1-p;}%,,,) ", if s € Cand R(s) > 1.
m=0

1/h
Let us fix the integer 1 < ¢ < h and take ¢;(s) = [] (Zq((ig) . Raikov proved

q#i

that there exists an € > 0 such that the function ¢;(s) is analytic for R(s) > 1 —¢

1 oo
and |N(x)| ~ erreatton() o 1ogh L g Since T | - | = / a2+ le T dy >
F(E) h 0

1

h

e larldy = —, therefore it is enough to prove that ¢;(1) is bounded. Later
e

0
on s will denote a real number. We will show that for some suitable constants

0 <cy <1< ec3wehavecy < lim 7:(s)
s—1+ nq(s)

< c3, therefore co < ¢;(1) < c3. For s > 1
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we have that

oo 1_

ni(s) 11 Patmh

—S

n‘I(S) m=0 1- Ditmn

3 e —ts —ts
exp (Z (log (1 —p;fmh) — log (1 —pifmh))> = exp (_ Z Z <qu;mh B @

m=0

A routine calculation gives that < ¢4, therefore it

—ts —t
i i Pytmh  Pigmh
t t
m=0 t=2

remains to prove that

= 1 1
cy < E 3 - = < Cg-
m=0 pq+mh pi+mh

Let us introduce a constant  which will be defined later. Hence

m=0 ptsﬁ-mh pf—&-mh

Y ) 2 G )
p;+mh Pg+mn pf+mh Pit+mhn

M Pgtmh <T M: Pitmh <T

Z ( S >‘+Z;+C7<

3 h h
m: pq+m,hgzap7ﬂ+m,h§m p,Ler qur’ITL p>x

1 1 1 1
> G=-a)r X -
DPi+mh Pitmn Pg+mh Pyrmn

M: Pitmh ST m: Pgtmh ST

+ 3 < LI >+Zpls+c7.

Pi+mh p h
M Pitmh ST Pg+mh <T i+m atm

<

_ 4 : _ Y ginalde 1 1 _1)\1og8Pgtrmn _
The well-known estimation 1—y < e~ Y yields P < (s—1) . , there
S | _ log pg+mh _
fore > (pq+mh P5+mh) < (s—-1) > ot < cg(s — 1) logx.
m: Pgtmh <T 4 m: Pgtmh <T
. . 1 1
Similarly, . > (pi+mh - Pf+mh> < cg(s—1)logzx.
m: Piymh <T
. 1 1 1
We have seen in the proof of Theorem 5 that Z - — = Z - < 0.5.
p hep
PEPy,p<x p<z
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Hence,

5G]

i h h
M Pitmh ST;Pgtmh <T Pigm Pgtm

> — X - > — -

; h h h
m: Pi+mh SfﬂaqurthE pl+m p,p<zx p m: pi+7nh§zqu+7nh,gm pq+m

By the Prime Number Theorem we have

1 1 co 1
— < < — <
Z (klogk)s — (logx)® Z ks —

o=
p>a P D k>es 5t
o0
C10 dt < C11 1
(log z)® ts ~ s—1lazsllogx’
cs loz T
Summarizing these bounds we get
C11 1

< 2 —1)1 _——
e+ 2615(s — 1) log + s—1xzs~llogx

=0 \Povmn Piymn

Substituting x = e we get

m=0 p;erh prrmh

which completes the proof. l
The following lemma is going to be used in the proof of Theorem 8:

C
<C7+2012+%+1,

Lemma 15. Let Q be a subset of the prime numbers satisfying |Q(n)| < n® for
some constant ¢ > 0. Then for every e > 0 there exists some integer Ng = Ny(g, Q)
such that for every n > Ny we have

{k : k <n and every prime divisor of k is in Q}| < n°*e.

Proof of Lemma 15. Let the primes in Q) be: ¢; < g2 < ... and denote by p,, the
nth prime number. Let us define an injective mapping k — &’ in such a way that to
k= qz” ... qla we assign k' = pz” .. .pzis. It is enough to prove that there exists
a suitable set Y satisfying |Y| = (logn)®(®) such that each k' can be represented
as k' = xy, where * < n°"5 and y € Y. We know that n = |Q(q.)| < ¢,
hence p, ~ nlogn < ¢¢logg,. Thus there exists some C = C(g,Q) such that

for every p; > C, we have p; < qlc+%. In ¥ = ( I1 pf”) ( I1 p;’”) we have
p<C p>C
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[T p* <neti,if k <n. Furthermore, for the product [] p{* there are at most
p>C i <C

(logy, n)¢ possibilities, which completes the proof. B
Finally, we prove Theorem 8 about the infinite case of Erd6s’ problem.

Proof of Theorem 8. Let P be the set of primes, moreover let P, = PN A and

P, = P\ A. Therefore, P, and P, are disjoint and P, U P, = P. If P, = P, then
log | P:

A = P, otherwise let a = limsup M

n— 00 lo

order h defined in Lemma 14, and take the mapping A(n) — B defined in Lemma 12.
We claim that if a — k, where k is not a prime number, then each prime factor
of k belongs to the set P,. Since, if p|k for some p € Py, then for aqp = p € A
and a; = a € A we have ag|a;, which contradicts the assumption that A possesses
property Pp,.

If @« =0, then by Lemma 15:

. Let B be a multiplicative basis of

[A(n)| < w(n) + {k: k< nFi, kis an image in the mapping A — B}| <
<w(n)+{k: k< n77 and each prime factor of k belongs to the set Py}| =

—x(n) 40 <<n+)+/2) — 7(n) + O (n%).

If @ > 0, then we prove that liminf(|]A(n)| — m(n)) = —oco. First we show that
n— oo

for every 6 > 0 there exist infinitely many integers n such that |[[2771, 2] N Py| >
2(a=9n  For the sake of contradiction assume that |[27~1,2"] N Py| < 2(@=97 for
n > ng, then |Py(2V)| < Mo+ 142@=01 4 2(=9)2 4 ... 4 2(a=0)N = g (2(a=0)N),
Hence for every n we have |Py(n)| = O(n®~?), which contradicts the definition of
a. By Lemma 14 we have

[A(2™)] < |{p:p < 2" and p is an image in the mapping A — B}|+
+H{k: k< (2")%, k is an image in the mapping A — B}| <
<m(2M) = |Pn2n T 20k k< (2”)%, each prime factor of k belongs to P }|
For infinitely many n this can be bounded by
a+te
|A(2™)] < m(2") — 2= ((zn)h%) .

The values ¢ = § = ¢ verify the desired statement.

In order to construct an always dense set A, a sequence [, — oo is going to
be chosen and sequences f, and g, are going to be defined recursively as follows:

ln
Let fi; and g; be large enough (we will specify them later), fr,+1 = (2{nh> and

Gn41 = gZZ". Then it easy to see that

1—1 1 1 1 1 S W— lils...ly,
I PR FY Tt J—17 71y Tl o In_1
fn+1 = (fl (Qh) Iy Tilp T lolp_1 ll l2 1 13 I n )
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and
Gni1 =gy Ml
= log!
Let us suppose that for every k we have [, > 2 and Z 8 on < 00. In this
—~ lly .. 1y

case for some ¢; > 1 we have f,41 > cllll2"'l", if f1 is large enough. The set A is
defined with a little modification of the set of prime numbers. After the integer g,
we just omit f,, prime numbers P, = {pgm), . ,pg:)}, and instead of them we add

the integers from the set

l’f’b
B ={p™ .. pm™ d<i< (I :
{pj§” P T 2l —h 1)

where the sets 5; = {j\”,... ,j,(L?"ﬁhH} are the sets defined in Lemma 11 for
n= fm, k=hly,—h+1andt=1,,. If g; is large enough, then for every m > 1 the
elements of B, are less than ¢,,+1. Moreover, it is easy to check that by t by ... b,

for any distinct integers from the set B,,, therefore the set

1= (ngr) ()

possesses property Pp. It remains to prove that the sequence [,, can be chosen in
such a way that

|A(z)| > 7(x) + exp {(log z)' et }

holds for every large enough z. Let us suppose that g,+1 < = < gp12. In this case

n+1
A(x) > () - (Z a) + 1Bl

i=1

n+1
An easy calculation gives that > |P;| < 1.1|P,41|, if n is large enough. On
i=1

In _ In
the other hand [, — oo implies that |B,| > (m) ~ et (2{5 ) ~

e for1 = e | P41, therefore

)
Wil

1 co o2
h ll...l,,,_,_l) ¥, Rnl -

Aw) = 7(@) > fua > e = (gf =g > g
It can be shown that an almost optimal (up to a constant factor) choice for I is
Ip = h¥. In this case g1 < = < gny2 can be rewritten as

n(nt1) (n41)(n+2)
hn+72 hn+1+72
g1 <z <g; )
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therefore n ~ (/2log; logx. Hence

—4/c3 lo. og T _ caViogh
A(z) — m(z) >z Ve ER IR exp {(logx)l ﬁ%} n

4. Questions

Finally, we present some open problems.

Problem 1. Do there exist constants cp, such that for the size of a smallest multi-
plicative basis for [n] we have
n2/(h+1)

i B| = + (e + 0(1)) ——7
BEJ%S([HDI | =7(n) + (cn +0o(1)) TogZn

If so, determine cy,.
A similar problem can be formulated for Fj,(n).

Problem 2. Do there exist constants dy, such that

n2/(h+1)
Fr(n) = m(n) + (dp +o(1)) —=—7
log“n
We can not improve the lower bound in Theorem 8. Is it true that it is almost
optimal, that is:
Problem 3. Is it true that there exists constant Cy, such that if an infinite set A

. 1— CpVIogh L
satisfies |A(n)| > w(n)+exp q (logn)  Viesloen o for every n, then there are distinct

elements ag, ay,...,ap € A with aglay ...ap?

Let us denote by F). s(n) the maximal size of A C [n] such that there are no distinct
elements a1, az,...,a,45 € Awithay...a, | apg1...ap4s. Clearly Fy s(n) = Fy(n).
It is easy to see that for 1 < r < s we have Fy s(n) < F,s(n) < Fss(n). We
know that Fy 3(n) = m(n) + n'/2t°() and following the estimation of the size of
a multiplicative 3-Sidon sequence in [4] it can be shown that F33(n) < w(n) +
m(n/3) + n?/3+°() Moreover, F, 3(n) < m(n) + n?3t°(1) can be deduced also.

Problem 4. Is it true that there exists a constant ca 3 such that Fp 3(n) = n(n) +
nez3te) 2 If so, determine cs 3.
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