
1 
 

Hollow organosilica beads as reference particles for optical detection of 1 

extracellular vesicles 2 

 3 

Zoltán Varga *, †, Edwin van der Pol ‡, §, ¶, Marcell Pálmai *, Raul Garcia-Diez **,1, 4 
Christian Gollwitzer **,2, Michael Krumrey **, Jean-Luc Fraikin ††, Aleksandra Gasecka 5 
§§,‡,¶,  Najat Hajji ‡, Ton G. van Leeuwen §,¶, Rienk Nieuwland ‡, ¶ 6 
 7 
* Biological Nanochemistry Research Group, Institute of Materials and Environmental 8 
Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 9 
Hungary 10 
† Semmelweis University, Department of Biophysics and Radiation Biology, Budapest, 11 
Hungary 12 
‡ Laboratory of Experimental Clinical Chemistry, § Department of Biomedical Engineering 13 
and Physics and ¶ Vesicle Observation Center, Academic Medical Centre of the University of 14 
Amsterdam, Amsterdam, the Netherlands 15 
** Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany 16 
†† Spectradyne LLC, Torrance CA, USA 17 
§§ 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland 18 

 19 
1 Present address: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), 20 
Germany 21 
2 Present address: Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, 22 
Germany 23 

Correspondence:  Biological Nanochemistry Research Group, Institute of Materials and 24 
Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of 25 
Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary. Tel.: +36 1 382 6568 E-26 
mail: varga.zoltan@ttk.mta.hu (Z. Varga) 27 

 28 

Word count abstract: 243/250 29 
Word count text: 3928/4000 30 
No. of figures: 5 31 
No. of references: 46 32 

 33 

Running head: Hollow silica particles for vesicle detection 34 

 35 



2 
 

Keywords cell-derived microparticles, exosomes, extracellular vesicles, microvesicles, flow 36 

cytometry, microspheres  37 

 38 

Essentials 39 

• Standardization of extracellular vesicle (EV) measurements by flow cytometry needs 40 

improvement 41 

• Hollow organosilica beads were prepared, characterized, and tested as reference 42 

particles 43 

• Light scattering properties of hollow beads resemble that of platelet-derived EVs 44 

• Hollow beads are ideal reference particles to standardize scatter flow cytometry research 45 

on EVs 46 

 47 

Summary 48 

Background: The concentration of extracellular vesicles (EVs) in body fluids is a promising 49 

biomarker for disease, and flow cytometry remains the clinically most applicable method to 50 

identify the cellular origin of single EVs in suspension. To compare concentration 51 

measurements of EVs between flow cytometers, solid polystyrene reference beads and EVs 52 

were distributed in the first ISTH organized inter-laboratory comparison studies. The beads 53 

were used to set size gates based on light scatter, and the concentration of EVs was measured 54 

within the size gates. However, polystyrene beads lead to false size determination of EVs due 55 

to the mismatch in refractive index between beads and EVs. Moreover, polystyrene beads gate 56 

different EV sizes on different flow cytometers.  Objective: To prepare, characterize and test 57 

hollow organosilica beads (HOBs) as reference beads to set EV size gates in flow cytometry 58 

investigations. Methods: HOBs were prepared by a hard template sol-gel method and 59 

extensively characterized for morphology, size and colloidal stability. The applicability of 60 

HOBs as reference particles was investigated by flow cytometry using HOBs and platelet-61 

derived EVs. Results: HOBs proved monodisperse with homogeneous shell thickness. Two 62 

angle light scattering measurements by flow cytometry confirmed that HOBs have light 63 
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scattering properties similar to platelet-derived EVs. Conclusions: Because HOBs resemble 64 

the structure and light scattering properties of EVs, HOBs with a given size will gate EVs of 65 

the same size. Therefore, HOBs are ideal reference beads to standardize optical measurements 66 

of the EV concentration within a predefined size range. 67 

 68 

Introduction 69 

 Extracellular vesicles (EVs), including exosomes, microvesicles and other membrane 70 

surrounded structures released from cells, are in the forefront of biomedical research. Because 71 

EVs contribute to many physiological processes, EVs may serve as biomarkers for diseases, 72 

including cancer, neurological diseases, and thrombosis [1–4]. Despite the potential of EVs 73 

for diagnostic applications, gold standard techniques and reference materials for EV detection 74 

are lacking [5]. Detection of EVs is difficult because EVs are heterogeneous in size and 75 

composition, and most EVs are smaller than 500 nm [6–8]. Throughout this manuscript, size 76 

is defined as the diameter of the particle. Furthermore, the most widely studied body fluid 77 

with regard to EVs is blood, which contains not only EVs but similar-sized lipoprotein 78 

particles [9]. 79 

 Because clinically relevant EVs are outnumbered by other EVs and lipoprotein 80 

particles, EVs are preferably characterized one by one. A recent international survey showed 81 

that optical methods are widely used to characterize single EVs [10]. Of all respondents who 82 

specified their single EV detection method, 80% used nanoparticle tracking analysis (NTA), 83 

18% used tunable resistive pulse sensing (TRPS), and 29% used flow cytometry (bead capture 84 

assays excluded). Because only flow cytometry can identify single EVs at high throughput 85 

(>5,000 events/s) in a reproducible manner, flow cytometers hold most promise for clinical 86 

applications. 87 
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 A flow cytometer detects light scattering and fluorescence of single particles in a 88 

hydrodynamically focused fluid stream. Because flow cytometers are designed to detect cells, 89 

which are much larger than EVs, commercially available flow cytometers do not detect all 90 

EVs. The detected concentration of EVs therefore strongly depends on the sensitivity of the 91 

flow cytometer, especially because the concentration of EVs increases with decreasing size 92 

[5]. To standardize flow cytometry measurements and enable data comparison, laboratories 93 

should detect the concentration of EVs within a well-defined size range. However, the 94 

arbitrary units of flow cytometry data preclude access to the EV size, thereby impeding 95 

standardization and comparison of measurement results. 96 

 The light scattering signals of two sizes of polystyrene beads are commonly used to 97 

gate EVs  [11,12]. However, light scattering depends on the size, refractive index (RI), shape 98 

and structure of the particle, the RI of the medium, and the optical configuration of the flow 99 

cytometer. At a wavelength of 405 nm, which is used in modern flow cytometers to illuminate 100 

particles, polystyrene has an RI of 1.63 whereas EVs have an effective RI below 1.40 [13,14]. 101 

Due to this RI mismatch, 200 nm EVs scatters 40 to 300-fold less light than 200 nm 102 

polystyrene beads, as illustrated in Figure 1. Also 200 nm silica beads, which have an RI 103 

between 1.44 and 1.47, scatter 5 to 50-fold more light than similar-sized EVs [14–16]. Thus, 104 

the use of solid synthetic reference beads to standardize optical measurements of EVs leads to 105 

false size assignment. 106 

 Correct sizing of EVs by scattering flow cytometry requires reference particles with 107 

light scattering properties similar to EVs. EVs are concentric particles containing a ~4 nm 108 

phospholipid bilayer [6,17] with an RI of 1.46 ± 0.06 to 1.48 [18,19], surrounding an aqueous 109 

core with RI close to that of water (RI = 1.34 at a wavelength of 405 nm). The ideal reference 110 

particles are therefore stable, monodisperse, concentric particles with a high-RI shell and a 111 

low-RI core. 112 
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 In this manuscript, we prepared, characterized and applied hollow organosilica beads 113 

(HOBs) with nominal sizes of 200 nm (HOB200) and 400 nm (HOB400) as reference 114 

materials for optical detection of EVs. Due to their concentric structure and organosilica shell, 115 

HOBs have an RI distribution resembling EVs. Based on Mie theory, HOBs are expected to 116 

have similar light scattering properties as EVs, as illustrated in Figure 1. The goals of this 117 

manuscript are to (1) determine the size distribution, concentration, structure, colloidal 118 

stability, and light scattering properties of the prepared HOBs, (2) confirm that HOBs have 119 

light scattering properties similar to EVs from blood plasma, and (3) use the HOBs to set a 120 

size gate that is independent of the collection angles of a flow cytometer.  121 

 122 

Methods 123 

Preparation of hollow organosilica beads (HOBs) 124 

1,2-bis(triethoxysilyl)ethane (BTEE, 96%, Sigma-Aldrich, St. Louis, MO), cyclohexane 125 

(G.R., 99.99 %, Lach-Ner, Neratovice, Czech Republic), L-arginine (reagent grade, ≥98 %, 126 

TLC, Sigma-Aldrich) were used. Silica dispersions of 200 nm [PSI-0.2] and 400 nm [PSI-127 

0.4]) in water were obtained from Kisker Biotech (Steinfurt, Germany). High purity deionized 128 

water (18.2 MΩ·cm) was used during synthesis. 129 

HOBs were synthesized by combining a basic amino acid catalysis route with a hard template 130 

approach in a 4 mL glass vial [20,21]. Briefly, 2.6 mg of L-arginine and 300 µL of silica 131 

dispersion (50 mg mL-1) serving as the template particles were added to 1.7 mL of water. 132 

Next, 130 µL of cyclohexane was overlayered on the aqueous phase and 134 µL of BTEE, the 133 

precursor of the organosilica shell, was injected into the non-polar phase. The reaction 134 

mixture was allowed to react under vigorous stirring (500 rpm) at 60 °C for 24 hours. 135 

Afterwards, cyclohexane was removed, the pH was adjusted to 12.75 ± 0.05 by adding 150 136 
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µL 1M NaOH solution and the dispersion was stirred for 24 hours at room temperature in 137 

order to etch the template silica core. The mesoporous shell structure and hydrolytic stability 138 

of organosilica under basic conditions enables etching of the silica core while maintaining the 139 

shell integrity. Finally, the sample was transferred into a 2 mL Slide-A-LyzerTM MINI 140 

Dialysis Device (20K MWCO, Thermo Fisher Scientific, Waltham, MA) and dialysed against 141 

42.5 mL of water for 4 times in 2 days to remove NaOH and side products. 142 

 143 

Preparation and storage of cell-depleted plasma 144 

Citrate-anticoagulated blood (0.32%) was collected from 10 healthy individuals [5 males and 145 

5 females; age 45 ± 12 (mean ± standard deviation)] with informed consent by venipuncture 146 

without a tourniquet through a 21-gauge needle using a vacutainer system. To remove cells, 147 

blood was centrifuged twice (1,550 g, 20 minutes, 20˚C) using a Rotina 380 R centrifuge  148 

equipped with a swing-out rotor and a radius of 155 mm (Hettich Zentrifugen, Tuttlingen, 149 

Germany). The centrifugation parameters were 1,550 g for 20 minutes at 20˚C, acceleration 150 

speed 1, no brake. After a single centrifugation, plasma was transferred to a new 5 ml plastic 151 

tube, leaving ~1 cm plasma above the buffy layer. After the second centrifugation, plasma 152 

was collected and transferred carefully to a new 5 ml plastic tube, leaving ~100 µL at the 153 

bottom of the old tube. The number of remaining platelets after the second centrifugation is 154 

on average 0.5% of the initial platelet count in whole blood (n=4; data not shown), which is 155 

similar to the recommended ISTH protocol (2x 2,500 g for 15 minutes at 20˚C) [11]. 156 

Although our protocol and the ISTH protocol give similar results with regard to remaining 157 

platelets, we recommend to use the ISTH protocol to circumvent confusion and to enable the 158 

comparison of results between studies and laboratories [22]. Aliquots of 100 µL cell-depleted 159 

plasma were snap-frozen in liquid nitrogen for 15 minutes and stored at -80 °C until use. 160 
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After thawing on ice, 20 µL of plasma was incubated in the dark for 120 minutes at 20 °C 161 

with 2.5 µL phycoerythrin (PE)-conjugated CD61 or IgG1-PE control (555754 and 340013, 162 

respectively; both 6.25 µg/ mL, Becton Dickinson, CA). Labeling was stopped by addition of 163 

200 µL, 50 nm filtered (Whatman, Maidstone, UK), citrate-containing (0.32%) phosphate 164 

buffered saline (PBS; pH 7.4). To verify the presence of EVs, cell-depleted plasma was 165 

characterized by NTA and TEM  (Details in Supplementary Information). 166 

 167 

Transmission electron microscopy (TEM) 168 

Morphological investigations of HOBs were carried out on a MORGAGNI 268D (FEI, 169 

Eindhoven, Netherlands) transmission electron microscope. Diluted sample was dropped and 170 

dried on a carbon coated copper grid. The supplementary information contains the TEM 171 

protocol for EVs from cell-depleted plasma. 172 

 173 

Dynamic light scattering (DLS) 174 

HOBs were characterized by DLS (W130i Dynamic Light Scattering System, AvidNano, 175 

High Wycombe, UK). Samples were diluted 50-fold with ultrapure water (Merck Millipore, 176 

Billerica, MA). Low volume disposable plastic cuvette was used for the DLS measurements 177 

(UVette, Eppendorf Austria GmbH, Austria), and data evaluation was performed using the 178 

iSize 3.0 software (AvidNano) utilizing the CONTIN algorithm. 179 

 180 
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Small-angle X-ray scattering (SAXS)  181 

HOBs were characterized by SAXS at the four-crystal monochromator beamline of PTB 182 

[23,24] at the synchrotron radiation facility BESSY II (Helmholtz-Zentrum Berlin, Germany). 183 

The mean size, size distribution, and shell thickness of HOBs were determined by using a 184 

least-squares fitting of a model function to the experimentally measured scattering curves 185 

(details in Supplementary Information) [25,26].  186 

 187 

Zeta potential 188 

Zeta potential measurements of HOBs were performed by using a Malvern Zetasizer Nano ZS 189 

(Malvern, Worcestershire, UK) equipped with He-Ne laser (λ = 633 nm) and backscatter 190 

detector at fixed angle of 173°.  191 

 192 

Nanoparticle tracking analysis (NTA) 193 

A dark-field microscope (NS500; Nanosight, Amesbury, UK) with a 45-mW 405-nm laser 194 

and an electron multiplying charge-coupled device was used to determine the size and 195 

concentration of HOBs by NTA. Samples were diluted 10,000-fold (HOB200) or 100-fold 196 

(HOB400) in 50 nm filtered (Whatman) de-ionized water. Per sample, 30 videos of 10 s were 197 

captured at 22.0 °C using camera level 15 (HOB200) or 12 (HOB400) [22]. Data were 198 

analysed by NTA 3.1 Build 3.1.54 (Nanosight), assuming a medium viscosity of 0.95 cP and 199 

using a threshold of 10 gray values. The supplementary information contains the NTA 200 

protocol for EVs from cell-depleted plasma. 201 

 202 
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Tunable resistive pulse sensing (TRPS) 203 

TRPS (qNano, Izon Science, Oxford, UK) was used to determine the size and concentration 204 

of HOBs. Samples were diluted 500-fold (HOB200) or 50-fold (HOB400) in 50 nm filtered 205 

(Whatman) PBS. HOBs were measured with NP200 (HOB200) and NP400 (HOB400) 206 

nanopores. The voltage was adjusted between 0.40 and 0.70 V to obtain a baseline current of 207 

125 nA using a nanopore stretch of 47.00 mm [27]. Next, the stretch was adjusted such that 208 

the amplitude of the resistive pulses of reference beads (Izon Science) is within the range 209 

recommended by the manufacturer. This resulted in a stretch between 45.50 and 47.00 mm. 210 

Finally, the voltage was adjusted between 0.40 and 0.70 V to get the baseline current as close 211 

as possible to 125 nA. Samples were measured with an external pressure of 7.0 mbar and at 212 

least 1,000 beads per sample were analyzed. Particle size and concentration were calibrated 213 

with reference beads (Izon Science). Data acquisition and processing were done with Izon 214 

control suite version 3.2.2.268. 215 

 216 

Microfluidic resistive pulse sensing (MRPS) 217 

MRPS (nCS1, Spectradyne LLC, Torrance, CA) was used to determine the size and 218 

concentration of HOBs [28]. Samples were diluted 1,000-fold (HOB200) or 100-fold 219 

(HOB400) in 50 nm filtered (Whatman) PBS containing 0.6 mM sodium dodecyl sulfate. All 220 

samples were measured with a TS-900 cartridge at a voltage of 4 V. To relate the frequency 221 

of resistive pulses to the particle concentration, 695 nm reference beads (Spectradyne) with a 222 

concentration of 2∙108 mL-1 were used. 223 

 224 



10 
 

Flow cytometry 225 

A flow cytometer (A60-Micro; Apogee, Hemel Hempstead, UK) equipped with a 200 mW 226 

405 nm laser was used to detect forward scattered light (FSC), side scattered light (SSC) and 227 

fluorescence of beads and EVs. SSC was used as the trigger channel with the threshold at 14 228 

arbitrary units. For the FSC, SSC and PE fluorescence channel, the gain was 1 and the 229 

voltages were 380 V, 375 V, and 520 V, respectively. Samples were measured for 1 minute at 230 

a flow rate of 3.01 µL/minute and with a sheath pressure of 150 mbar. Rosetta Calibration 231 

(Exometry, Amsterdam, The Netherlands) was used to relate side scatter to the size and RI of 232 

nanoparticles by Mie theory [29]. To validate this relation, side scatter of silica beads (Kisker 233 

Biotech, Steinfurt, Germany) was measured at a concentration of 107 mL-1. Median 234 

fluorescent intensity was related to molecules of equivalent soluble fluorochrome (MESF) for 235 

phycoerythin (PE) using the SPHERO PE Calibration kit (ECFP-F2-5K, Spherotech). Figure 236 

S3 shows the relation between the measured PE intensity in arbitrary units and MESF, which 237 

was obtained by least square fitting the logarithm of the data. The gate of the PE channel was 238 

set at 51 MESF.  HOB200 and HOB400 were diluted 105-fold and 103-fold in purified water 239 

to a detected concentration of 6.7∙106 mL-1 and 1.4∙107 mL-1, respectively. Cell-depleted 240 

plasma was diluted 66-fold in PBS to avoid swarm detection, as confirmed by serial dilutions 241 

[30]. For the cell-depleted plasma, data of 5 measurements were combined to create the 242 

scatter plot shown in Fig. 5. Data acquisition was done with Apogee software and processed 243 

using FlowJo v.10.3 (FlowJo LLC, Ashland, OR). 244 

 245 
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Results 246 

Size distribution of HOBs 247 

The prepared HOBs were characterized by TEM, NTA, TRPS, MRPS, DLS and SAXS. TEM 248 

images show that HOBs have homogeneous morphology and uniform layer thicknesses 249 

(Figure 2). Figure 3 shows the size distributions of HOBs obtained by the single particle 250 

detection methods TEM, NTA, TRPS, and MRPS. Among ensemble techniques, DLS 251 

resulted mean sizes of 188 nm and 356 nm, and full-width-at-half-maximum (FWHM) values 252 

of 52 nm and 118 nm for HOB200 and HOB400, respectively. SAXS, which is the only 253 

traceable method used in this study, resulted in mean sizes (value ± uncertainty) of 189±2 nm 254 

and 374±10 nm for HOB200 and HOB400, respectively. SAXS obtained a polydispersity 255 

(FWHM/mean) below 15%. Table S1 shows a summary of all size measurements. 256 

 257 

Concentration, structure and stability of HOBs 258 

 NTA, TRPS, MRPS and flow cytometry measured concentrations of 2.2·1012, 259 

2.0·1011, 2.7·1011, and 6.7·1011 particles/ml for HOB200 and 4.4·1010, 1.6·1010, 1.4·1010 and 260 

1.4·1010 particles/ml for HOB400, respectively.  261 

 Besides size, SAXS also provides information on the structure and electron density 262 

distribution of HOBs. By fitting a core-shell model to the measured scattering curves we 263 

obtained a shell thickness of (8.1 ± 0.5) nm for HOB200 and (6.4 ± 0.7) nm for HOB400. 264 

Furthermore, we obtained an average electron density of the core of 345 nm-3 for both 265 

samples, which is close to the electron density of water (333 nm-3). This observation confirms 266 

the successful etching of the template silica core. 267 

 The colloidal stability of the HOBs, which describes the aggregation properties of the 268 

beads, was evaluated by Zeta potential measurements. We found highly negative zeta 269 



12 
 

potentials (-56.6 mV for HOB200 and -58.1 mV for HOB400), which we associate to the 270 

dissociation of surface silanol groups [31]. The highly negative zeta potentials suggest that 271 

HOBs exhibit excellent colloidal stability in water at pH 7.4. 272 

Light scattering properties of HOBs measured by flow cytometry 273 

 To test the applicability of HOBs as reference particles for characterization of EVs by 274 

flow cytometry, we compared light scattering properties of HOBs and EVs. Figure 4 (a) 275 

shows the side scattering intensity of polystyrene beads, silica beads, and HOBs measured by 276 

flow cytometry and calculated by Mie theory. Whereas the polystyrene (coefficient of 277 

determination, R2=1.00) and silica beads (R2=0.97) are well-described by a solid sphere Mie 278 

model, the HOBs (R2=0.95) are well-described by a hollow sphere Mie model. By least 279 

square fitting the theory to the data, we obtained a shell thickness of 10.1 nm for the HOBs, 280 

which is close to the shell thickness determined by SAXS. Due to the hollow structure, HOBs 281 

scatter at least an order of magnitude less light than similar-sized solid silica beads. The 282 

scattering intensity of HOBs thereby overlaps with the scattering intensity expected from 283 

EVs. We modelled EVs as concentric particles with a 4 nm shell (RI = 1.48) [32–36] and a 284 

core (1.35 ≤ RI ≤ 1.37) [37–40]. The RI range of the core corresponds to a realistic protein 285 

concentration between 10% and 20% [41]. Our model parameters result in scattering 286 

intensities similar to platelet-derived EVs with a median RI of 1.37 and a mode RI of 1.39 at 287 

405 nm, which was previously measured under the assumption that EVs have a homogeneous 288 

RI distribution [13,42]. More accurate estimates of the RI distribution of EVs require 289 

monodisperse EV populations, which are hitherto unavailable. 290 

 To demonstrate that HOBs have light scattering properties similar to EVs, Fig. 4 (b) 291 

shows the measured side scatter (SSC) intensity versus forward scatter (FSC) intensity for 292 

HOBs, platelet-derived (CD61+) EVs from cell-depleted plasma, and, for comparison, 125 293 

nm polystyrene beads and 182 nm and 402 nm silica beads. As a reference, the arrows relate 294 
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the size range of EVs expected from Mie theory to their FSC and SSC values. The data show 295 

that for a given FSC of this flow cytometer, HOBs have low SSC whereas polystyrene and 296 

silica beads have high SSC compared to EVs. However, HOBs are within the theoretical EV 297 

size range and are therefore expected to be better reference materials to standardize flow 298 

cytometry measurements on EVs. 299 

 300 

HOBs outperform solid beads to standardize EV flow cytometry 301 

To demonstrate that HOBs can be used to determine the EV concentration independent of the 302 

light scattering collection angles of a flow cytometer, we determined the concentration of 303 

platelet-derived EVs using the FSC or SSC detector within size gates set by HOBs. Because 304 

the sensitivity and the scatter to size relationship differ between the FSC and SSC detectors of 305 

our flow cytometer [5], while the flow rate and sample composition are the same for both 306 

detectors, this experiment may demonstrate that HOBs set an EV size gate independent of the 307 

collection angles. Fig. 5 shows the concentration of platelet-derived EVs within gates set by 308 

polystyrene beads, silica beads, and HOBs for the FSC and SSC detector. Figure S4 shows the 309 

applied gates at FSC versus SSC scatter plots. The percentage difference in the gated 310 

concentration relative to the mean concentration is smallest for the gates set by HOBs 311 

compared to solid beads, suggesting that HOBs outperform solid beads to standardize EV 312 

flow cytometry. 313 

 314 

Discussion 315 

 Standardization of flow cytometry measurements is essential to explore the diagnostic 316 

potential of EVs. Since the scattering intensities measured by flow cytometry are in arbitrary 317 

units, there is a need for reference beads with known size and light scattering properties 318 
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similar to those of EVs. The optical properties of a particle depend not only on the size, but 319 

also on the RI distribution within the particle. EVs typically have a 4 nm thick shell of high RI 320 

and a core of low RI. In contrast, polystyrene and silica beads consist of a homogeneously 321 

distributed high RI material and therefore scatter orders of magnitude more light than similar-322 

sized EVs (Fig. 4a). In this manuscript, we introduce HOBs with similar light scattering 323 

properties as EVs to standardize optical measurements on EVs. 324 

 HOBs with smooth surfaces were produced by optimizing the existing hard template 325 

approach proposed by Koike et al. [20].  All established particle measurement methods (TEM, 326 

NTA, TRPS, SAXS) confirmed a narrow size distribution (FWHM/MEAN < 0.25) of HOBs. 327 

The relative standard deviation of the mean size values obtained by the different methods is 328 

below 10%, which indicate good agreement between used methods. All methods indicate the 329 

presence of contaminants, which are smaller than and have a lower concentration than HOBs. 330 

These contaminants might originate from incomplete particles or from the polycondensation 331 

of the organosilica precursor. Introducing a further purification step during the synthesis may 332 

eliminate these contaminants. 333 

 The hollow core-shell structure of the prepared HOBs was confirmed by TEM and 334 

SAXS, and indirectly by flow cytometry. NTA, TRPS, MRPS and flow cytometry were 335 

further used to determine the concentrations of the prepared HOBs. The obtained values show 336 

an order of magnitude deviation for the HOB200 and a factor of 3.4 deviation for HOB400. 337 

However, concentration measurements require careful interpretation, especially because no 338 

standards or primary methods exist and no certified reference materials are available for the 339 

concentration determination of nanoparticles [43]. 340 

Flow cytometry measurements show that HOBs scatter approximately an order of 341 

magnitude less light than similar sized solid silica beads (Fig. 4a). The measured light scatter 342 

of HOBs thereby overlaps with the expected light scatter for EVs, which is also expected 343 
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based on the spatial RI distribution within both particle types. To demonstrate that HOBs and 344 

EVs indeed have similar light scattering properties, we measured the FSC and SSC of HOBs 345 

and platelet-derived EVs from blood plasma (Fig. 4b). We found that HOBs have a low SSC 346 

(or high FSC) whereas polystyrene and silica beads have high SSC (or low FSC) compared to 347 

EVs. However, the shell thickness of HOBs can in principle be tuned to exactly match the 348 

FSC and SSC properties of EVs. Moreover, HOBs are closer to the theoretical EV size, which 349 

emphasizes the wrong size assignment of EVs when solid reference beads are used to set 350 

gates. For example, 182 nm solid silica beads produce comparable SSC and FSC signals to 351 

374 nm HOBs, meaning that a 2-fold difference in size assignment between solid and hollow 352 

silica beads exists. 353 

As proof of the pudding, we applied HOBs to set size gates on FSC and SSC, which 354 

collect light over different collection angles, resulting in totally different scatter to size 355 

relations [5]. Fig. 5 shows that the variation in the gated EV concentration of these detectors 356 

was minimal for gates set by HOBs, confirming that HOBs have similar optical properties to 357 

EVs and in fact define an EV gate in nanometers. A multicenter and multi flow cytometer 358 

follow-up study is required to demonstrate the superiority of HOBs over solid beads. 359 

 The illumination wavelength of our flow cytometer is 405 nm. We expect that EV size 360 

gates set by HOBs are also applicable to flow cytometers with other common illumination 361 

wavelengths, such as 375 nm and 488 nm. The refractive indices of glass and water at 375 nm 362 

are almost 0.01 higher than the refractive indices of glass and water at 488 nm. However, 363 

scattering depends on the RI contrast, in this case between water and the shell of the HOBs or 364 

EVs. Because within this wavelength range the dispersion relations of glass and water have 365 

similar slopes, the RI contrast between water and glass remains similar at 375 nm and 488 nm 366 

[44,45]. The dispersion relation of the shell of EVs is unknown, but based on the dispersion 367 
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relations of organic materials, negligible changes in the RI contrast between water and the 368 

shell of EVs is expected between 375 nm and 488 nm. 369 

An alternative to setting EV size gates with HOBs, is to relate the scattering intensity 370 

of solid polystyrene and silica reference beads to that of EVs by Mie theory [29]. Mie theory 371 

accounts for RI differences, but requires complex software and knowledge of the optical 372 

configuration of the flow cytometer. HOBs are more practical in use because HOBs can 373 

directly be used to set an EV size gate in nanometers, due to the almost similar light scattering 374 

properties of EVs and HOBs. Perhaps the best solution would be the use of Mie theory in 375 

combination with HOBs to allow the user flexibility in selection of an EV size gate by flow 376 

cytometry.   377 

 378 

Conclusions 379 

In summary, we introduced HOBs to be used as reference beads for optical 380 

characterization of EVs. Thorough characterization of the prepared HOBs revealed narrow 381 

size distributions, colloidal stability, and homogeneous hollow core-shell structure of HOBs. 382 

Compared to potential biological reference particles [46], which like HOBs resemble the light 383 

scattering properties of EVs, safety, monodispersity and stability of HOBs are superior. The 384 

performed flow cytometry investigations confirm that HOBs have similar light scattering 385 

properties as EVs and therefore are more suitable as reference beads for flow cytometry 386 

characterization of EVs than solid polystyrene or silica beads. HOBs can be used to set size 387 

gates in nanometers independent from the optical configuration of a flow cytometer. 388 

Therefore, HOBs are ideal reference beads to standardize optical measurements of the EV 389 

concentration within a predefined size range, which may facilitate the comparison of EV 390 

measurements between instruments and institutes. 391 

 392 
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Addendum 393 

Z. Varga and E. van der Pol designed and performed the research and wrote the paper; M. 394 

Pálmai contributed to the synthesis and characterization; R. Garcia-Diez, C. Gollwitzer, and 395 

M. Krumrey performed the SAXS analysis and contributed to writing the paper; J-L. Fraikin 396 

performed MRPS analysis, A. Gasecka and N. Hajji contributed to characterization; T. G. van 397 

Leeuwen contributed to writing the paper; R. Nieuwland designed the research and 398 

contributed to writing the paper. 399 
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Figures 563 

 564 

Figure 1 Theoretical forward and side scattering cross sections (FSC and SSC, respectively) 565 

of polystyrene beads, silica beads, dim and bright extracellular vesicles (EVs), and hollow 566 

organosilica beads (HOB) for an Apogee A60-Micro flow cytometer.  The model calculations 567 

were performed using the Mie scattering theory. The following refractive indices at a 568 

wavelength of 405 nm were used for the calculations: 1.63 for polystyrene, 1.46 for silica, 569 

1.48 for the EV shell, 1.34 for core of dim EV, 1.38 for the core of bright EV, 1.46 for the 570 

HOB shell, and 1.34 for the HOB core. The particle size (diameter) was 200 nm in all cases, 571 

and the shell thickness was set to 5 nm for EVs and 10 nm for HOBs. 572 

 573 

Figure 2 Transmission electron microscopy (TEM) analysis of hollow organosilica beads 574 

(HOBs) prepared by using nominal 200 nm (a) and 400 nm (b) sized silica templates. 575 
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 576 

Figure 3. Size (diameter) distributions of nominal 200 nm and 400 nm sized hollow 577 

organosilica beads (HOBs) by single particle detection methods: transmission electron 578 
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microscopy (TEM; a, b; 10 nm bin width), particle tracking analysis (NTA; c, d; 1 nm bin 579 

width; the grey area represents the standard deviation), tunable resistive pulse sensing (TRPS; 580 

e, f; 10 nm bin width) and microfluidic resistive pulse sensing (MRPS; g, h; the error bars 581 

represents the standard deviation, 10 nm bin width). Mean sizes and full-width-at-half-582 

maximum values from Gaussian fits of the distributions are indicated for each method.  In 583 

case of HOB400, a shoulder can be seen on the distributions which might be attributed to 584 

incomplete particles or polycondensation of the organosilica precursor during the synthesis.  585 

 586 

Figure 4 Light scattering properties of polystyrene beads (squares), silica beads (circles), 587 

hollow organosilica beads (HOBs; triangles), and platelet-derived (CD61+) extracellular 588 

vesicles (EVs; dots) from human plasma measured (symbols) by flow cytometry and 589 

calculated (lines) by Mie theory. (a) Side scatter versus size (diameter). Whereas 590 

polystyrene and silica beads scatter orders of magnitudes more light than similar-sized EVs, 591 

HOBs resemble the expected side scatter properties of EVs (gray area). (b) Side scatter versus 592 

forward scatter. In contrast to polystyrene and silica beads, HOBs have forward and side 593 

scatter intensities similar to EVs of the same size. Data points and error bars represent the 594 

mean and standard deviation, respectively. The arrows relate the size range of EVs expected 595 

from Mie theory to their FSC and SSC values. Size ranges are based on the SSC confidence 596 

interval (gray area) for EVs in (a). The following refractive indices at a wavelength of 405 nm 597 



26 
 

were used for the calculations: 1.63 for polystyrene, 1.46 for silica, 1.48 for the EV shell, 1.35 598 

and 1.37 for the EV core to obtain the lower and upper boundary of the grey area in (a), 599 

respectively, 1.36 for the EV core in (b), 1.48 for the HOB shell, and 1.34 for the water. Least 600 

square fitting resulted in a shell thickness of 10.1 nm for the HOBs. 601 

 602 

Figure 5. Concentration of platelet-derived extracellular vesicles (EVs) within gates set by 603 

polystyrene beads, silica beads, and hollow organosilica beads (HOBs) for the forward 604 

scattered light (FSC) and side scattered light (SSC) detector. Concentrations are corrected for 605 

sample dilutions. For the first 4 gates, the indicated bead is used as the lower size gate and no 606 

upper size gate is applied. For the HOB200-HOB400 gate, HOB200 and HOB400 are used as 607 

the lower and upper size gate, respectively. The numbers above the bars indicate the 608 

percentage difference in the gated concentration relative to the mean concentration. 609 


