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Abstract

Utilizing common resources is always a dilemma for community members. While cooperator

players restrain themselves and consider the proper state of resources, defectors demand

more than their supposed share for a higher payoff. To avoid the tragedy of the common

state, punishing the latter group seems to be an adequate reaction. This conclusion, how-

ever, is less straightforward when we acknowledge the fact that resources are finite and

even a renewable resource has limited growing capacity. To clarify the possible conse-

quences, we consider a coevolutionary model where beside the payoff-driven competition

of cooperator and defector players the level of a renewable resource depends sensitively on

the fraction of cooperators and the total consumption of all players. The applied feedback-

evolving game reveals that beside a delicately adjusted punishment it is also fundamental

that cooperators should pay special attention to the growing capacity of renewable

resources. Otherwise, even the usage of tough punishment cannot save the community

from an undesired end.

Author summary

Our proposed model considers not only the fundamental dilemma of individual and col-

lective benefits but also focuses on their impacts on the environmental state. In general,

there is a strong interdependence between individual actions and the actual shape of envi-

ronment that can be described by means of a co-evolutionary model. Such approach rec-

ognizes the fact that even if our common-pool resources are partly renewable, they have

limited growth capacities hence a depleted environment is unable to recover and reach a

sustainable level again. This scenario would have a dramatic consequence on our whole

society, therefore we should avoid it by punishing those who are not exercising restrain.

We provide analytical and numerical evidences which highlight that punishment alone

may not necessarily be a powerful tool to maintain a healthy shape of environment for the

benefit of future generations. Cooperator actors, who are believed to take care of present

state of our environment, should also consider carefully the growth capacity of renewable

resources.
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Introduction

Overexploitation of common-pool resources is a fundamental problem that can be identified

in several seemingly different ecological systems [1, 2]. A well-known example is the danger of

overfishing. Fishermen are motivated to catch the maximum amount of fish because restraint

could only work if all others are behaving similarly. Otherwise, fish are driven to extinction

which is the worst scenario for everyone [3, 4]. Similarly, we can continue this list endlessly by

giving further examples, like overgrazing of common pasture lands, where individual short-

term benefit seems to be in conflict with long-term interest of a larger population. The mutual

feature of these cases is human activity influences the actual state of resources which has a neg-

ative feedback for not only those who degrade the environment but also for the whole commu-

nity. We stress that this problem is not restricted to human-related activities, but may also

appear at microscopic level including microbes, bacterias, and viruses [5–10], which explains

why the problem of common-pool resource exploitation is an intensively studied research area

of several disciplines [11–13].

It is a fundamental point that the sustainable use of common-pool resources is strongly

based on the interdependence of resource and social dynamics [14]. On the one hand, the

dynamics of resources, in particular renewable resources, are influenced by some ecological

factors, such as the resource growth rate and the carrying capacity [14, 15]. On the other hand,

these resources are also influenced by human behaviors on how to use them. Meanwhile, the

shape of a dynamical resource also influences the prosperity of human well-being, which trig-

gers frequency-dependent changes in individual strategies [16]. Thus, the interaction of

resource dynamics and the evolution of individual-based behavior can be captured properly

by a feedback-evolving game model where both variables are in the focus of governing equa-

tions [15–19].

A frequently recommend solution for sustaining the requested level of common-pool

resource could be to punish defectors for over-harvesting [20–31]. In parallel, some other

related control mechanisms, like ostracism or voluntary enforcement, are also discussed as via-

ble solutions to the original problem [32, 33]. Importantly, the consequence of top-down regu-

lation, which is based on inspection, permanent monitoring of agents and punishment, has

been used for the forest commons management [34], but still begs for clarification especially

in the presence of renewable resources.

Thus, in this work our principal interest is to explore how the application of punishment

and inspection influences the competition of strategies when the benefit of given strategies

depends sensitively on the actual state of environment. Furthermore, in our approach the

common resource is considered as a dynamically renewable system which is also influenced

by a feedback of individual strategies. This interdependence can be modeled by a co-evolu-

tionary system where both strategies and environmental resources are subject to change. In

our work, we depict this interdependent relationship by using the replicator equation for

the evolution of strategies and the logistic growth model for the resource dynamics [35,

36], which provides a novel approach in the field of socio-ecological dynamics, to our

knowledge. Indeed, some theoretical models have already raised the concept of environmen-

tal coupling [15, 16, 37, 38], but our present approach considers the growing capacity of a

renewable resource explicitly. Additionally, punishment and permanent monitoring

(inspection) are used as a control mechanism for blocking overexploitation of the common

resource. We demonstrate that in addition to a delicately adjusted punishment regime, the

growing capacity of renewable resource is fundamental for keeping resources at a sustain-

able level.

Punishment and inspection for governing the commons
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Materials and methods

We consider a population of individuals who all use a common resource at different levels.

While the resource amount y in the common pool is limited, we assume that it is partly renew-

able and its dynamics can be described by the frequently used logistic population growth

model [35, 36]. Accordingly, the dynamical change of the resource amount induced by its

environment factor is given by _y ¼ ryð1 � y=RmÞ, where r is the intrinsic growth rate and Rm

is the carrying capacity of resource pool. Furthermore, for the proper utilization of the

resource, individuals are allocated an amount of resource from the common pool, which

depends on the total resource amount y at a given time. According to the allocation rule, we

suppose that the legal amount that each individual can be allocated from the pool is bl = bmy/

Rm, where bm is the maximal resource portion that each individual is allowed to use per unit of

time when the amount of the common pool y reaches Rm. Evidently, this individual limit por-

tion satisfies bm� Rm/N, where N is the total number of individuals in the community.

For simplicity, we assume that individuals choose between two basically different strategies.

The first group is called as cooperators or “law-abiding” individuals who follow the allocation

rule and restrain their use to bl amount from the resource. The other group, called as defectors

or “violators”, ignores the allocation rule and utilizes the common pool more intensively by

getting a larger bv > bl amount. Here we suppose that bv = bl(1 + α), where α> 0 characterizes

the severity of defection.

In order to avoid resource exploitation, we introduce a centrally organized inspection and

punishing mechanism often used in realistic resource management systems [28, 34]. In partic-

ular, we assume that defection is detected with a probability p (0 < p< 1), which is the proba-

bility of detecting a defector during a time unit. If an individual is identified for overexploiting

common resources, then it will be punished with a fine β (β> 0) which is reduced from his

collected payoff. In this way, the parameter p characterizes the effectiveness of monitoring sys-

tem while the parameter β describes how severe the applied punishment is.

To explore the possible impact of inspection and punishment on the evolutionary process,

we consider a well-mixed population and employ the replicator equation that describes the

time evolution of competing strategies [35]. If we denote the fraction of cooperators by x then

the governing equation is

_x ¼ xð1 � xÞðPL � PVÞ; ð1Þ

where PL and PV are the payoffs of law-abiding individual (cooperator) and violator (defector)

players, respectively. Notice that a player’s income is originated from the common-pool

resource, although there is a coupling between individual payoff obtained from the feedback-

evolving game and resource dynamics [15]. Thus, in our study for simplicity we assume that

the related payoff values are directly written as PL = bl and PV = bv − pβ for cooperators and

defectors, respectively.

In agreement with the co-evolutionary concept which considers the feedback of individual

acts on the actual state of resource, the governing equation of common resource abundance

can be extended as follows

_y ¼ ryð1 � y=RmÞ � N½blx þ ð1 � xÞbv�: ð2Þ

In the next section we analyze and discuss the possible equilibrium points of the above

coupled equation system. Furthermore we extend our study by presenting the results of indi-

vidual-based Monte Carlo simulations as a supplement to support the validity of our mathe-

matical analysis for wider conditions.
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Results

Equilibrium states of the feedback-evolving dynamical system

By substituting the payoff values into Eq 1, we have the following equation system

_x ¼ xð1 � xÞðpb �
y

Rm
bmaÞ

_y ¼ ryð1 � y=RmÞ � N
y

Rm
bm½1þ ð1 � xÞa�:

8
>><

>>:

This equation system has at most five fixed points which are [x, y] = [0, 0],

0;Rm �
bmNð1þaÞ

r

� �
, [1, 0], 1;Rm �

Nbm
r

� �
, and 1þ 1

a
�

Rmr
abmN þ

pbRmr
a2b2

mN ;
pbRm
bma

h i
, respectively. Here the

first four are boundary fixed points, while the last one is an interior fixed point. By calculating

the first order partial derivaties [39], the Jacobian matrix of our system can be written as

J ¼
ð1 � 2xÞðpb �

abmy
Rm
Þ

abmxðx� 1Þ

Rm

abmNy
Rm

r � bmNð1þa� axÞþ2ry
Rm

2

6
4

3

7
5:

The specific forms of this matrix at the above mentioned fixed points are respectively

Jð0; 0Þ ¼
pb 0

0 r � bmNð1þaÞ

Rm

2

6
4

3

7
5;

Jð1; 0Þ ¼
� pb 0

0 r � bmN
Rm

2

6
4

3

7
5;

J 0;Rm �
Nbmð1þaÞ

r

� �
¼

pbþ
abm ½ð1þaÞbmN� Rmr�

Rmr 0

abmN½Rmr� ð1þaÞbmN�
Rmr

ð1þaÞbmN� Rmr
Rm

2

6
4

3

7
5;

J 1;Rm �
Nbm

r

� �
¼

abmðRmr� bmNÞ
Rmr � pb 0

abmNðRmr� bmNÞ
Rmr

bmN� Rmr
Rm

2

6
4

3

7
5;

and

Jð1þ 1

a
�

Rmr
abmN þ

pbRmr
a2b2

mN ;
pbRm
bma
Þ ¼

0 ð 1

a
�

Rmr
abmN þ

pbRmr
a2b2

mNÞ½
bmð1þaÞ

Rm
� r

N þ
pbr

abmN�

Npb �
pbr
abm

2

6
4

3

7
5:

The stability of these fixed points can be determined from the sign of the eigenvalues of the

Jacobian [39]. It is easy to see that the eigenvalues of the matrices for the boundary fixed points

are the corresponding diagonal elements. Hence, the stability of these fixed points depend

exclusively on the signs of the diagonal elements of the related matrices. In addition, the trace

of the last Jacobian is negative, hence the interior fix point has at least one negative eigenvalue.
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It also involves that the stability of the unique interior fixed point depends only on the sign of

ð1
a
�

Rmr
abmN þ

pbRmr
a2b2

mNÞ½
bmð1þaÞ

Rm
� r

N þ
pbr

abmN� term. For further analysis let us denote ec ¼
bmN
Rm

and

ed ¼
bmNð1þaÞ

Rm
respectively, representing the gain rates of cooperators and defectors in a popula-

tion from the common resource. It also involves that we have 0< ec� 1 and ec < ed.

In the following, we distinguish three substantially different parameter regions where the

distinction is based on the actual intrinsic growth rate value of the renewable common pool

resource.

Slowly growing resource pool. First we consider the case when the resource pool is recov-

ering slowly due to small intrinsic grow rate, which assumes that 0< r< ec < ed. In this situa-

tion, we have rRm < bmN, and accordingly the system has only two fixed points in the

parameter space of 0� x� 1 and y� 0. They are [0, 0] and [1, 0], respectively. Here the largest

eigenvalue of J(0, 0) is positive, whereas the largest eigenvalue of J(1, 0) is negative due to the

small value of r. Consequently, the fixed point [0, 0] is unstable, while the fixed point [1, 0] is

stable. For the special case of r = ec, we find that one eigenvalue of the Jacobian matrix at the

fixed point [1, 0] is zero and the other one is negative. In the SI text, we further provide the sta-

bility analysis of the fixed point by using the center manifold theorem [39].

A representative time evolution of the cooperation level and the abundance of common

resource pool for 0< r< ec < ed is plotted in Fig 1. It suggests that while the inspection and

punishing mechanisms are capable to drive the system toward a full cooperator state, but this

destination remains still unsatisfactory because the resource pool becomes fully depleted. This

result warrants that it is not enough to be cooperator and consider only the actual shape of

common resource pool. If the intrinsic growing rate of the latter is too low, then users should

take a much lower share from the pool than it is believed naively based on the present status.

Otherwise the common resource pool is unable to renew and the high cooperation level

becomes useless.

Fig 1. Replicator dynamics for slowly growing resource. Panel A: Time evolution of the fraction of cooperators and the resource

abundance ratio. Panel B: Phase portrait on x − y/Rm plane for r< ec < ed. Filled circle represents a stable fixed point, while open circle

represents an unstable fixed point. For r< ec < ed the cooperation level is satisfactory in the final state, but resource abundance becomes

depleted due to low growing resource rate. Parameters are r = 0.3, N = 1000, Rm = 1000, p = 0.5, α = 0.5, β = 0.5, and bm = 0.5.

https://doi.org/10.1371/journal.pcbi.1006347.g001

Punishment and inspection for governing the commons

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006347 July 20, 2018 5 / 15

https://doi.org/10.1371/journal.pcbi.1006347.g001
https://doi.org/10.1371/journal.pcbi.1006347


Moderately growing resource pool. If the intrinsic growth rate of resource pool is moder-

ate, means 0< ec < r< ed, then the conclusion is more subtle. In this situation, we have bmN
< rRm < bmN(1 + α) and 1þ 1

a
�

Rmr
abmN þ

pbRmr
a2b2

mN > 0. In dependence of the efficiency of inspec-

tion and punishment we can distinguish two main cases. Note that the combined effect of

these institutions can be characterized by the product of p and β parameters. The first case

is when they are efficient hence their product exceeds pb > bmað1 �
ec
r Þ. In this case

1þ 1

a
�

Rmr
abmN þ

pbRmr
a2b2

mN > 1 is also fulfilled. As a result, the system has three fixed points which are

[0, 0], [1, 0], and ½1;Rm �
Nbm

r �, respectively. According to the sign of the largest eigenvalues

[0, 0] and [1, 0] are unstable, while ½1;Rm �
Nbm

r � is a stable fixed point. This result suggests that

the system reaches an equilibrium point where all participants share the common pool cooper-

atively and the renewable resource is capable to maintain a sustainable level. This case is illus-

trated in the first column of Fig 2.

When the inspection-punishment institutions are less effective, then the term bmað1 �
ec
r Þ

exceeds pβ products. In this case 1þ 1

a
�

Rmr
abmN þ

pbRmr
a2b2

mN < 1 and the system has four fixed points.

They are [0, 0], [1, 0], ½1;Rm �
Nbm

r �, and ½1þ 1

a
�

Rmr
abmN þ

pbRmr
a2b2

mN ;
pbRm
bma
�, respectively. Here only the

Fig 2. Replicator dynamics for moderately growing resource. Top panels show the time evolution of the fraction of cooperators and the resource

abundance ratio for different parameter values when ec < r< ed. Bottom panels show the related phase portraits on x − y/Rm plane. Parameters for

Panels A and B: r = 0.6, N = 1000, Rm = 1000, p = 0.5, α = 0.5, β = 0.5, and bm = 0.5; for Panels C and D: r = 0.6, N = 1000, Rm = 1000, p = 0.05, α = 0.5,

β = 0.5, and bm = 0.5; for Panels E and F: r = 0.6, N = 1000, Rm = 1000, p = 0.01, α = 0.5, β = 0.1, and bm = 0.5. These plots suggest that a sustainable state

can be reached for appropriate inspection and punishment level, but the depleted environment state cannot be avoided if these institutions are

ineffective.

https://doi.org/10.1371/journal.pcbi.1006347.g002
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last fixed point is stable while the first three are unstable. In equilibrium cooperators and

defectors coexist at a finite resource abundance which is inversely proportional to α that char-

acterizes how intensively defector players over exploit the common resource. The equilibrium

resource level is linearly proportional to the pβ product, while the first part of the equilibrium

fixed point contains a term which is free from pβ. This means that the stable fixed point drifts

toward y = 0 axis faster than to the x = 0 axis as we weaken the impact of inspection-punish-

ment institutions. Consequently, when the impact of inspection and punishment tends to

zero-limit then the system still remains in a mixed state of cooperators and defectors but it has

no particular importance because the environment becomes depleted. This is illustrated in the

right column of Fig 2 where the stable fixed point approached the horizontal axis as we lower p
that is the probability of successful detection of overexploitation.

In the special case when pb ¼ bmað1 �
ec
r Þ, we find that there are three fixed points in the

system, which are [0, 0], [1, 0], and ½1;Rm �
Nbm

r �, respectively. But one eigenvalue of the Jaco-

bian matrix at the fixed point ½1;Rm �
Nbm

r � is zero and the other one is negative. In the SI text,

we provide the stability analysis of the fixed point by using the center manifold theorem [39].

Furthermore, we provide the theoretical analysis of the equilibrium points for the special case

of r = ed.

Rapidly growing resource pool. Finally we discuss the case when the intrinsic growth

rate of resource is large enough to exceed both the gain rate of cooperators ec and the gain rate

of defectors ed. Here, we have rRm> bmN and rRm> bmN(1 + α). As previously, we can distinct

two significantly different cases depending on the power of inspection and punishment insti-

tutions. If they are strong enough and the product of pβ exceeds bmað1 �
ec
r Þ, then we have

1þ 1

a
�

Rmr
abmN þ

pbRmr
a2b2

mN > 1. In this case the system has four fixed points which are [0, 0], [1, 0],

½0;Rm �
bmNð1þaÞ

r �, and ½1;Rm �
Nbm

r �, respectively. While the first three are unstable, the last one

is a stable fixed point. This means that the system evolves into a full cooperator state where

environmental resource stabilizes at a sustainable level. This level depends practically on the

growth rate of resource. A representative phase portrait is plotted in the left column of Fig 3.

If the above mentioned institutions are less powerful, then the product pβ cannot beat

bmað1 �
ec
r Þ value. Hence we have 1þ 1

a
�

Rmr
abmN þ

pbRmr
a2b2

mN < 1. Depending on the actual strength

of inspection and punishment we can distinguish two subcases here. First, when the

above mentioned institutions are still considerable, pβ exceeds bmað1 �
ed
r Þ and the term

1þ 1

a
�

Rmr
abmN þ

pbRmr
a2b2

mN is positive. As a result, the system has five fixed points which are [0, 0],

½0;Rm �
bmNð1þaÞ

r �, [1, 0], ½1;Rm �
Nbm

r �, and ½1þ 1

a
�

Rmr
abmN þ

pbRmr
a2b2

mN ;
pbRm
bma
�, respectively. Here only

the last fixed point is stable while all the others are unstable. This scenario is illustrated in the

middle column of Fig 3. From this result we can conclude that a reasonably strong external

institution is capable to maintain the coexistence of cooperator and defectors states. Their frac-

tions depend principally on the difference between resource usages of strategies which is char-

acterized by the parameter α.

According to the second subcase, when the institutions are too weak and pβ product cannot

exceed bmað1 �
ed
r Þ, the term 1þ 1

a
�

Rmr
abmN þ

pbRmr
a2b2

mN is negative. In this case the system has four

fixed points which are ½0;Rm �
bmNð1þaÞ

r �, [0, 0], [1, 0], and ½1;Rm �
Nbm

r �, respectively. Here only

the first fixed point is stable, while the rest are unstable. In this situation, which is illustrated in

the right column of Fig 3, the evolution terminates into a full defection state. Still the latter is a

sustainable state because the strong growing capacity of resource is capable to compensate to

greediness of defector players.
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Finally, we point out that there exist two special cases of abmð1 �
ec
r Þ ¼ pb and

abmð1 �
ed
r Þ ¼ pb for the rapidly growing resource pool situation. We provide the theoretical

analysis for the equilibrium points in these two special cases in the SI text. In addition, in

order to help readers to overview easily the evolutionary stable states of our feedback-evolv-

ing dynamical system for different parameter regions, we present an illustrative plot of the

dynamical regimes in the parameter space (r, pβ), as shown in Fig 4. We use different colors

to distinguish the qualitatively different solutions for different parameter values.

Monte Carlo simulations

To support the robustness of the predictions made by our presented mathematical analysis, we

perform Monte Carlo simulations [40–42] which may serve as an alternative approach to

explore the possible coevolutionary dynamics. Indeed, in some cases this alternative approach,

which contains stochastic elements and utilizes microscopic dynamics, goes beyond the limita-

tions of macroscopic equations and provides alternative outcomes of evolutionary dynamics

that are absent from a well-mixed behavior [41]. In the present case, however, this technique

Fig 3. Replicator dynamics for rapidly growing resource. Top panels show the time evolution of the fraction of cooperators and the resource

abundance ratio for different parameter values when ec < ed < r. Bottom panels show the related phase portraits on x − y/Rm plane. Parameters for

Panels A and B: r = 1.0, N = 1000, Rm = 1000, p = 0.5, α = 0.5, β = 0.5, and bm = 0.5; for Panels C and D: r = 1.0, N = 1000, Rm = 1000, p = 0.2, α = 0.5, β =

0.5, and bm = 0.5; for Panels E and F: r = 1.0, N = 100, Rm = 100, p = 0.1, α = 0.5, β = 0.5, and bm = 0.5. Due to the large intrinsic growth rate, the

environmental resource will never be depleted. The strength of external institutions determines the relation of competing strategies in the equilibrium

state.

https://doi.org/10.1371/journal.pcbi.1006347.g003
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confirms our previous findings, and hence underlines the broader robustness of our

observations.

In the Monte Carlo simulations, initially each individual in the population is chosen to vio-

late or to follow the allocation rule. These strategies are denoted by sv = 0 and sl = 1 respec-

tively. In agreement with the previous setup a law-abiding or cooperator player gets an

amount y(t)bm/Rm from resource which provides his payoff value. Here y(t) describes the

actual state of resource pool at time step t. Alternatively, a defector who violates the allocation

rule takes a larger amount y(t)bm/Rm(1 + α) from the common resource pool. However, the

whole population is inspected and defection is identified with a probability p. In this case the

identified defector player is punished and a fine β is reduced from his payoff. Technically, it

means that a defector collects a payoff Pi = (1 + α)y(t)bm/Rm − β with probability p, otherwise

his final payoff is Pi = (1 + α)y(t)bm/Rm.

Because of the feedback mechanism the total amount of common resources is updated

according to the rule

yðt þ 1Þ ¼ yðtÞ þ ryðtÞ½1 �
yðtÞ
Rm
� �
XN

i

½si
yðtÞbm

Rm
þ ð1 � siÞ

yðtÞbmð1þ aÞ

Rm
� ;

where both the intrinsic growth of resource and the exploitation effect are considered.

According to the strategy evolution each individual i has a chance to imitate the strategy of

another randomly chosen individual j. If Pi < Pj, then the strategy transfer occurs with the

probability

q ¼
Pj � Pi

M
;

where M ensures the proper normalization and is given by the maximum possible difference

between the payoffs of i and j players [43].

Fig 4. A representative plot of evolutionary outcomes on the phase plane. Different colors are used to distinguish qualitatively different solutions in

the parameter space (r, pβ). This plot highlights that the inner dynamical feature of renewable resource could be a decisive factor that can derogate the

expected consequence of punishment.

https://doi.org/10.1371/journal.pcbi.1006347.g004
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Our results obtained at slow resource growth are summarized in Fig 5. This representative

plot confirms our previous observations, namely, the effective inspection and punishment

institutions are not enough to reach a sustainable state if the resource grow rate is too small. In

this case the mentioned institutions are capable to shift the system toward a full cooperator

state but it does not help because even law-abiding users are myopic and only consider the

actual state of environment. As a conclusion, exploiting resource based on the present shape is

harmful because common resource cannot recover this seemingly suitable usage.

When the intrinsic growth rate is higher, but moderate then we obtain qualitatively similar

results to those obtained by analyzing the equation system. These observations are summa-

rized in Fig 6. They suggest that in this case the application of inspection and punishment may

result in the desired effect and a sustainable environmental state can be reached. But here the

efficiency of applied top-down governance plays a decisive role in the final outcome.

Finally we summarize our observations in Fig 7 obtained for the rapidly growing resource

case. These results are again in agreement with the prediction of equation system. More pre-

cisely, full D state, stable coexistence of C and D strategies, or full C state can also be obtained

in dependence of the strength of inspection and punishment. The latter, however, have only

second order importance because the fast recovery of environmental resource pool is capable

to maintain a sustainable state for all cases.

Fig 5. Individual-based simulation for slowly growing resource. Phase portraits in x − y/RM plane for different initial

conditions when r< ec < ed. Simulation results show that the system converges to the [1, 0] state regardless of the

initial conditions. Parameters: r = 0.3, p = 0.5, N = 1000, Rm = 1000, α = 0.5, β = 0.5, and bm = 0.5.

https://doi.org/10.1371/journal.pcbi.1006347.g005
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Discussion

The surprising efficiency of evolutionary game theory in understanding our complex world in

widely different scales makes possible to predict the long-term consequences of individual

actions on resource management [44, 45]. Our principal aim is to develop a realistic model

where there is a coupling between the behavior of players and the developing state of a com-

mon pool resource. More precisely, we consider not just exploitation of the resource but also

take account into the fact that the environmental common pool can be renewable. The latter

Fig 6. Individual-based simulation for moderately growing resource. Three representative phase portraits in x − y/RM plane using different

initial conditions when ec < r< ed. Panels show results obtained at powerful (left), moderate (middle), and weak (right) external institutions.

Depending on the effectiveness of inspection and punishment a sustainable state can be reached for the first two cases. The specific values are

p = 0.5 and β = 0.5 in panel A; p = 0.05 and β = 0.5 in panel B; and p = 0.01 and β = 0.1 in panel C. Other parameters are r = 0.6, N = 1000, Rm =

1000, α = 0.5, and bm = 0.5 for all cases.

https://doi.org/10.1371/journal.pcbi.1006347.g006

Fig 7. Individual-based simulation for rapidly growing resource. Three representative phase portraits in x − y/RM plane using different initial

conditions when ec < ed < r. Panels show results obtained at powerful (left), moderate (middle), and weak (right) external institutions. Due to

large growth rate a sustainable state can always be maintained. The strength of inspection and punishment determines only the level of this state.

The specific values are p = 0.5, 0.2, and 0.1 for panel A, B, and C, respectively. Other parameters are r = 1.0, N = 1000, Rm = 1000, α = 0.5, β = 0.5,

and bm = 0.5 for all cases.

https://doi.org/10.1371/journal.pcbi.1006347.g007
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may be captured by a single parameter which characterizes the intrinsic growth rate of the

resource.

In this more realistic model of a coupled social-resource system, we further introduce a

top-down-like control mechanism that serves to block overexploitation of the common

resource. This control mechanism is not only motivated by theoretical works or lab experi-

ments [20, 33, 46], but is also stimulated by realistic field investigations focusing on the forest

commons management [34, 47]. In contrast to a bottom-up self-regulation this top-down-type

control assumes an effective external monitoring of agents. We have then shown that overex-

ploitation is not the only danger of a sustainable state. In particular, it is not enough to restrict

our share to a limit that is estimated from the actual abundance of the common resource, but

we should also consider simultaneously the growing capacity of the latter. For example, if the

growth rate is too small then even strong inspection and punishment are unable to prevent us

from a depleted resource. Taking the other extreme, if the growth rate is high enough then the

mentioned institutions have role only in how high resource level is stabilized, but we can

always keep a sustainable state. As we pointed out monitoring overexploitation and punishing

it has critical role at an intermediate growth rate of environmental resource, when efficient

institutions can reverse the final destination of evolutionary process.

Renewable resources are generally believed to play key roles in achieving a sustainable

human development [48]. Indeed, they are essential but we must consider not only temporal

changes in environmental conditions but also their intrinsic features when designing their sus-

tainable usage [33]. Otherwise our additional efforts to control participants become useless.

Conceptually similar conclusion can also be obtained when ostracism is introduced as a collec-

tive control mechanisms into another coupled social-resource model proposed by Tavoni et al.

[15]. It is found that the stationary state of cooperators and defectors does not only depend on

the ostracism strength, but also on the resource inflow [33]. We thus conclude that when we

design a social control mechanism to solve the overexploitation problem in a coupled social-

resource system we should first pay attention to the intrinsic features of the system which can

determine in advance whether the designed control mechanism is capable to drive the level of

common resource toward the desired direction.

Finally, we note that our model of dynamical cooperation and renewable environmental

resource uses several simplifying assumptions and is just a first step toward a more sophisti-

cated coevolutionary model. Still, we strongly believe that our results could be helpful to

understand the role of growing capacity of renewable resources in designing control mecha-

nism of punishment for governing the commons.

On the other hand, we may consider to relax or extend these simplifying assumptions for

future research in order to understand better the coevolutionary dynamics of renewable

resources and human cooperation in specific conditions. More precisely, in the present work

we have considered that individual payoff in the replicator equation is identified as individual

income originated directly from the common-pool resource. Indeed, there should exist a

transformation relationship between individual income and payoff, which can be reflected by

the production function [15]. Thus incorporating such production function into our current

model could be a further step toward a more realistic description. Meanwhile it is also interest-

ing to study whether such transformation relationship can influence the evolutionary outcome

in the coevolutionary framework we proposed. Second, as pointed out in Ref. [16] there exists

a relative speed by which human behaviors modify the resource state, which was not consid-

ered in the framework of present model. Hence, a possible extension of our work could be to

consider the relative changing speed between the resource dynamics and the cooperation level

in the population. Third, we have considered a well-mixed interaction between agents where

the environmental feedback was valid globally. Evidently, one may consider a structured
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population where both interactions and feedback from environment act locally, hence opening

a new research path toward more realistic situations.

Supporting information

S1 Text. Supporting information for: Punishment and inspection for governing the com-
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