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Discrimination of nonorthogonal quantum states is an important task in modern quantum com-
putation and quantum control [1]. Various protocols have been proposed for effective quan-
tum state discrimination (QSD) (see reviews [2, 3]). A crucial ingredient of these methods is
to have an ensemble of identical quantum systems for implementing unambiguous QSD [4,6,7].
Measurement-induced nonlinear dynamics is experimentally feasible in quantum optics [5], and
as it has been shown [6, 7] that nonlinear quantum transformations could be a possible way for
implementing QSD of two-level quantum systems. In this report we propose a scheme which can
be used for QSD of three-level quantum systems.

Let us assume that we have an ensemble of identically prepared quantum systems in the state

o) = N(]0) + 21[1) + 22[2)), (1

where N = (1 + |2|? + |22/?)~'/? is the norm of |1y). The problem is to distinguish two possibil-
ities: (i) |z1| > |22| and (ii) |21| < |22|. We propose to use M steps of the nonlinear transformation
shown in Fig.1.
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Figure 1: Scheme of the non-linear transformation |¢)g) — [t1).

We take two pairs of the system in initial state |¢)g). Then one member of each pair is trans-
formed by a single-system unitary u; (j = 1, 2), after which U; acts on a whole pair, and then
we perfom selective projective measurements P = |0)(0| on the first system of each pair. If both
results are “yes” then we take the unmeasured systems from each pair and apply a joint unitary
operator U on them. Then we perfom again a projective measurement P on the first system in the
pair, and if the result is again “yes” then the unmeasured system transforms into the state |¢);). We
propose to use the following unitary operators:

uy = [0)(2] + [2)(0] + |1)(1], Uy = [01){(11| + [11)(01] + [00)(00] + --- 4+ |22)(22],  (2)
ug = [0) (1] 4+ [1)(0] +12)(2|, U =102)(22| + |22)(02| + [00)(00| + --- 4+ |21)(21], (3)
U = [01)(10] -+ [10)(01] + [00)(00] + [02)(02] + [11)(11] 4 - - - + |22)(22], 4)

where by dots we denote all other possible diagonal elements. This procedure corresponds to the
following nonlinear transformation of the initial state of Eq. (1)

1) = N’ (I0> + ?zﬂl) + §z2|2>) . (5)
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Therefore, if |21| # |22| we will have for some relatively large M: |¢);) = |1) in the case of
|z1] > |22], and |¢hp) = |2) in the case of |z;| < |z2|. We can distinguish these two cases
by perfoming the projective measurement |1)(1| on the system in the state [¢;), and then draw
conclusion about the initial state |10). In Fig.2 (a,b) we show the probability of measuring state |1)
after one step (M = 1) and three steps (M = 3), respectively. The border between regions with
high and low probability corresponds to the |z;| = | 23| condition, and this border becomes sharper
with increasing M. Thus, the effectiveness of QSD increases with increasing M.

Another question arises: can we distinguish states in which |z;| = |22|? For example, in Eq.(1)
we have z; = p and 2z, = pexp(ie) (Imp = 0) and we wish to know whether ¢ > 0 or ¢ < 0. It
can be shown that in this case we have to implement the unitary transformation R

1 0 0
R=10 i/vV2 1/V2 (6)
0 —1/vV2 —i/V2

on each initial state before doing the nonlinear transformation of Fig.1. Due to this operation we
can treat the problem as above, since

Rlho) = N(|0) + 21[1) + 25[2)), (7

|21 = pV/1+sing, |z =py/1—sing, ¢ #0—= |2 # |2 (3)

Therefore, applying the nonlinear transformation on the state (7) we can distinguish the two dif-

ferent situations: 0 < ¢ < 7 — |2]| > |25, and —71 < ¢ < 0 — |2{| < |2}]. In Fig.2 (c,d) we
show the probability of measuring state |1) as a function of the initial values of p and .
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Figure 2: Probability of measuring state |1) after the nonlinear transformation as a function of the
parameters of the initial state. M = 1 for subfigures (a) and (c), and M = 3 for subfigures (b) and
(d). Black filling corresponds to probability 1, no filling corresponds to probability 0.
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