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ABSTRACT
The paper reports on establishing a beamforming dataset, relying on the phased array

microphone (PAM) technique, on the broadband noise of rectilinear basic models of low-speed
axial fan blade sections. A cambered plate profile is in the focus of the studies, in comparison
with a flat plate and a traditional airfoil profile. At low Reynolds numbers, cambered plate
blade sections have a potential to perform aerodynamically better than profiled airfoil
sections. Thus, the established dataset aims at contributing to the design background of
aerodynamically efficient, low-noise, low-Reynolds-number fans. The wind tunnel-PAM
configuration enables the acoustic investigation over the plane being normal to the spanwise
direction at midspan. An illustrative study on representative cases selected out of the dataset
demonstrates the capabilities and limitations of the presently available experimental and
evaluation method. Spatially simultaneously resolved information is presented on the
signatures of systematically investigated classes of blade section noise.
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NOMENCLATURE
CD section drag coefficient (2D)
CL section lift coefficient (2D)
c chord length of blade section
d maximum height of the camber line
d/c relative curvature of the camber line
fmid middle frequency of third-octave frequency band
fS vortex shedding frequency
h characteristic length scale for calculating St
Re chord Reynolds number = cU/n
SSL source strength level (level of beamform source strength normalized by a reference value)
DSSL subtractive source strength level (the effect of background noise removed)
St vortex shedding Strouhal number = fSh/U
s span of model (length of stacking line)
t model thickness
U free-stream inlet velocity in x direction: along the longitudinal axis of the test section
x, y, z  coordinates. x: longitudinal (along the axis of the test section) / y: spanwise / z: vertical
a angle of attack (between the chord line and the x direction)
n kinematic viscosity
F flow coefficient (duct area-averaged axial velocity normalized by tip speed)
Y total pressure coefficient (annulus mass-averaged total pressure rise divided by the dynamic

pressure calculated with tip circumferential speed)
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Abbreviations
BG background
LE leading edge
PAM phased array microphone
TE trailing edge

1. INTRODUCTION AND OBJECTIVES
Axial flow fans characterized by blade sections of chord Reynolds numbers of Re £ 105 are

termed herein as “low-Reynolds-number fans”. Such fans are of relatively small size and/or rotor
speed, e.g. cooling fans for computers (Huang, 2003) and for electric motors (Borges, 2012), or
refrigerator fans (Gue et al., 2011).

Axial fans are often required to provide a prescribed flow rate and/or total pressure rise even at
moderate diameter and/or rotor speed. These requirements are in accordance with the constraints of
limited available space and/or speed – the latter being constrained e.g. by a directly-driving electric
motor – in industrial applications. For these fans, the flow coefficient and the total pressure
coefficient may extend over F » 0.4 and Y » 0.6, incorporating operational ranges throttled
significantly below the design flow rate (e.g. Corsini and Rispoli, 2004). Such fans are termed
herein as “high-specific-performance fans”. Their blade sections are often of high aerodynamic load
– i.e. high lift coefficient –, high camber, and are often exposed to high a angles of attack.

Cambered plate blades of circular arc camber line are often applied in axial fans, enabling a
relatively simple and low-cost manufacturing technique. A further reason for choosing cambered
plate blades appears in low-Reynolds-number fan applications. For Re £ 105, a cambered plate
section may perform aerodynamically better than a profiled airfoil section. The potential benefits
are the following: higher maximum lift coefficient CL, and higher maximum lift-to-drag ratio
CL/CD. Illustrative examples are given for such favourable trends by Carolus (2003), referring to
Albring (1978). A comprehensive explanation is given herein on the basis of the experimental data
and discussion by Mueller (1999) as well as by Yarusevych and Boutilier (2010). At low Reynolds
numbers, laminar separation occurs near the leading edge (LE) of the blade section. Thinning the
profile, i.e. sharpening the LE (profiled airfoil ® cambered plate), tends to act as introducing a
“turbulator” at the front part of the section, promoting the laminar-to-turbulent transition in the
separated shear layer. By such means, the reattachment of the boundary layer over the suction side
tends to be hastened. The thinner the profile, the earlier the boundary layer reattachment, i.e. the
less extended the laminar separation bubble. The consequences of reattaching the boundary layer
and moderating the extension of the separation bubble are as follows: improved suction effect, i.e.
increased CL, and narrowing the wake, i.e. decreased CD. These trends are suggested by Yarusevich
and Boutilier (2010), reducing the profile thickness from 0.25 c to 0.18 c (NACA 0025 ® NACA
0018 airfoil). These favourable trends can be extrapolated for a cambered plate of thickness of some
percent chord only. Due to the aforementioned benefits, cambered plates are considered also as
wing profiles for micro-air vehicles (e.g. Mueller, 1999; Pelletier and Mueller, 2000).

The competitively high CL and CL / CD values make the cambered plate blades especially
beneficial in low-Reynolds-number, high-specific performance fans, if a reasonably good efficiency
and/or moderate noise is a demand (e.g. Vad et al., 2014). The moderate CD is associated with
moderate aerodynamic loss. The fan noise strongly correlates with the global loss of the fan, as
suggested in the Regenscheit method (VDI Richtlinie 3731, 1990; Carolus, 2003), and as confirmed
by Daly (1992). The reduction of noise emitted by the axial fan is of great importance, especially in
the view that the fans under discussion often operate in the vicinity of humans, such as computer
processor cooling fans, cooling fans for electric motors in household devices, or refrigerator fans.

The above overview emphasizes the importance of experimentally studying both the
aerodynamic and aeroacoustic behaviour of cambered plate blade sections, thus contributing to the
background of designing low-Reynolds-number and/or high-specific performance fans. Such
studies may also be adapted to the noise control of wings for micro-air vehicles (silent flight).
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As suggested by Roger and Moreau (2010), detailed acoustic measurement data obtained for
basic two-dimensional (2D), rectilinear models of blade sections can be adapted to rotating blades,
by means of a spanwise segment splitting. Detailed acoustics measurements on a rectilinear airfoil,
using multiple microphones, are reported by Padois et al. (2016). Beamforming, relying on the
phased array microphone (PAM) technique, is a recently emerging methodology for obtaining
spatially simultaneously resolved acoustic data on models of blade or wing sections. In
beamforming the locus of the sound sources is estimated from the phase difference between the
microphone signals of the PAM. The result of beamforming is displayed in source maps, which
contain the strength levels of the sources. Further details on the fundamentals of the beamforming
technique are available e.g. in Dougherty (2002) and Koop (2006). The papers by Hutcheson and
Brook (2006), Geyer et al. (2012), Padois et al. (2015), Moreau and Doolan (2016), and Moreau et
al. (2016) report on the PAM investigation of profiled rectilinear airfoils. These studies focus on
high-speed fan and aerospace applications, and therefore, increased Reynolds numbers (exceeding
Re = 106 in some cases) are characteristic.

Acoustic measurements on cambered plates are rarely published, and are focussed on externally
blown flaps (e.g. Mckinzie and Burns, 1975). To the authors’ best knowledge, the literature lacks in
reporting any PAM-based acoustic measurements on rectilinear cambered plates with circular arc
camber line, serving as models of axial fan blade sections. This is in accordance with the following
fact. The recently emerging – and nowadays still relatively costly – PAM technique, as such, finds a
number of turbomachinery-related applications in aerospace engineering (e.g. Horváth, 2015). It is
still rare nowadays in low-speed fan-related applications (e.g. Minck et al., 2012; Herold and
Sarradj, 2015; Benedek and Vad, 2016; Zenger et al., 2016).

In the view of the aforementioned lack, the objectives of the present paper, and the related
potential for novelty content, are summarized in paragraphs 1) to 3) as follows.

1) Establishing a PAM-based dataset on representative, comparative basic models of low-speed
axial fan blade sections. The models include a circular-arc cambered plate. The measurements offer
a potential for adaption to low-Reynolds-number fans: 6 ×104 ≤ Re ≤ 1.4×105. They offer a potential
for adaption to high-specific-performance fans and/or to operating states throttled significantly
below the design flow rate: 0° ≤ a ≤ 30°.

2) Establishing a primary evaluation methodology for the dataset. Presenting an illustrative
case study, for demonstrating the capabilities and limitations of the reported experimental and
evaluation method. On this basis, demands and guidelines for further improvement on the
experimental campaign are outlined. The case study presents the acoustic features of the cambered
plate, in qualitative comparison with other basic models, for the cases of a = 0°, 10°, and 30°.

3) The wind tunnel-PAM setup enables the PAM investigation over the plane being normal to
the spanwise direction at midspan. Thus, the aeroacoustic and aerodynamic features resolved in
both wall-normal and chordwise direction can be correlated. As such, the noise associated with the
thickened / separated blade boundary layer can be investigated in a lifelike manner. This is a
supplement to the aforementioned PAM studies in the literature on blade or wing sections.

Three rectilinear basic blade section models are subjected to the PAM measurements. The
circular arc cambered plate is acoustically compared to a flat plate and to a RAF6-E airfoil, for the
following reasons. The flat plate is often taken as a reference case in computational and
experimental aeroacoustics campaigns (e.g. Roger and Moreau, 2010; Sturm et al., 2015). RAF6-E
is a popular profile of classic fan design, due to its easy-to-manufacture geometry (plain pressure
surface). The aerodynamic and aeroacoustic features of a RAF6-E airfoil have been investigated
e.g. by Vad et al. (2006).

For the primary evaluation presented in the paper, the maximum Reynolds number cases of Re =
1.4×105 have been selected, in order to maximize the recognizable acoustic effects. Such choice is in
accordance with the view that aeroacoustic phenomena are expected to exhibit higher levels with
increasing mean-flow velocities (Roger and Moreau, 2010).
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2. EXPERIMENTAL SETUP
The sketch of the measurement setup is shown in Figure 1. The measurements were carried out

in the “Blackbird-2” wind tunnel at DFM. Details of the wind tunnel technique, including the
properties of the generated flow, are described in Gulyás and Balczó (2014). The uncertainty of U
has conservatively been estimated to ± 1.0 %. The non-uniformity of the inlet velocity is below 3%
farther away from the endwall boundary layers, following the recommendation that the inlet
velocity profile is to be as flat as possible (Roger and Moreau, 2010). The turbulence intensity in
the inflow is 0.8 % for the presented cases. This is in accordance with the guideline that “clean
inflow” is required for the experimental studies of vortex shedding noise and trailing edge (TE)
noise – for the latter, turbulence rate below 1 % is recommended (Roger and Moreau, 2010).

Figure 1. The experimental setup, from downstream (left) and upper (right) views. Bottom
left: PAM octagonal plate, with sensor locations (not to scale with the other sketches).

Each blade section model – labelled as “profile” in Fig. 1 – was placed to the middle of the test
section. A cylindrical handle has been attached to the profiles, with an axis being coincident with
the stacking line of the profile. The blade section models were bounded by the wall of the test
section from one side and by a Kevlar wall on the other side. The noise was measured by the PAM
through the Kevlar wall. The distance between the midspan plane of the blade sections and the
microphone array was set to 0.556 m. The stacking line of the blade section models has coincided
with the PAM centreline, as indicated in the figure using dashed-dotted lines. The background (BG)
noise was also measured: the profile was removed from the test section, and the noise of the empty
wind tunnel was measured through the Kevlar wall.

At the present state of investigation, the mean flow deviation discussed by Roger and Moreau
(2010) has been disregarded (conf. Balla and Vad, 2017). Therefore, α has been defined as the
geometrical angle between the chord line and the longitudinal axis of the test section.

The noise was recorded by means of an OptiNav Inc. Array24 general purpose PAM. The
aperture diameter of the PAM is 0.95 m. The duration of each measurement was 14 seconds. The
analogous signals of the 24 microphones were amplified and converted to digital signals with an
A/D converter. The signals were then saved by the data acquisition computer. The Beamform
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Interactive plug-in of OptiNav was used to create the beamforming source maps.
Narrowband frequency domain beamforming was applied for various measurement durations

and various normal-to-span measurement planes for the same experimental case. The PAM-based
SSL results scattered within a range of ± 1 dB at 95% confidence level, for all cases examined. On
this basis, the amplitude uncertainty has been estimated to ± 1 dB.

3. CASE STUDIES
The profiles – i.e. cross-sections – of the investigated three blade section models are shown in

Figure 2. From this point onwards, the profiles will be referred to as “flat”, “cambered”, and
“airfoil”. The desired α can be set by rotating the fixture of the blade sections, at an uncertainty of ±
0.5°. The Mach number is 0.06, and thus, incompressible flow is considered. Further details on the
measurement setup and the measurement conditions are given in Balla and Vad (2017).

The three a values discussed herein were selected on the basis of examining the CL(a) and
CD(a) diagrams available for the three profiles in the classic literature (for “flat” and “cambered”:
Wallis, 1946; for “airfoil”: Patterson, 1944). On this basis, the selected a values are representative
for the following operational states of the blade sections: a = 0°: zero or moderate lift + nearly
minimum drag; a = 10°: nearly maximum lift; a = 30°: deep stall. Considering the aerodynamic
measurement data published by Mueller (1999) on flat and cambered plates, a 2D aerodynamic
approach has been judged to be fair at the present level of evaluation (conf. Balla and Vad, 2017).

Figure 2. The profiles: flat (top), cambered (middle), airfoil (bottom). The arrows indicate the
location of d. The table presents the geometrical data of the models.

4. DETAILS OF DATA PROCESSING AND EVALUATION; NOISE SPECTRA
Beamforming was applied to the recorded sound data assigned to bands of 21.5 Hz width.

Frequency domain beamforming was performed. In evaluation, the region of interest was confined
to the vicinity of the profiles. The region extends half c upstream and one c downstream of the LE
and TE, respectively. It extends twice c in lateral direction, with the profile being in the centre. The
diagonal treatment of the cross spectral matrix was chosen to be optimized. Using this method, less
information is lost than that using the “delete” method (Dougherty, 2016).

In order to get a general view on broadband noise, third-octave SSL spectra were derived (conf.
Vad et al., 2006), as shown in the left column of Figure 3. In computing the spectra, the peak values
of the beamform source strength were considered within each partial band of 21.5 Hz width. The
phased-array technique serves herein not only for localizing the various sources of blade section
noise, but also for making a distinction between the blade section noise and the background noise.
The high level of BG noise (Fig. 3, left column) necessitates the application of background-noise
subtraction (conf. Roger and Moreau, 2010), for a comprehensive evaluation of the spectra. Thus,
subtractive (DSSL) spectra were obtained. DSSL has been computed as follows. The logarithmic SSL
values were converted to source strength values for the noise of the actual blade section and the BG.
Then, the latter was subtracted from the former. The result was then converted again to a
logarithmic level.

The DSSL spectra, shown in the right column in Fig. 3, suggest the following approximate,
generalized trends. The confirmation and comprehensive explanation of the observed trends and

Profile c [mm] s [mm] t [mm] d [mm]
Flat 100 150 2.5 0

Cambered 100 150 2.5 8
Airfoil 100 150 10* 5

* maximum thickness
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phenomena, discussed in Sections 4 and 5, is a subject of future work, with involvement of detailed,
concerted aeroacoustic-aerodynamic studies.

Figure 3. Original (left column) and subtractive (right column) third-octave noise spectra, for
the frequency domain of fmid = 0.25 to 16 kHz. The bold vertical line indicates fmid = 5 kHz.
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Range of 0.5 to 3 kHz.  For each α, DSSL of “cambered” and “airfoil” is higher than that of
“flat”. For α = 0° and α = 30°, DSSL of “cambered” is higher than or equal to that of “airfoil”. For α
= 10°, DSSL of “cambered” is lower than or equal to that of “airfoil”.

Range of 3 to 8 kHz.  For α = 0° and α = 10°, DSSL of “cambered” is lower than or equal to
that of “flat” and “airfoil”, and outstandingly high DSSL values appear for “airfoil” at about 5 kHz.
For α = 30°, such outstandingly high DSSL values disappear.

Range of 8 to 16 kHz.  For α = 0° and α = 10°, DSSL of “cambered” is lower than or equal to
that of “airfoil”. For α = 10° and α = 30°, DSSL of “flat” is higher than that of “cambered” and
“airfoil”.

5. LOCALIZATION AND IDENTIFICATION OF NOISE SOURCES
This section aims at demonstrating the capabilities of the beamforming technique in localizing

the sources of blade noise. Considering the works by Brooks et al. (1989), Carolus (2003), Staubs
(2008), Yarusevych and Boutilier (2010), and Roger and Moreau (2010), the sources of broadband
noise associated with the 2D blade section models are classified and briefly characterized herein as
follows. The sources are listed in the presumed approximate sequence of their location, moving
from the LE of the blade section toward the downstream direction.

a) Turbulence-interaction noise.  It originates from the impingement of upstream turbulence.
For aerodynamically non-compact cases, the source locates in the vicinity of the LE.

b) Turbulent boundary layer noise.  It originates from the wall pressure fluctuation due to the
turbulence in the boundary layer. It radiates within the entirety of the turbulent boundary layer.

c) Separated flow noise.  It originates from boundary layer separation. For deep stall, the noise
radiates from the entire chord. For mildly separated flow it dominates near the TE.

d) Profile vortex-shedding noise.  It originates from coherent vortex shedding over the profile
surface. The source extends from the wake toward the region upstream of the TE, within the
possibly thickened / separated / reattached suction side boundary layer.

e) Trailing-edge noise.  It is due to the scattering of the turbulence in an attached boundary
layer, at the TE, as sound. The source is confined to the vicinity of the TE.

f) Blunt trailing edge vortex-shedding noise.  It originates from coherent vortex shedding from
the blunt TE. The source is confined to the region downstream of the TE.

Staubs (2008) and Roger and Moreau (2010) cite references and present their own studies on
turbulence-interaction noise. In these references, the turbulence intensity varies between 4 to 6 %.
Since the turbulence intensity is much less in the cases reported herein (0.8 %), the turbulence-
interaction noise has been presumed negligible. Thus, sources b) to f) are discussed herein.

5.1. General interpretation on noise sources above 5 k Hz
Fig.3 suggests pronounced departures between the spectra above 5 k Hz. On this basis, it has been

judged reasonable to start the discussion on spatially resolved data with a generalized interpretation
in the range above 5 kHz. Figure 4 shows the loci of representative sets of SSL peak values of the
partial frequency bands of 21.5 Hz width, above 5 kHz. The profiles are represented with their
chord line in the figure. The rectangular region for presenting the loci of the peaks has arbitrarily
been defined as follows. i) The longitudinal axis of the region is the bisector of the angle α, thus
making an angle of α/2 with the x axis. ii) The length of the region is c. iii) The width of the region
is twice the a–dependent height of the projection of the profile to the vertical [ y,z] plane. The
observations are summarized as follows.

α = 0°. The peaks are located either close downstream of the LE at about 0.2 to 0.3 c, or at
the vicinity of the TE. The former group is assumed to be related to the turbulent boundary layer
noise, provoked presumably by laminar-to-turbulent transition. The latter group is assumed to be
related to turbulent boundary layer noise and / or trailing-edge noise and / or vortex-shedding noise.

α = 10°. 1) For “flat”, peaks close downstream of the LE are still present, being closer to the
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LE than for the α = 0° case. Such peaks cannot be observed for “cambered” and “airfoil”. The peaks
for “flat” are assumed to be related to the turbulent boundary layer noise, rising more upstream than
for the α = 0° case, due to the higher angle of attack, and to the resultant more intense turbulence.
For the curved suction surfaces of “cambered” and “airfoil”, the near-LE part of the profiles is
better aligned with the inflow direction at α = 10° than at α = 0°. As a result, the suction side
boundary layer thickens and develops pronounced turbulence at locations being closer to the TE.
Therefore, the near-LE signatures of turbulent boundary layer noise disappear. 2) An extended
multitude of peaks is present in the vicinity of the TE for each profile, near the profile surface. In
the view that α = 10° relates to nearly maximum lift, mild near-TE flow separation is rendered
possible. The peaks near the TE are assumed to be related to turbulent boundary layer noise and / or
separated flow noise and / or trailing-edge noise and / or vortex-shedding noise.

α = 30°. The peaks are located within the stalled zone for each profile. They are located not
only in the vicinity of the profile but also farther away from it. No peaks are present in the vicinity
of the TE. These peaks are assumed to be related to turbulent boundary layer noise and / or
separated flow noise.

Figure 4. Loci of representative SSL peak values in the frequency range above 5 k Hz. The
profiles are represented with their chord line.

5.2. Vortex shedding noise
Vortex shedding noise, presented in Figures 5 to 6, offers test cases for checking the reliability of

the beamforming technique in finding the locus of a spatially distinct noise source. The Strouhal
number characterizing the vortex shedding is defined herein as St = fSh/U. For profile vortex
shedding, the characteristic length scale h is the a–dependent height of the projection of the profile
to the vertical [y,z] plane (Yarusevych and Boutilier, 2010). For blunt trailing edge vortex shedding,
h is the trailing edge thickness (Roger and Moreau, 2010). Yarusevych and Boutilier (2010)
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published St values for various profiles, and for various a and Re values (including a = 10°, and Re
= 1.4×105). On this basis, the Strouhal number valid for the profile vortex shedding cases, presented
herein has briefly been estimated to St » 0.8 ¸ 1. In case of blunt trailing edge vortex shedding, St
was presumed to be 0.2 on the basis of Roger and Moreau (2010). With knowledge of U as well as
the actual h values, this enabled the selection of the third-octave bands within which the detection
of vortex shedding noise is presumable. These bands have been selected as follows. Profile vortex-
shedding noise: for a = 0°: fmid = 2.5 kHz (“cambered”, and “airfoil”); for a = 10°: fmid = 1.25 kHz
(each blade sections). Blunt trailing edge vortex shedding noise: for a = 0°: fmid = 1.6 kHz, 2 kHz,
and 5 kHz, for “flat”, “cambered”, and “airfoil”, respectively . On the basis of the aforementioned
references, no profile vortex shedding has been presumed for deep stall of a = 30°, and no blunt
trailing edge vortex shedding for a = 10° and a = 30°.

Figure 5. SSL [dB] source maps representing the presumed profile vortex-shedding noise. The
black dot marks the position of the peak.
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Considering the presumed vortex-shedding frequencies, the beamforming source maps within the
aforementioned third-octave bands were systematically investigated for discovering the signatures
of vortex-shedding noise. As the results of the investigation, Figures 5 and 6 present the source
maps representing the presumed profile vortex-shedding noise and blunt trailing edge vortex-
shedding noise, respectively. The contours of the profiles are illustrated in the diagrams. The
presented frequency band is specified on the left-hand side above the individual diagrams. The
black dots mark the location of the SSL peak within the frequency band.

As seen in the left column of Fig. 5, the beamforming technique localizes the source of presumed
profile vortex-shedding noise to the vicinity of the TE at a = 0°, in accordance with the expectation.
(The map for the “flat” case is missing, since it is irrelevant for a = 0°.) For a = 10° (right column),
the peak has moved toward the upstream direction relative to the TE, for the “cambered” and
“airfoil” cases. This suggests that the thickened suction side boundary layer at a = 10° provides an
origin for profile vortex-shedding noise that is extended toward the region upstream of the TE. In
the “airfoil” case at a = 10°, the maximum is – erroneously – marked on the pressure side,
indicating the limited spatial resolution of the PAM technique at lower frequencies. This case draws
also the attention that the majority of profile vortex-shedding noise may originate from the vicinity
of the LE of airfoils at increased angles of attack. The measurements by Yarusevych and Boutilier
(2010) indicate that the laminar-to-turbulent transition in the separated shear layer occurs just at 15
to 20 percent chord downstream of the LE. It is presumed herein that such transition acts as the
origin of profile vortex shedding noise.

Figure 6. SSL [dB] source maps representing the presumed blunt trailing-edge vortex-
shedding noise. The black dot marks the position of the peak.

Fig. 6 illustrates that, behaving as expected, the beamforming technique localizes the source of
presumed blunt trailing edge vortex-shedding noise to the vicinity of the TE. For the flat plate, the
blunt trailing edge vortex-shedding noise could not be distinguished with the processing technique
presented herein. This necessitates the further improvement of the processing method.

Figs. 5 to 6 depict the following limitations in the presently available measurement and
evaluation methodology. Upon need, these limitations are to be treated in the future research steps,
by means of applying more sophisticated experimentation and / or data processing and evaluation.

Uncertainty in finding the locus of the dominant source.  Examples: Fig. 5, “airfoil”, a = 10°: the
peak is found on the pressure surface. Fig. 6, both case: the peak is not exactly at the TE.

Limits in spatial resolution.  It is known that the resolving power is proportional with the
frequency (e.g. Benedek and Vad, 2016). Examples: Fig. 5, each case: Although the dynamic range
represented in these source maps remains the same as for Fig. 6, the moderate frequencies result in
less contrasted (more blurry) SSL distribution. The zone of increased SSL extends in x and / or z
direction.
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Appearance of fake noise sources.  Examples: Fig. 5, “cambered” and “airfoil” at a = 0°:
increased level of fake noise appears in the region upstream of the profiles.

6. CONCLUSIONS AND FUTURE REMARKS
The paper illustrates the potential of the applied experimental technique in localizing the sources

of blade section noise, such as turbulent boundary layer noise, separated flow noise, profile and
blunt trailing edge vortex-shedding noise, and trailing-edge noise. The next steps are to carry out
the comparative investigation for lower Reynolds numbers, e.g. Re = 6×104, and to establish a
quantitative model for the noise of cambered plates. These steps will contribute to design of low-
noise, low-Reynolds-number axial fans equipped with cambered plate blades. The following
limitations of the experimental technique, as well as of the data processing and evaluation method,
are acknowledged, and are to be treated / considered in future work: neglect of mean flow
deviation; limit in the validity of the 2D approach; high background noise; spatial uncertainty of
source localization; limits in spatial resolution; appearance of fake noise sources.
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