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ABSTRACT
Machine learning algorithms have reached mainstream status and
are widely deployed in many applications. The accuracy of such
algorithms depends significantly on the size of the underlying train-
ing dataset; in reality a small or medium sized organization often
does not have enough data to train a reasonably accurate model. For
such organizations, a realistic solution is to train machine learning
models based on a joint dataset (which is a union of the individual
ones). Unfortunately, privacy concerns prevent them from straight-
forwardly doing so.While a number of privacy-preserving solutions
exist for collaborating organizations to securely aggregate the pa-
rameters in the process of training the models, we are not aware of
any work that provides a rational framework for the participants
to precisely balance the privacy loss and accuracy gain in their
collaboration.
In this paper, we model the collaborative training process as a two-
player game where each player aims to achieve higher accuracy
while preserving the privacy of its own dataset. We introduce the
notion of Price of Privacy, a novel approach formeasuring the impact
of privacy protection on the accuracy in the proposed framework.
Furthermore, we develop a game-theoretical model for different
player types, and then either find or prove the existence of a Nash
Equilibrium with regard to the strength of privacy protection for
each player.
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1 INTRODUCTION
As data has become more valuable than oil, everybody wants a
slice of it; Internet giants (e.g., Netflix, Amazon, etc.) and small
businesses alike would like to extract as much value from it as pos-
sible. Machine Learning (ML) has received much attention over the
last decade, mostly due to its vast application range. For machine
learning tasks, it is widely known that more training data will lead
to a more accurate model. Unfortunately, most organizations do not
possess a dataset as large as Netflix’s or Amazon’s. In such a situa-
tion, to obtain a relatively accurate model, a natural solution would
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be to aggregate all the data from different organizations on a cen-
tralized server and train on the aggregated dataset. This approach
is efficient, however, data owners have a valid privacy concern
about sharing their data, particularly with new privacy regulations
such as the European General Data Protection Regulation (GDPR).
Therefore, in real-life scenarios, improving ML via straightforward
data aggregation is likely undesirable and potentially unlawful.

In this paper, we are interested in a scenario with two partici-
pants, each of whom possesses a significant amount of data and
would like to obtain a more accurate model than what they would
obtain if training was carried out in isolation. It is clear that the
players will only be interested in collaboration if they can actually
benefit from each other. To this end, we assume that the players
have already evaluated the quality of each other’s datasets to make
sure training together is beneficial for both of them before the
collaboration.

1.1 Problem Statement
In the literature, Privacy Preserving Distributed Machine Learning
[2, 5, 6] have been proposed to mitigate the above privacy concern
by training the model locally, and then aggregating all the local
updates securely. However, these approaches’ efficiency depend on
the number of participants and the sample sizes. Moreover, in most
of them, the players are not provided with the option of choosing
their own privacy parameters.

To bridge this gap, we consider the parties involved as rational
players and model their collaboration as a game similarly to [1, 4],
but focusing on the two-player case. In our setting, players have
their own trade-offs with respect to their privacy and expected
utility and can flexibly set their own privacy parameters. Hence,
the central problem of this research is to propose a general game
theoretical model, and to find a Nash Equilibrium. Our goal is to
answer the following fundamental questions given a specific ML
task:

• What are the potential ranges for privacy parameters that
make the collaborative ML model more accurate than train-
ing alone?

• What is the optimal privacy parameter (which results in the
highest payoff)?

• With this optimal parameter, how much accuracy is lost
overall due to the applied privacy-preserving mechanisms?

2 GAME THEORETIC MODEL
The Collaborative Learning (CoL) game captures the actions of two
privacy-aware data holders in the scenario of applying an arbitrary
privacy preserving mechanism and training algorithm on their
datasets. At a high level, the players’ goal in the CoL game is to
maximize their utility, which is a function of the model accuracy
and the privacy loss:
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Definition (Collaborative Learning game). The CoL game is
a tuple ⟨N , Σ,U⟩, where the set of players isN = {1, 2}, their actions
are Σ = {p1,p2} where p1,p2 ∈ [0, 1] while their utility functions are
U = {u1,u2} such that for n ∈ N :

un (p1,p2) = Bn · b(θn ,Φn (p1,p2)) −Cn · c(pn )

The variables of the CoL game are listed in Tab. 1. Accuracy is
measured as the prediction error of the trained model. Maximal
privacy protection is represented via pn = 1, while pn = 0 means
no protection for player n. As the benefit and the privacy loss are
not on the same scale, we introduce weight parameters Bn > 0 and
Cn ≥ 0.

Variable Meaning
pn Privacy parameter for player n
Cn Privacy weight for player n
Bn Accuracy weight for player n
θn Accuracy by training alone for player n

Φn (p1,p2) Accuracy by training together for player n
b(θn ,Φn ) Benefit function for player n
c(pn ) Privacy loss function for player n

Table 1: Parameters of the CoL game.

2.1 Assumptions
We only rely on a couple of basic assumptions to keep the model
as general as possible. We assume

• that the privacy loss function is monotone, and the maximal
potential privacy leakage is 1 which corresponds to no pro-
tection at all, while maximal privacy protection corresponds
to zero privacy loss.

• that the benefit function is monotone, and there is no benefit
if the accuracy of training together is lower than the accuracy
of training alone.

• that the function of the accuracy by training together is
monotone, and maximal privacy protection cannot result in
higher accuracy than training alone, while training together
with no privacy corresponds to higher accuracy than training
alone.

Based on these assumptions, no collaboration is a trivial NE of
the CoL game.

2.2 Price of Privacy
By definition, in a Nash Equilibrium (NE) no player can do better by
changing strategies unilaterally [3]. However, NE is not necessarily
a social optimum. Price of Stability measures the ratio between
these two: how the efficiency of a system degrades due to the
selfish behavior of its players. Inspired by this, we define Price of
Privacy to measure the accuracy loss due to the privacy mechanism:
PoP ∈ [0, 1] where 0 corresponds to the highest possible accuracy
which can be achieved via collaboration with no privacy; on the
contrary, 1 corresponds to the lowest possible accuracy which can
be achieved by training alone.

2.3 Remarks
Φn plays a crucial role in the CoL game. However, since it is deter-
mined by the privacy mechanism, the complex training algorithm
and the used datasets, the exact form in general is unknown. Given
that the actual value of Φn is required to compute the optimal strate-
gies, it has to be numerically evaluated for putting the CoL game

to practical use. Computing this function precisely requires access
to the joint dataset; thus, it raises the very privacy concern which
we want to mitigate in the first place.

To break this loop, we propose an approach called Self-Division
in [7]. Via this approximation, the players determine Φ̃n , which can
be used with the CoL game to find the optimal privacy parameter
p∗n . The actual collaboration takes place only if these parameters
correspond to positive utilities for both players. The process dia-
gram summarizing the steps above can be seen in Fig. 1; the rest of
the parameters are determined via an external setup mechanism.

Figure 1: Process Diagram for Collaborative Learning.

3 THEORETICAL RESULTS
Based on the properties of CoL game, two natural expectations
arise:

Lemma. ∃αn ≥ 0 such that if CnBn ≤ αn for player n than its best
response is to train together without any privacy protection. Similarly,
∃βn ≥ 0 such that if CnBn ≥ βn for player n then its best response is to
train alone.

The questions we are interested in answering are: what are the
exact values of αn and βn and what is the NE in case αn ≤

Cn
Bn ≤ βn .

We separate our theoretical analysis into two case based on the
privacy weight parameter of the players:

• Unconcerned: This type of player cares only about accu-
racy, i.e., Cn = 0.

• Concerned: This player is more privacy-aware, as the pri-
vacy loss is present in its utility function (i.e., Cn > 0).

3.1 One Player is Privacy Concerned
We derive symbolic NEs in closed form for the case where exactly
one of the players is privacy-concerned.

Theorem (Training as an unconcerned player). If player n
is unconcerned (Cn = 0) then the NE is to collaborate without any
privacy protection: p∗n = 0.

When both players are unconcerned (C1 = C2 = 0), (p∗1 ,p
∗
2) =

(0, 0) is a NE. As a result, the unconcerned player does not apply
any privacy-preserving mechanism. Without loss of generality we
assume Player 2 is unconcerned, so its best response is p2 = 0. This
allows us to make the following simplifications: Φ(p1) := Φ1(p1, 0),
b(p1) := b(θ1,Φ(p1, 0)) and u(p1) := u1(p1, 0) while f ′ = ∂p1 f and
f ′′ = ∂2p1 f .

Theorem (Training with an unconcerned player). A NE of
the CoL game when Player 1 is concerned (C1 > 0) while Player 2 is
unconcerned (C2 = 0) is (p∗1 ,p

∗
2) = (ρ, 0) where



ρ =


[
b′Φ′

c ′
]−1

(r ) if
u ′′(ρ) < 0
ρ ∈ [0, 1]
u(ρ) > 0

0 if b(0) > r
1 otherwise

where [·]−1 is the inverse function of [·] and r = C1
B1
.

3.2 Both Players are Privacy Concerned
We prove the existence of a pure strategy NE in the general case,
where both players are privacy-concerned to a given degree.

Theorem (Main). The CoL game has at least one non-trivial pure-
strategy NE if

∂2Φb · (∂p1Φ1 − ∂p2Φ2) = ∂Φb · (∂p1∂p2Φ2 − ∂p1∂p2Φ1)

Corollary. If we assume ∂ip1Φ1 = ∂ip2Φ2 for i ∈ {1, 2} then the
Main theorem holds.

The condition on the derivatives of Φn in the Corollary means
that the player’s accuracy changes the same way in relation to their
own privacy parameter, independently from the other player’s
privacy parameter. We demonstrate this empirically using a recom-
mendation system use case.
4 USE CASE: RECOMMENDATION SYSTEM
In our example recommender use case, we specify the training
algorithm to be matrix factorization via stochastic gradient descent;
moreover, we use the Movilens (1M) and Netflix (NF10) dataset.
As privacy-preserving mechanisms we consider both suppression
(Sup) and differential privacy (DP). For details, please consult [7].

4.1 Empirical Results
4.1.1 Alone vs. together. In Fig. 2 we compare the achieved accu-
racy with and without the other player’s data. Training together
is superior to training alone for both datasets and all size ratios.
Moreover, the owner of the smaller dataset benefits more from
collaboration.

Figure 2: Accuracy improvement achieved by training to-
gether instead of alone using 1M/NF10 datasets where one
player has x times more (less) data than the other.

4.1.2 Training with an unconcerned. Fig. 3 represents the casewhen
Player 2 is unconcerned (i.e., p2 = 0). Player 1’s options are either
to set p1 for Sup (the percentage of discarded data) or ε1 for DP
(the level of the injected noise). The main observation is that as the
dataset size ratio increases, the accuracy improvement decreases,
independently from the dataset ratios. Moreover, it is visible that
the dataset size only effects the accuracy through a constant factor,

i.e., the Corollary which ensures the existence of a non-trivial pure
strategic NE does hold.

Figure 3: Accuracy improvements of training together for
different privacy levels using the 1M dataset divided with
data size ratios 0.25, 1 and 4.

4.1.3 Training with a concerned. The experiment corresponding
to the case when both players can apply privacy preservation can
be found in [7].

5 CONCLUSION
In this paper we designed a Collaborative Learning process among
two players. We defined two player types and modeled the training
process as a two-player game. We proved the existence of a Nash
Equilibrium with a natural assumption about the privacy-accuracy
trade-off function in the general case, while provided the exact NE
when one player is privacy unconcerned. We also defined Price of
Privacy to measure the overall degradation of accuracy due to the
player’s privacy protection.

On the practical side, we studied a Recommendation System use
case: we applied two different privacy-preserving mechanisms on
two real-world datasets and confirmed via experiments that the
assumption which ensures the existence of a NE holds. Comple-
mentary to the CoL game, we interpolated Φ for our use case, and
devised a possible way to approximate it in real-world scenarios
[7].

We find that privacy protection degrades the accuracy heavily
for its user, making Collaborative Learning practical only if the
players have similar dataset sizes and their privacy weights are low.
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