

Synthesis of Phosphonates in a Continuous Flow Manner

Nóra Tóth, Ádám Tajti, Katalin Ladányi-Pára, Erika Bálint^{*} and György Keglevich^{*}

Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest,

Hungary

ebalint@mail.bme.hu, gkeglevich@mail.bme.hu

Abstract The synthesis of dialkyl H-phosphonates and α -aminophosphonates was studied in a continuous flow microwave reactor. Depending on the conditions, the alcoholysis of dialkyl H-phosphonates could be fine-tuned towards the mixed and the fully transesterified products. The continuous flow synthesis of α -aryl- α -aminophosphonates was elaborated utilizing the aza-Pudovik reaction of imines and dialkyl H-phosphonates, as well as the by the Kabachnik-Fields condensation of primary amines, benzaldehyde and >P(O)H reagents.

Keywords dialkyl *H*-phosphonates; α -aminophosphonates; alcoholysis; Kabachnik-Fields reaction; Pudovik reaction; continuous flow reactor

Microwave (MW)-assistance is a useful technique, however, the size of the reactor is rather limited.¹ MW-assisted reactions on a bigger scale may be carried out in a continuous flow MW equipment.² In this work, the synthesis of phosphonates was investigated in a self-developed continuous flow MW system based on a CEM Discover MW reactor equipped with a commercially available CEM continuous flow cell.

The continuous flow alcoholysis of dimethyl *H*-phosphonate (**1**) with *n*-butanol (Scheme 1) was studied in the single pump system based on our experiences in a batch MW reactor.³ At a residence time of 30 min and 100°C, the *n*-butyl methyl *H*-phosphonate (**2**) was obtained as the main component (53%), while at 175 °C, the di(*n*-butyl) *H*-phosphonate (**3**) predominated (91%). Further increase of the temperature did not change the composition.

Scheme 1 Continuous flow alcoholysis of dimethyl *H*-phosphonate with *n*-butanol.

An efficient method has been developed for the synthesis of α -aryl- α -aminophosphonates (4) by the catalyst- and solvent-free MW-assisted aza-Pudovik reaction in a batch MW reactor.⁴ To make the procedure flow compatible, a preliminary experiment was carried out for the addition of diethyl phosphite

to *N*-benzylidene(*n*-butyl)amine in ethanol as the solvent (Scheme 2). The diethyl ((*n*-butylamino)(phenyl)methyl)phosphonate (**4**) was formed selectively.

Scheme 2 Continuous flow synthesis of diethyl ((*n*-butylamino)(phenyl)methyl)phosphonate by aza-Pudovik reaction.

As an extension, after changing for the dual pump system, the same α -aminophosphonate (4) was prepared by the three-component Kabachnik-Fields reaction of *n*-butylamine, diethyl phosphite and benzaldehyde in ethanol without any catalyst (Scheme 3). Although, the aldehyde and the phosphite were pumped form separated vessels, beside the desired product (4) (75%), 25% of the α -hydroxyphosphonate (5) was also formed.

Scheme 3 Continuous flow reaction of *n*-butylamine, diethyl phosphite and benzaldehyde.

FUNDING

The project was supported by the Hungarian Research Development and Innovation Fund (FK123961 and K119202), the National Research, Development and Innovation Fund of Hungary in the frame of FIEK_16-1-2016-0007 (Higher Education and Industrial Cooperation Center) project, and in part (E. B.) by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

REFERENCES

- 1. Bálint, E.; Keglevich, G. The Spread of the Application of the Microwave Technique in Organic Synthesis, In: Keglevich, G. (ed.) Milestones in Microwave Chemistry, Springer: Switzerland, 2016; pp 1-10.
- 2. Kappe, C. O.; Stadler, A.; Dallinger, D. Microwaves in organic and medicinal chemistry, Wiley: Weinheim, 2012.
- 3. Bálint, E.; Tajti, Á.; Drahos, L.; Ilia, G.; Keglevich, G. Curr. Org. Chem., 2013, 17, 555-562.
- Bálint, E.; Tajti, Á.; Ádám, A.; Csontos, I.; Karaghiosoff, K.; Czugler, M.; Ábrányi-Balogh, P.; Keglevich, G. Beilstein J. Org. Chem., 2017, 13, 76-86.

RUNNING TITLE 50 CHARACTERS OR LESS