Recent Advances in Improving the Memory
Efficiency of the TRIBE MCL Algorithm

Lészlé Szilagyi'2* ™) Lajos Lordnd Nagy?, and Sandor Miklés Szilagyi':*

! Department of Control Engineering and Information Technology, Budapest
University of Technology and Economics, Budapest, Hungary
2 Faculty of Technical and Human Sciences,
Sapientia University of Transylvania, Tirgu-Mures, Romania
lalo@ms.sapientia.ro
3 Canterbury University of Christchurch, Christchurch, New Zealand
4 Department of Informatics, Petru Maior University of Tirgu-Mures,
Tirgu-Mures, Romania

Abstract. A fast and highly memory-efficient implementation of the
TRIBE-MCL clustering algorithm is proposed to perform the classifica-
tion of huge protein sequence data sets using an ordinary PC. Improve-
ments compared to previous versions are achieved through adequately
chosen data structures that facilitate the efficient handling of symmetric
sparse matrices. The proposed algorithm was tested on huge synthetic
protein sequence data sets. The validation process revealed that the pro-
posed method extended the data size processable on a regular PC from
previously reported 250 thousand to one million items. The algorithm
needs 10-20 % less time for processing the same data sizes than previous
efficient Markov clustering algorithms, without losing anything from the
partition quality. The proposed solution is open for further improvement
via parallel data processing.

Keywords: Protein sequence clustering - Markov clustering + Markov
processes - Efficient computing - Sparse matrix

1 Introduction

Markov clustering performs a hierarchical grouping of input data based on a
graph structure and its associated connectivity matrix. It has a series of success-
ful applications in the field of protein sequence and interaction network analysis
[6], video processing [8], image processing [4], language modeling [9], community
detection [12], human action categorization [18], and FPGA circuit design [3].
When the input data consists of protein sequences, each sequence will be
associated to a node of the graph, and edge weights will be the pairwise similarity
values computed with existing alignment methods like: Needleman-Wunsch [11],

Research supported by the Hungarian National Research Funds (OTKA), Project no.
PD103921. S. M. Szilagyi is a Bolyai Fellow of the Hungarian Academy of Sciences.
© Springer International Publishing Switzerland 2015

S. Arik et al. (Eds.): ICONIP 2015, Part II, LNCS 9490, pp. 28-35, 2015.
DOT: 10.1007/978-3-319-26535-3_4



Recent Advances in Improving the Memory Efficiency 29

Smith-Waterman [13], BLAST [1], and PRIDE [7]. In case of large-scale data
sets, the BLAST similarity measures are preferred due to its sparse nature, which
allows for quick and memory-efficient processing.

TRIBE-MCL [6] is a clustering method based on Markov chain theory [5],
which assigns a graph structure to the protein set such a way that each protein
has a corresponding node. Edge weights are stored in the so-called similarity
matrix S, which acts as a stochastic matrix. At any moment, edge weight s;;
reflects the posterior probability that protein ¢ and protein j have a common
evolutionary ancestor. TRIBE-MCL is an iterative algorithm, performing in each
loop two main operations on the similarity matrix: inflation and expansion. Infla-
tion raises each element of the similarity matrix to power r > 1, which is a pre-
viously established fixed inflation rate, favoring higher similarity values in the
detriment of lower ones. Expansion, performed by raising matrix S to the second
power, is aimed to favor longer walks along the graph. Further operations like
column or row normalization, and matrix symmetrization are included to serve
the stability and robustness of the algorithm, and to enforce the probabilistic
constraint. Similarity values that fall below a previously defined threshold value
€ are rounded to zero. Clusters are obtained as connected subgraphs in the graph.

Handling matrices of several hundreds of thousand rows and columns is pro-
hibitively costly in both runtime and storage space. Recent fast TRIBE-MCL
implementations (e.g. [16,17]) significantly reduced runtime, but the memory
limitations still exist. The main goal of this paper is to introduce a novel memory
efficient TRIBE-MCL approach that uses only sparse matrices to store similarity
values and a one-dimensional array to store intermediate values of a single row
during expansion. This change can significantly upgrade the size of processable
data sets, and may also improve processing speed. The proposed method will
be validated using large synthetic protein data sets derived from the SCOP95
database [2,10,14] using our method presented in [15].

The remainder of this paper is structured as follows. Section 2 presents the
details of the proposed memory efficient TRIBE-MCL algorithm. Section 3 eval-
uates the behavior of the proposed method and discusses the achieved results
and outlines the role of each parameter, while Sect. 4 concludes this study.

2 Methods

Making the TRIBE-MCL processing of graphs of up to n = 10% nodes accessible
for ordinary PCs requires adequate data structures to store the nonzero values
on the similarity matrix (SM), and also an adequate organization of the algo-
rithmic steps. Compared to our previous solution, it is necessary to redefine the
operations performed during each cycle. The main proposals in this order are
listed in the following.

At any moment of the processing, the stored SM is symmetric. The input
SM is symmetric. Inflation, consisting in raising each element of the matrix to
a given power, does not influence matrix symmetry. Expansion, consisting in
raising the SM to the second power, also gives symmetric output if the input



30 L. Szilagyi et al.

row j |-+ * +ix O *
. s i Sik
row i 2 < :
i}
row k [ S Y " *

Fig.1. Expansion using the employed data structures. Computing row ¢ of the
expanded matrix requires reading all rows with index j < i and k > 4 for which
nonzeros s;; or s;, exist. Values indicated by stars (x) are directly accessible from the
stored SM. Those drawn as triangles (A) need information on the lower half of the
matrix. Nonzeros indicated by diamonds () are irrelevant at this step, as only that
part of row 7 is to be computed, which falls in the upper diagonal half of the SM.

was symmetric. The only operation that pushes similarity values s;; out of sym-
metry is the normalization of rows. However, each normalization is followed by
a symmetrization, and by unifying these two steps, the intermediary output of
normalization does not need to be stored.

Having the stored SM always symmetric, it is not necessary to store the
whole matrix, only one half of it including the diagonal, as all further elements
are deductible from these ones. Our choice was to store the upper diagonal half
of sparse SM, thus in each row the first stored element is the one situated on
the diagonal. All nonzero elements are stored in a row-wise order, together with
their column coordinate. The number of nonzeros in each row, and a pointer to
the first element of each row are stored separately.

Inflation is performed by parsing the array of stored nonzero elements and
raising them to the power indicated by the inflation rate.

The unified normalization and symmetrization is performed in two steps.
In a first step, the array of nonzeros is parsed and the sum of each row (X;
i =1...n) is computed. Non-diagonal elements s;; (i # j) in the stored upper
half matrix are added to the sum of both rows ¢ and j. In the second step, for each
stored element s;;, the normalized values become 3;; = s;;/%; and 5;; = s;;/ %},
respectively. The new s;; value after symmetrization will be /5;;5;;, and will
only be stored if it exceeds the similarity threshold e.

Expansion is the only operation of TRIBE-MCL, which requires two instances
of the similarity matrix: one for the input and one for the output of expansion.



Recent Advances in Improving the Memory Efficiency 31

Data: Initial similarity matrix S, inflation rate r > 1, similarity threshold e
Result: Final similarity matrix S

repeat
Inflate(S)

Normalize-and-Symmetrize with elimination(S)
Normalize-and-Symmetrize(S)
Build auxiliary data structure for the lower diagonal half matrix
Expand(S)
until convergence;
Identify clusters
Algorithm 1. The steps of the proposed algorithm

Similarly to our solution given in [16], the expanded matrix is computed row by
row, and during the expansion of a row, the computed output needs non-sparse
storage. This requires a float valued array of n elements, denoted by E initialized
with zero values for each row.

During expansion, the new row with index %, denoted by S; is obtained as
follows:

E = Z SijSj1 Z SijSj2 Z SijSjin s (1)

JErow; JjErow; JErow;

which in sparse matrix notations becomes

gi: Z Siij. (2)

JErow;

When the row is computed, its nonzero values falling in the upper half of the
SM are transferred to the output sparse matrix.

The application for the expansion formula given in Eq. (2) is not trivial, due
to the structural properties of the stored SM. Explanation in this order is given
in Fig. 1. During the computation of row ¢ of the squared matrix, the area of
interest is only the part of row ¢ situated behind the diagonal element s;;, as the
others will not be stored anyway. Consequently all nonzeros outside row 4, on
the left side of the vertical dotted line are irrelevant.

The algorithm parses all nonzeros in row . Those situated in columns with
index j < 7 will require reading row j, whose elements of interest are all accessible
in the upper half sparse matrix structure. On the other hand, nonzeros situated
in columns with index k > i, imply reading row k& whose elements of interest are
partly outside the stored zone. This is why, before proceeding to the expansion
operation, another sparse matrix structure is created to store information on
the elements in the lower diagonal half of the matrix. The latter structure does
not store the actual value of similarity, but stores information on the existence
and position of the corresponding element in the upper diagonal half matrix
structure. Creating the lower diagonal half matrix structure in each iteration
requires two parsings over the upper half matrix structure. During the first,



32 L. Szilagyi et al.

=15, =103

10m¥

=15, e=10"3

15h

o

3
)]
>

N

3
N
>

3

..,
~.
"~

w
o
@

Duration of iteration (seconds, minutes)
Total duration (minutes, hours)
5

o
12

N
=)
3

o
)

1 2 3 5 10 20 30 50 2 3 5 7
Iteration index Data size (x1 0° items)
Fig. 2. Benchmark figures for a median density data sets of variable number of items,

at constant inflation rate r = 1.5 at a constant value of similarity threshold ¢ = 1073:
(left) duration of individual iterations; (right) overall runtime on fifty iterations.

we can count how many nonzeros are present in each row, and can allocate
memory correspondingly and set row heads and element counts for all rows.
During the second parsing, the actual information is extracted from the upper
half nonzero elements (column information, and offset position with respect to
row head) and added to the lower diagonal half matrix. This structure makes the
lower part values, drawn in Fig. 1 as triangles (A), directly accessible, facilitating
efficient data processing.
The proposed TRIBE-MCL algorithm is summarized in Algorithm 1.

3 Results and Discussion

The proposed method underwent a series of benchmark tests using synthetic test
data sets of sizes ranging from 10 thousand to one million items. Data sets were
generated using the method indicated in [15]. For each data size, 21 instances
were created and the one with median density was chosen for the test.

Figure 2(left) exhibits the duration of each of the first fifty iterations in case of
various matrix sizes, at inflation rate fixed at r = 1.5 and similarity threshold ¢ =
1073, As long as most nodes of the graph are connected together, namely in the
first 5-6 loops, the computational load is somewhat higher and considerably falls
thereafter, being virtually constant and low from the 10th loop. This difference
between the duration of initial and late iterations gets more relevant as the data
size grows. Figure 2(right) indicates the total runtime necessary to perform 50
loops in case of various data sizes. A comparison with our previous algorithms
version [16] reveals that the main improvement is achieved in the size of data an
ordinary PC can deal with. The new algorithm can easily handle a one-million-
node graph, while the previous one was limited at 250 thousands. The execution
time for the same amount of nodes in the graph is also reduced by 10-20 %.



Recent Advances in Improving the Memory Efficiency 33

200k data size, & = 10 200k data size, £ = 10

50

25

'S
o

'S
o

-
[l

w
o

w
o
o

Duration of each iteration (seconds)
Total duration (min)

N
o

N
o

1 2 3 5 10 20 30 50 3 14 15
Iteration index

16 17 18 19 20
Inflation rate (r)
Fig. 3. Benchmark figures for a median density data set of 200k items, showing the

influence of inflation rate r at a constant value of similarity threshold e: (left) duration
of individual iterations; (right) overall runtime on fifty iterations.

Figure 3 exhibits the effect of the inflation rate on the computational load of
the algorithm. The input data here consisted of 200 thousand items having a sim-
ilarity matrix of median density. Figure 3(left) shows the duration of individual
iterations, while Fig. 3(right) indicates the total runtime of clustering performed
in 50 loops. As the inflation rate grows, the similarity matrix becomes sparser
and thus the total runtime and also the length of late iterations are shorter.

Figure4 shows the influence of the similarity threshold € on the computa-
tional load of the algorithm, using median density data sets of 200 thousand
items. Figure4(left) shows the duration of single iterations, while Fig. 4(right)
exhibits the total runtime of clustering performed in 50 loops. A lower value of
the similarity threshold keeps small similarity values longer in the matrix, and
consequently the processing needs more time. The final outcome of clusters, and
consequently the accuracy of clusters is hardly influenced by e. Consequently &
should be kept high enough to support efficient data processing. However, if ¢
is too high, it may determine the algorithm the eliminate all non-zeros at once
from a row of the matrix, leading to serious damage in the obtained partition.

All efficiency tests were carried out on a PC with quad core i7-4770 processor
running at 3.4 GHz frequency and 16 GB RAM memory, using a single core of
the microprocessor. The upper limit of processable data size is constrained by
the memory of the employed computer. The main determining factor is the
maximum number of nonzero values in the similarity matrix, usually reached
after the first expansion operation. With the current version of the algorithm,
an ordinary PC with 4 GB RAM can easily process a graph of 350,000 nodes,
while one million nodes require an upper class PC with 16 GB RAM.

In case of huge input data sets, the approximative memory requirement is 11
bytes multiplied by the maximum number of nonzeros in the similarity matrix at



34 L. Szilagyi et al.

200k data size, r=1.5 200k data size, r=1.5
90 23
80
@
T°
s
o 70 —
L] 82
s E
k<) =
£ 60 £
o c
2 g
©
g £ 21
2 =
3 40
=3
a
30
20 . . , . . 20
1 2 3 5 10 20 30 50 e=10%  e=2x10%  e=5x10¢ =10

Iteration index

Fig. 4. Benchmark figures for a median density data set of 200k items, showing the
influence of r and e: (left) duration of individual iterations; (right) overall runtime on
fifty iterations.

any time during the data processing. At a reasonably high inflation rate (e.g. r >
1.3), the maximum is likely to be reached right after the first expansion. Further
improvement of the processing speed is achievable via parallel processing either
with CPU or GPU. Further extension of the processable data size is achievable
by temporary storage of data on solid state drives.

4 Conclusions

In this paper we have proposed an ultimate efficient approach to the graph-based
TRIBE-MCL clustering method, a useful tool in protein sequence classifica-
tion. The proposed approach proved extremely quick, and its memory needs are
strongly reduced since previous versions. This novel implementation represents
a major step of TRIBE-MCL towards handling huge data sets in reasonable
time. Further enhancement of the algorithm’s efficiency may be achieved via
parallel implementation in CPUs or GPUs. Our future efforts will be focused on
developing TRIBE-MCL algorithm versions to efficiently handle huge networks
described by sparse matrices of unloadable size.

References

1. Altschul, S.F., Madden, T.L., Schaffen, A.A., Zhang, J., Zhang, Z., Miller, W.,
Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein data-
base search program. Nucl. Acids Res. 25, 3389-3402 (1997)

2. Andreeva, A., Howorth, D., Chadonia, J.M., Brenner, S.E., Hubbard, T.J.P.,
Chothia, C., Murzin, A.G.: Data growth and its impact on the SCOP database:
new developments. Nucl. Acids Res. 36, D419-D425 (2008)



10.

11.

12.

13.

14.

15.

16.

17.

18.

Recent Advances in Improving the Memory Efficiency 35

Dai, H., Zhou, Q., He, O., Bian, J.: Markov clustering based placement algorithm
for island-style FPGAs. In: IEEE International Conference on Green Circuits and
Systems, pp. 123-128. IEEE Press, New York (2010)

Dhara, M., Shukla, K.K.: Characteristics of restricted neighbourhood search algo-
rithm and Markov clustering on modified power-law distribution. In: 1st Interna-
tional Conference on Recent Advances in Information Technology, pp. 520-525.
IEEE Press, New York (2012)

Eddy, S.R.: Profile hidden Markov models. Bioinformatics 14, 755-763 (1998)
Enright, A.J., van Dongen, S., Ouzounis, C.A.: An efficient algorithm for large-scale
detection of protein families. Nucl. Acids Res. 30, 1575-1584 (2002)

Géspari, Z., Vlahovicek, K., Pongor, S.: Efficient recognition of folds in protein
3D structures by the improved PRIDE algorithm. Bioinformatics 21, 3322-3323
(2005)

Hospedales, T., Gong, S.G., Xiang, T.: A Markov clustering topic model for mining
behaviour in video. In: 12th IEEE International Conference on Computer Vision,
pp. 1156-1172. IEEE Press, New York (2009)

Keensub, L., Ellis, D.P.W., Loui, A.C.: Detecting local semantic concepts in envi-
ronmental sounds using Markov model based clustering. In: IEEE International
Conference on Acoustics Speech and Signal Processing, pp. 2278-2281. IEEE Press,
New York (2010)

Lo Conte, L., Ailey, B., Hubbard, T.J., Brenner, S.E., Murzin, A.G., Chothia, C.:
SCOP: a structural classification of protein database. Nucl. Acids Res. 28, 257-259
(2000)

Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443-453
(1970)

Pons, P., Latapy, M.: Computing communities in large networks using random
walks. In: Yolum, I, Giingor, T., Giirgen, F., Ozturan, C. (eds.) ISCIS 2005. LNCS,
vol. 3733, pp. 284-293. Springer, Heidelberg (2005)

Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences.
J. Mol. Biol. 147, 195-197 (1981)

Structural Classification of Proteins database. http://scop.mrc-lmb.cam.ac.uk/
scop

Szilagyi, L., Kovacs, L., Szilagyi, S.M.: Synthetic test data generation for hierar-
chical graph clustering methods. In: Loo, C.K., Yap, K.S., Wong, K.W., Teoh, A.,
Huang, K. (eds.) ICONIP 2014, Part II. LNCS, vol. 8835, pp. 303-310. Springer,
Heidelberg (2014)

Szilagyi, L., Szildgyi, S.M., Hirsbrunner, B.: A fast and memory-efficient hierarchi-
cal graph clustering algorithm. In: Loo, C.K., Yap, K.S., Wong, K.W., Teoh, A.,
Huang, K. (eds.) ICONIP 2014, Part I. LNCS, vol. 8834, pp. 247-254. Springer,
Heidelberg (2014)

Szilagyi, S.M., Sziladgyi, L.: A fast hierarchical clustering algorithm for large-scale
protein sequence data sets. Comput. Biol. Med. 48, 94-101 (2014)

Zhu, X., Li, H.: Unsupervised human action categorization using latent Dirichlet
Markov clustering. In: 4th International Conference on Intelligent Networking and
Collaborative Systems, pp. 347-352. IEEE Press, New York (2012)


http://scop.mrc-lmb.cam.ac.uk/scop
http://scop.mrc-lmb.cam.ac.uk/scop

	Recent Advances in Improving the Memory Efficiency of the TRIBE MCL Algorithm
	1 Introduction
	2 Methods
	3 Results and Discussion
	4 Conclusions
	References


