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Abstract. Finding nearest neighbors in high-dimensional spaces is a
very expensive task. Locality-sensitive hashing is a general dimension
reduction technique that maps similar elements closely in the hash space,
streamlining near neighbor lookup.
In this paper we propose a variable genome length biased random key
genetic algorithm whose encoding facilitates the exploration of locality-
sensitive hash functions that only use sparsely applied addition opera-
tions instead of the usual costly dense multiplications.
Experimental results show that the proposed method obtains highly effi-
cient functions with a much higher mean average precision than standard
methods using random projections, while also being much faster to com-
pute.

Keywords: Locality-sensitive hashing · Optimal design · Genetic algo-
rithms · Variable length representation

1 Introduction

The objective of nearest neighbor search or similarity search is to find the item
that is closest to what has been queried, from a search (reference) database.
Closeness or proximity is evaluated by some distance measure and the item
found is called nearest neighbor. If the reference database is very large or the
distance computation between the query and database item is costly, finding the
exact nearest neighbor is often not feasible computationally. This has fuelled
great research efforts towards an alternative approach, the approximate nearest
neighbor search, which proves to be not only more efficient, but also sufficient
for many practical problems.

Hashing is a popular, widely-studied solution for approximate nearest neigh-
bor search [11], locality sensitive hashing [3] [8] and learning to hash are the two
main classes of hashing algorithms. Locality sensitive hashing (LSH) is data-
independent. It has been adopted in many applications, e.g., fast object detection
[6], image matching [4]. Learning to hash is a data-dependent hashing approach.
It learns hash functions for specific types of data or datasets, providing a short
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encoding of the original data with the property that the nearest neighbor search
result in the hash coding space are also close to the query in the original space
[10].

In a recent work [5] the authors showed that a computationally efficient
hashing method based on sparse random binary projections has strong distance
preserving properties. While the sparse tags can be computed efficiently, their
big size prevents a fast nearest neighbor search in the hash space.

In this paper we develop hash function instances based on similarly efficient
sparse binary projections. However, instead of a long sparse binary tags the
method returns short tags that contain a combination of indices. For nearest
neighbor search in the hash space the Jaccard distance is used. Instead of relying
on random projections we propose a method for learning the best performing
projections using a new random key Genetic Algorithm (GA) that can handle
variable length genomes. The new method is used to efficiently explore the sparse
binary projection hash functions space, searching for solutions that are both
short, therefore very efficient to compute, and also provide high precision for
nearest neighbor search.

2 Overview

2.1 Nearest Neighbor Search and Hashing

Nearest neighbor search (NNS) is the optimization problem of locating in a
particular space the point that is closest to a query point. To measure closeness
or proximity, most commonly a dissimilarity function is used which maps the
less similar pair of points to larger values.

The term “locality-sensitive hashing” (LSH) originates from 1998, denoting
a “randomized hashing framework for efficient approximate nearest neighbor
(ANN) search in high dimensional space. It is based on the definition of LSH
family H, a family of hash functions mapping similar input items to the same
hash code with higher probability than dissimilar items”[11]. Multiple commu-
nities from science and industry alike have been studying LSH, with focus on
different aspects and goals.

The theoretical computer science community developed different LSH fami-
lies for various distances, sign-random-projection (or sim-hash) for angle-based
distance [3], min-hash for Jaccard coefficient [2] explored the theoretical bound-
ary of the LSH framework and improved the search scheme.

Learning to hash approaches revolve around the following concepts: the hash
function, the similarity in the coding space, the similarity measure in the input
space, the loss function for the optimization objective, and the optimization
technique. Linear projection, kernels, spherical function, (deep) neural networks,
non-parametric functions etc. can all be used as hash functions.

In this paper for the hash function we use sparse binary projections, the
similarity measure in the input space is the Euclidean distance while the one in
the coding space is the Jaccard distance. The optimisation technique used is an
extension of BRKGA, for which we provide an overview in the following.
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2.2 Random Key Genetic Algorithms

A class of random key genetic algorithms (RKGA) was first introduced by Bean
[1] for solving combinatorial optimization problems. In a RKGA, chromosomes
are encoded as strings, vectors, of random real numbers in the interval [0, 1].
Chromosomes, on the other hand, represent solutions to the combinatorial op-
timization problem for which an objective value or fitness can be computed.
The translation from chromosomes to solutions and fitness is done by a problem
dependent, deterministic algorithm called decoder.

The initial population is created randomly by generating p vectors, where p
is the population size. Each gene of each individual is independently, randomly
sampled from the uniform distribution over [0, 1]. In the next step the fitness of
each individual is computed (by the decoder) and the population is divided into
two groups: a smaller group of pe elite individuals (those with the best fitness
values), and the rest, p− pe non-elite individuals).

The population evolves into new generations based on a number of princi-
ples. First, all the elite individuals are copied unchanged from generation t to
generation t+ 1, resulting in a monotonically improving heuristic.

Mutation in Evolutionary Algorithms is usually used for exploration, en-
abling the method to escape from entrapment in local minima. In RKGA alleles
are not mutated, however, at each generation a number pm of mutants are intro-
duced into the population the same way that an element of the initial population
are generated (i.e. randomly from the uniform distribution). Having pe elite in-
dividuals and pm mutants in population t+ 1, p−pe−pm additional individuals
need to be produced to maintain the same population size p in generation t+ 1.
This is done by the process of mating, where two parents are selected from the
entire population and a new offspring is created by crossover. The crossover is
repeatedly applied until the size of population reaches p.

A biased random key genetic algorithm, or BRKGA [7], differs from a RKGA
in the way parents are selected for crossover. Each offspring is generated by
mating an elite individual with a non-elite one, both taken at random. The bias
can be further reinforced by the parametrized uniform crossover [9] and the fact
that one parentis always selected from the elite group.

BRKGA searches the continuous n-dimensional unit hypercube (representing
the populations), using the decoder to translate search results in the hypercube
to solutions in the solution space of the combinatorial optimization problem.

The method and the unbiased variant differ in how they select parents for
mating and how crossover favours elite individuals. Offsprings produced by the
BRKGA have a higher chance inheriting traits of elite solutions. This seemingly
small difference most of the times has a large impact on the performance of these
variants. BRKGAs have a stronger exploitation power and tend to find better
solutions faster than RKGAs.
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3 Material and Methods

3.1 Distance Preserving Sparse Projections

In [5] it is shown that uniformly distributed, random sparse binary projections
preserve neighborhood structure if the number of projections m is sufficiently
large.

For the data-dependent hashing, we wish to learn the minimal number of
projections m needed and the most discriminatory sparse projections.

Let x ∈ Rd denote an input that needs to be hashed. y = (y1, . . . , ym) ∈ Rm

projections are computed as

yi =
∑
j∈Pi

xj (1)

where Pi is a projection vector defining which components from x are summed
for the i-th projection.

The hash is formed by retaining the indexes of the k highest scoring projec-
tions: Z = (z1, . . . , zk) ∈ Zk where for all zi it holds that yzi is one of the largest
entries in y.

We use the Jaccard distance to measure how close two hashes Z1 and Z2 are
to each-other:

dJ(Z1, Z2) = 1− J(Z1, Z2) =
|Z1 ∪ Z2| − |Z1 ∩ Z2|

|Z1 ∪ Z2|
(2)

For computing a discrete bin index, where one can store similar items for fast
reference, we can exploit the fact the computed tags represent a combination of
k elements taken from {1, . . . , d}. The combinatorial number system of degree
k defines a correspondence between natural numbers and k-combinations. The
number N corresponding to a combination Z = (zk, . . . , z2, z1) is:

N =

(
zk
k

)
+ · · ·+

(
z2
2

)
+

(
z1
1

)
(3)

3.2 Biased Variable Length Random Key Genetic Algorithm

BRKGA is restricted to searching a continuous n-dimensional unit hypercube,
therefore it is not suitable for exploring open-ended design spaces.

For our problem, the optimal number of projections m and the size of the
projection vectors Pi must be determined by the learning algorithm. The method
has to explore solutions of various complexities, that cannot be efficiently en-
coded in a unit hypercube of fixed size.

To enable an efficient exploration of different solution complexities, we extend
the BRKGA framework with the following modifications:

– Each chromosome begins with a fixed number of so called interpreter or
signalling alleles that can carry information on the complexity of the encoded
solution, enabling the decoder to interpret the random keys differently for
separate solution classes.
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– Genomes can have various lengths, and they can be as long or as short as
needed, to encode highly complex solutions or contrary, simple ones, like the
empty set.

– A new 2-parents 2-offsprings crossover operator that can change genome
lengths.

– A re-encode operator that can “translate” alleles between different genomes
by analysing their interpreter alleles.

The new method, the Biased Variable Length Random Key Genetic Algo-
rithm (BVLRKGA), is detailed in the following subsections.

3.3 Interpreter Alleles and Encoding

A solution for the proposed hash model must encode the number of projections
m and the projection vectors Pi. Assuming an upper bound θ for the number of
projections, and knowing that the elements of the projection vectors are integer
numbers between 1 and d the following encoded can be used.

The first allele on each chromosome is reserved for encoding m. The unit
interval is partitioned in θ subintervals of size 1/θ, the upper bound of each
subinterval being bi = i/θ, i ∈ {1, . . . , θ}. For r ∈ [0, 1] the first bi ≥ r defines
the number of projections: m(r) = dr × θe.

The rest of the genes encode elements of the projection vectors. By dividing
each subinterval [bi−1, bi) assigned to a projection in d subintervals, we reserve
a smaller subinterval for each index from {1, . . . , d}. To decode a random key
r ∈ [0, 1] first we compute in which projection it encodes an index:

i(r) = 1 + bm(r)× rc (4)

then we compute the index itself:

j(r) = 1 + b(r − (i(r)− 1)×m(r))×m(r)× dc (5)

For this problem, the order of the genomes is irrelevant, each random key is
decoded the same way, independently of its position.

There is no upper bound on the genome length as each index in each projec-
tion vector can appear any number of times. In such cases those xj(r) elements
are summed multiple times, hence the number of times they appear in a solution
can be regarded as the weight assigned to that dimension.

This encoding can also represent the empty solution when there are no genes
besides the interpreter ones. The decoder must take this into account and assign
a proper fitness value for empty solutions (usually − inf, 0 or + inf).

3.4 Biased Variable Length Crossover

BRKGA uses a parametrised uniform crossover [9] where alleles from an elite
parent are inherited with a higher probability. This operator produces a fixed
length offspring, therefore is not suited for variable length encodings.
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We propose a new biased crossover operator where 2 offsprings of potentially
various lengths are produced. Each allele from each parent can be inherited by
both offsprings with different probabilities. The key is in setting up the proba-
bilities in such a way that i) offsprings are more likely to inherit alleles from the
elite parent; ii) the sum of offsprings genome lengths is a random variable whose
expected value equals the sum of parents genome lengths. By ii) the crossover
is not inherently biased toward in producing shorter or longer offsprings, it pro-
duces both with certain variance. The mean average length of offsprings and
parents is the same after crossover. It is the role of the selection operator to
favour shorter or longer solutions on average.

The crossover operation’s steps are detailed in Alg. 1.

Algorithm 1: Biased variable length crossover

Data: elite and other parents: elite, indiv
Result: two offsprings: o1, o2

1 eliteBias = 0.2 ; // set up the bias that favours the inheritance of

genomes from the elite parent

/* compute probabilities of inheritance */

2 eliteP1 = eliteBias + rand*(1-eliteBias); eliteP2 = (1-eliteBias) -eliteP1;
3 indivP1 = rand*(1-eliteBias); indivP2 = (1-eliteBias) -indivP1;

/* inherit the interpreter alleles from one of the parents */

4 o1 ← elite.interpreterAlleles(); o2 ← indiv.interpreterAlleles();
/* inherit the genes according to the 4 probabilities */

5 foreach allele ∈ elite.randomKeyAlleles() do
6 if rand < eliteP1 then
7 o1.addAllele(allele);

8 if rand < eliteP2 then
9 o2.addAllele(reenc(allele,indiv.interpreterAlleles());

10 foreach allele ∈ indiv.randomKeyAlleles() do
11 if rand < indivP1 then
12 o1.addAllele(reenc(allele,elite.interpreterAlleles());

13 if rand < indivP2 then
14 o2.addAllele(allele);

The elite bias variable is an element of [0, 1] and controls how much the genes
of the elite parents are favoured. A value of 0 means that there is no bias while a
value of 1 restricts the inheritance only to the genes of the elite individual. The
value 0.2 from the listing will result in the offsprings inheriting on average 60%
of their alleles from the elite parent.

The first offspring inherits the interpreter genes on the elite parent while the
second inherits from the other individual. As they use different interpretations
of random keys, we must make sure then when a allele is inherited from a parent
that uses a different solution design, the meaning is preserved. Therefore, a re-
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encoding happens, where the allele is decoded and if possible remapped in the
solution space of the offspring. In cases when this is not possible, for example
the to be inherited allele encodes an index in the 1000-th projection, while the
offspring works with less than 1000 projections, the allele is discarded.

3.5 BVLRKGA

The proposed method uses an elitist approach but there are some notable differ-
ences compared to other random key GA. As discussed in the previous section,
crossover produce two offsprings of varying lengths. Also, in BVLRKGA we don’t
restrict crossover to be between elite and non-elite individuals. While the first
parent is always an elite the second one is randomly chosen. This allows mat-
ing between elite individuals, that enables the rapid adaptation of ideal genome
length in the elite subpopulation. If selection favours short genomes, mating two
elite short genomes will produce even shorter solutions with higher probabil-
ity than mating a short and a long genome. The converse is also true, if long
genomes perform better.

In this work, for the hash learning task, random solutions are built by first
randomly choosing a projection number m between the hash length k and an
upper bound θ=2000. In a second step a spareness factor γ ∈ [ 3d ,

9
d ] is randomly

chosen, then we decide for each projection if each input dimension index is
included in the vector, by flipping a γ-loaded coin. After encoding, m is implicitly
encoded in the interpretation allele, while the sparseness is indirectly reflected
in the genome length.

4 Experiments

For the experiments, we used a population size of 100 individuals and the evo-
lution was performed over 100 generations. The proportion of elite individuals
in the next population was set to pe = 0.2. The fraction of the population to
replaced by mutants was set to pm = 0.4. Therefore, the fraction of the new pop-
ulation obtained by crossover is 1− pe − pm = 0.4. For crossover the parameter
eliteBias = 0.2. Each experiment was run 10 times.

4.1 Genome Length Adaptation

In a first experiment we checked how fast BVLRKGA can grow or shrink genomes
to converge to an optimal target length under ideal selection pressure. The abso-
lute difference between genome length and target length was used as fitness, in
a minimisation problem context. While most real-world problems will not have
a noise free, unimodal feedback regarding the lengths of the solutions, these
experiments are very useful in helping assess the effectiveness of the proposed
operators in providing solutions of various lengths.

In a first test we set the random individual seeder to build solutions of length
1000, while the best solution is the empty one. Therefore by exploiting the
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Fig. 1. Under selection pressure BVLRKGA is able to quickly reduce (a) and increase
(b) the genome length of the best solutions.

crossover and selection the method will eliminate alleles gradually. Fig. 1a) de-
picts the results of the 10 runs. We can see that the average chromosome length
of the elite individuals quickly drops in only 15 generations. Every run reached
the empty solution in 24.7 generations on average, while the longest run required
32 generations.

In a second setup we experimented with the converse problem, increasing
the genome length beyond what the random individual seeder provides. Here
the seeder returned solutions of length 50, while the target solution length was
set to 1000. A twentyfold increase in genome length in needed to reach the ideal
solution length. The results of 10 runs are shown in Fig. 1b). Again, every run
found a best solution, on average in 40.2 generations, the longest run requiring
75 generations to find a solution with a length of exactly 1000. This problem was
harder for the BVLRKGA because the optimisation could overshoot, generating
solutions with a length beyond 1000, while in the first setup undershooting was
not possible.

4.2 Learning to Hash

For testing the BVLRKGA ability to learn hash function we used the MNIST4

dataset that contains handwritten digits encoded as 28 × 28 pixel images (d =
28 × 28 = 784). We followed the same procedure from [5], using from the
dataset a subset of 10.000 vectors, that we pre-processed to have zero mean.
During 4 experiments we evolved models that produced hash tags of lengths
k ∈ {4, 8, 16, 32}.

For a candidate hash model we first calculated the average precisions (AP:
average precision at different recall levels) by predicting the nearest 200 vectors
for a set of query vectors. During the optimisation, this was done by randomly
choosing 200 query vectors from the 10.000, each time an evaluation was needed.

4 http://yann.lecun.com/exdb/mnist/
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Averaging over the 200 AP values gives the mean average precision (MAP) of
the hash model.

For computing the fitness of a candidate hash model we also took into account
the length of the genome:

fitness(c) = MAP (c) +min(0, 1000× MAP (c)− btk
length(t)

) (6)

The reasoning behind the fitness function is that once a solution reaches a cer-
tain precision, compactness (implicitly low computational cost) of the model is
rewarded. The bonus thresholds btk = {0.1, 0.2, 0.3, 0.45} were set high enough
to reward compactness, shorter solutions once the MAP of the solution is higher
as the one of dense projection based LSH functions.
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Fig. 2. Development of the two optimisation criteria, MAP and solution length.

The evolution over 100 generations of the best individual is depicted in Fig.
2 for each hash length k and each of the 10 runs. The size and color intensity of
the markers are proportional to the generation numbers. Small and dark markers
correspond to early generations, while individuals depicted from later generations
are displayed with a linearly increasing marker size and lighter colors. The scatter
plots depict the two relevant metrics in the computation of the fitness, MAP
and genome lengths. For hash lengths k ∈ {4, 8, 16} we can observe the same
trend: in early generations the genome lengths are large but with time both
the compactness and precision is improved. The genome length is drastically
reduced, the biggest markers corresponding to the last generations from each
run are very close to x-axis.
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For k = 32 we can observe two clusters for the final generation markers.In
some runs the method is not able to reduce the length of the best solution while
also keeping the precision high. These final solutions have genome lengths around
3000. In other runs BVLRKGA is able to find very compact hashes, encoded in
genomes with lengths between 200-300, while also keeping MAP above 0.5.

Because all final solution are well above the bonus threshold b32 = 0.45 we
suspect that in some runs the genome lengths are not reduced because the bonus
reward is to small and does not compensate the drop in MAP for a shorter
solution. This can be mitigated by emphasising, rewarding more the compact
solutions.
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Fig. 3. Fitness development.

Fig. 3 presents the average fitness and MAP values of the best individuals,
over the 100 generations. The fitness increases with a much bigger slope than
the MAP curve, meaning that the fitness improvements mostly came from the
BVLRKGA discovering shorter solutions that do not compromise precision. For
k = 32 we can again observe that the standard deviation of the fitness is very
large. This comes from the fact that for some runs the fitness curve stayed very
close of the MAP, as the genome lengths were high, the compactness bonus was
small. In other runs by finding short high-quality solutions, the fitness curve was
much higher than the MAP curve.

The details of the best solution found for k = 32 is shown in Fig. 4. As during
optimisation the MAP is computed for 200 random queries, we recomputed the
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MAP:  0.5244, length: 222, m: 199, density: 0.0014
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Fig. 4. The pixel locations used by the best model obtained for k = 32.

MAP by querying and averaging al 10.000 images. The solution has a MAP of
0.5244, it uses 222 out the d = 768 input pixels to compute m = 199 projections.

The pixels that are part of projection sets with the same size were depicted
with the same color in the figure. There is one projection set containing 5 pixel
indices (brightest pixels in the figure) and two sets of size 4. Only 31 projection
set sizes have more than 1 element. It is interesting to note that the projection
sets are mutually exclusive, there is no pixel input that is used in more than one
projection.

In order to check if the high MAP value is a results of this very sparse model,
with short projections or the location of the inputs discovered by the BVLRKGA
has also a big influence, we performed the following experiment: 10.000 random
models were generated, using the same parameters, m = 199 projections and a
density of 0.001423 to obtain on average 222 indices. The average MAP values
of these models was 0.4481 and none of them reached a MAP value of 0.5. The
experiments show that even if the model parameters are fixed it is very hard to
replicate the performance of the proposed method with random sampling.

Therefore, we conclude that BVLRKGA not only explores the model design
space efficiently, obtaining very compact solutions, but it also combines mean-
ingfully solutions to reach models with high MAP.

5 Conclusions

We proposed a method for obtaining computationally efficient locality sensitive
hash functions based on sparse binary projections. The tags are not binary, in-
stead they encode a short combination of indices. For these tags, nearest neighbor
search in the hash space can is performed by using the Jaccard distance.

The paper introduces the Biased Variable Length Random Key Genetic Al-
gorithm (BVLRKGA) that is able to explore a solution design space in order to
find the appropriate solution complexity that provide both high precision and
good computational efficiency - short solutions. By using a crossover operator
that can produce offsprings of different lengths and enabling mating between
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elite individuals, under the appropriate fitness pressure the method can quickly
converge to an ideal genome length.

The method was used to find computationally very efficient locality-sensitive
hash functions for the MNIST dataset. Hashing with the evolved solutions is
order of magnitudes faster than standard LSH functions that use many mul-
tiplications. The evolved functions only require a few addition operations to
compute.
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