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Abstract. Noether, Fleischmann and Fogarty proved that if the character-

istic of the underlying field does not divide the order |G| of a finite group G,
then the polynomial invariants of G are generated by polynomials of degrees at
most |G|. Let β(G) denote the largest indispensable degree in such generating

sets. Cziszter and Domokos recently described finite groups G with |G|/β(G)
at most 2. We prove an asymptotic extension of their result. Namely, |G|/β(G)

is bounded for a finite group G if and only if G has a characteristic cyclic sub-
group of bounded index. In the course of the proof we obtain the following
surprising result. If S is a finite simple group of Lie type or a sporadic group

then we have β(S) ≤ |S|39/40. We ask a number of questions motivated by

our results.

1. Introduction

Let G be a finite group and V an FG-module of finite dimension over a field
F . By a classical theorem of Noether [10], the algebra of polynomial invariants
on V , denoted by F [V ]G, is finitely generated. Define β(G,V ) to be the smallest
integer d such that F [V ]G is generated by elements of degrees at most d. In case
the characteristic of F does not divide |G|, the numbers β(G,V ) have a largest
value as V ranges over the finite dimensional FG-modules. This number is called
the Noether number and is denoted by β(G). The notation β(G) suppresses the
dependence on the field but it should not cause misunderstanding. In fact, for fields
of the same characteristic the Noether number is the same and we may assume that
F is algebraically closed. See [9] for details.

Noether [10] also proved that β(G) ≤ |G| over fields of characteristic 0. This
bound was verified independently by Fleischmann [5] and Fogarty [6] to hold also
in positive characteristics not dividing |G|. For characteristics dividing |G|, a deep
result of Symonds [16] states that β(G,V ) ≤ dim(V )(|G| − 1).

From now on throughout the whole paper, except in Question 8.3, we assume
that the characteristic of the field F is 0 or is coprime to the order of G.
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2 PÁL HEGEDŰS, ATTILA MARÓTI, AND LÁSZLÓ PYBER

Schmid [14] proved that over the field of complex numbers β(G) = |G| holds
only when G is cyclic. This was sharpened by Domokos and Hegedűs [4] (and later
by Sezer [15] in positive coprime characteristic) to β(G) ≤ 3

4 |G| unless G is cyclic.

An important ingredient in Schmid’s argument was to show that β(G) ≥ β(H)
holds for any subgroup H ≤ G. In particular, β(G) is bounded from below by the
maximal order of the elements in G, that is, the Noether index n(G) = |G|/β(G)
of a finite group G is at most the minimal index of a cyclic subgroup in G.

Recently Cziszter and Domokos [3] described finite groups G with n(G) at most
2. Their deep result [3, Theorem 1.1] states that for a finite group G (with order
not divisible by the characteristic of F ) we have n(G) ≤ 2 if and only if G has a
cyclic subgroup of index at most 2, or G is isomorphic to Z3 × Z3, Z2 × Z2 × Z2,

the alternating group A4, or the binary tetrahedral group Ã4. In particular, the
inequality n(G) ≤ 2 implies that G has a cyclic subgroup of index at most 4.

Our main result is as follows.

Theorem 1.1. Let G be a finite group with Noether index n(G). Then G has

a characteristic cyclic subgroup of index at most n(G)
10 log2 k

where k denotes the
maximum of 210 and the largest degree of a non-Abelian alternating composition
factor of G, if such exists. Furthermore if G is solvable, then G has a characteristic
cyclic subgroup of index at most n(G)

10
.

In view of Theorem 5.2 and Section 6, the bound n(G)
10

holds even for a large
class of non-solvable groups.

Theorem 1.1 has a consequence which can be viewed as an asymptotic version
of the afore-mentioned result of Cziszter and Domokos.

Corollary 1.2. Let G be a finite group with Noether index n(G). If G is nonsol-
vable, then n(G) > 2.7 and G has a characteristic cyclic subgroup of index at most
n(G)100+10 log2 log2 n(G). If G is solvable then G contains a characteristic cyclic
subgroup of index at most n(G)10.

It is an open question whether there exists a polynomial bound in n(G) for the
index of a characteristic cyclic subgroup in an arbitrary finite group G. Theorem
1.1 is a major step in answering this question.

As a step in our proofs we obtain a result which may be of independent interest.

Theorem 1.3. Let S be a finite simple group of Lie type or a sporadic simple
group. Then n(S) ≥ |S|1/40.

It would be interesting to know if the bound in Theorem 1.3 holds for alternating
groups of arbitrarily large degrees. Our methods are sufficient only for degrees up
to 17. For degrees no greater than 17 (but at least 5) the claim follows from the
remark after Lemma 4.1.

Assume that, for some fixed constant ϵ > 0, we have n(S) ≥ |S|ϵ for every
alternating group S of degree at least 5. Then our proofs show that, for some
other (computable) fixed constant ϵ′ > 0 with ϵ′ ≤ 0.1, any finite group G has a

characteristic cyclic subgroup of index at most n(G)
1/ϵ′

.
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2. Affine groups

Our main aim in the present section is to give upper bounds on β(G) for the
Frobenius group G ∼= Zp o Zn, where p is a prime and n | p− 1.

It is an open conjecture of Pawale [13] that β(Zp o Zq) = p+ q − 1 for a prime
q. This is verified for q = 2 [14] (where β(D2n) = n+ 1 is shown for composite n,
as well) and for q = 3 [2]. Cziszter and Domokos obtain an upper bound which we
extend to a more general one if q is not a prime. See Lemma 2.6, Theorem 2.7 and
Corollary 2.9.

In this section we rely heavily on the techniques developed by Cziszter and
Domokos. For convenience and completeness we include here those that we need.
However, we try to simplify and not include them in full generality.

Let G be the Frobenius group of order pn with Zp ≤ G ≤ Affp. Then every
G-module has a Zp-eigenbasis permuted up to scalars by G. The regular module is
relevant because every irreducible Zp-character occurs in it. For every Zp-module V
the polynomial invariants are linear combinations of Zp-invariant monomials. The
Zp-invariant monomials correspond to 0-sum sequences of irreducible Zp-characters.
These motivate all the definitions below.

Let Y = {y1, . . . , yp} be the set of variables from F [Zp] that are Zp-eigenvectors
and y1 is Zp-invariant. For a monomial f =

∏p
i=1 y

ai
i let us define b(f) =

∏
ai>0 yi.

Let g1 = b(f) and construct recursively the finite list of monomials g1, g2, . . . in

such a way that gk+1 = b(f/
∏k

j=1 gj) for every k, stopping if f =
∏

gj . We call

this list the row decomposition of f . (In [3] the corresponding list of irreducible
Zp-characters is considered and called the row decomposition.) This list consists of
monomials each dividing the previous one and the exponent of every variable yi is
at most 1.

Let l be a positive integer. Suppose a set of variables {x1, . . . , xl} consists of Zp-
eigenvectors on which G/Zp acts by permutation, but not necessarily transitively.
For each xi there is a corresponding unique yī ∈ Y having the same Zp-action on
them. This defines a map m 7→ fm from the monomials in {x1, . . . , xl} to the
monomials in Y by m =

∏
xai
i 7→ mf =

∏
yai

ī
. This map is G/Zp-equivariant.

Moreover, the Zp-action on m is the same as on fm, so m is Zp-invariant if and
only if fm is.

Given a monomial m we determine the row decomposition g1, . . . , gh of fm.
Suppose that for every G-orbit O ⊆ Y and every index i < h the following holds.
If gi involves some variables from O, but not all then gi+1 involves fewer variables
than gi does. Such a monomial m is called gapless in [3, Definition 2.5]. If gi = gi+1

for a gapless monomial m then gi is G/Zp-invariant. In particular, as nontrivial
G/Zp-orbits on Y are of length n,

(1) if y1 - gi and deg(gi) < n then deg(gi+1) < deg(gi).

Let M = ⊕∞
d=0Md be a graded module over a commutative graded F -algebra

R = ⊕∞
d=0Rd. We also assume that R0 = F when 1 ∈ R and R0 = 0 otherwise.

Define M≤s = ⊕s
d=0Md, a subspace of M , and R+ = ⊕∞

d=1Rd ▹ R a maximal ideal.
The subalgebra of R generated by R≤s is denoted by F [R≤s]. Define β(M,R) =
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min{s | M = ⟨M≤s⟩R+
}, the highest degree needed for an R+-generating set of M .

In other words, it is the highest degree of nonzero components of M/MR+ (the
factor space M/MR+ inherits the grading).

The following three propositions from [3] will be used in the proof of Theorem 2.7.
They are paraphrased and not stated in their full generality.

Proposition 2.1. [3, Proposition 2.7] Let G be the Frobenius group of order pn
with Zp ≤ G ≤ Affp. Let V be an FG-module, L = F [V ] the polynomial algebra,
R = LG its invariants. Suppose the variables of L are permuted by G up to non-zero
scalar multiples. Then the vector space L+/L+R+ is spanned by monomials of the
form b1 · · · brm, where the bi are Zp-invariant of degree 1 or of prime degree qi|n
and m has a gapless divisor of degree at least deg(m)− (p− 1).

(Note that the so-called bricks mentioned in the original version of Proposi-
tion 2.1 are Zp-invariant.)

Proposition 2.2. [3, Lemma 1.11] Let G be the Frobenius group of order pn with
Zp ≤ G ≤ Affp. Let V be an FG-module, L = F [V ] the polynomial algebra, R = LG

and I = LZp its invariants. Then for every s ≥ 1 the following bound is valid:

β(L+, R) ≤ (n− 1)s+max{β(L+/L+R+, I), β(L+/L+R+, F [I≤s])− s}.

(The original version of Proposition 2.2 holds for the generalized Noether num-
bers βr, however we only use the case r = 1.)

Lemma 2.3. [3, Lemma 2.10] Let S be a sequence over Zp with maximal multi-
plicity h. If |S| ≥ p then S has a zero-sum subsequence T ⊆ S of length |T | ≤ h.

The following proposition is a simple corollary.

Proposition 2.4. Suppose f is a monomial in Y of degree at least p such that the
exponent of each yi ∈ Y is at most h. Then f has a Zp-invariant submonomial f ′

such that deg(f ′) ≤ h.

Proof. Let f =
∏

yai
i . Fix a generator element z ∈ Zp and a primitive p-th root

of unity, µ ∈ F . Define S to be the sequence over Z/Zp consisting of ai copies
of the exponent of µ as the eigenvalue of z on yi. This satisfies the assumptions
of the previous lemma. Let then f ′ be the product of the elements of T , it is
a submonomial of degree |T | ≤ h. That T is zero-sum means exactly that f ′ is
Zp-invariant. �

The following upper bound is used frequently.

Lemma 2.5. Let E = (Zp)
k
be a non-cyclic elementary Abelian p-group for some

prime p. Then β(E) = kp − k + 1. Thus β(E) < |E|0.8. Furthermore if |E| ̸= 22,

32, 52, then β(E) < |E|0.67.

Proof. The first statement is the combination of Olson’s Theorem [11] and a “folk-

lore result” of invariant theory [15, Proposition 8]. We have β(E) < |E|0.8 since
k ≥ 2. The other statement follows from an easy calculation. �



FINITE GROUPS WITH LARGE NOETHER NUMBER ARE ALMOST CYCLIC 5

We reformulate the result of [3] for affine groups in a form that can be applied in
inductive arguments. For our purposes the following lemma is sufficient. However,
as the proof shows, β(G) ≤ (1 + ε)p

√
q is true for fixed ε > 0 and for p, q large

enough.

Lemma 2.6. Let q | p − 1 for primes p, q and let G ≤ Affp be of order pq. Then
β(G) ≤ pq0.8.

Proof. If q = 2, then β(G) = p+1 < p20.8 (see [14, (7.1)] and [15, Proposition 13]).
Let q > 2. By [3, Proposition 2.15] we have β(G) ≤ 3

2 (p + q(q − 2)) − 2 < 3p − 2

if p > q(q − 2). If here q ≥ 5 then 3p − 2 < pq0.8. If q = 3 then β(G) is at most
3
2 (p+ q(q − 2))− 2 = 3

2p+ 2.5 < p30.8, as required.

So let p < q(q−2), in particular q > 3. In this case [3, Proposition 2.15] concludes
β(G) ≤ 2p + (q − 2)q − 2 and β(G) ≤ 2p + (q − 2)(c − 1) − 2 if there exists c ≤ q
such that c(c − 1) < 2p < c(c + 1). Note that if q(q − 1) < 2p then q <

√
2p and

if q(q − 1) > 2p then there exists c ≤ q such that c(c − 1) < 2p < c(c + 1) and
c − 1 <

√
2p. So in both cases β(G) ≤ 2p + (q − 2)

√
2p − 2. If q = 5 then p < 15

and 5 | p− 1 imply p = 11. We have β(G) ≤ 22 + 3
√
22− 2 < 11 · 50.8.

Finally let q ≥ 7. Using q − 2 <
√
q
√
p/2 we get

β(G) < p(2 +

√
q
√
p/2

√
2p

p
) = p(2 +

√
q).

As q0.8 − q0.5 is increasing and 70.8 − 70.5 > 2 we get the claimed bound. �

Theorem 2.7. Let G be the Frobenius group of order pn with Zp ≤ G ≤ Affp.
Suppose that n ≥ 6 has no prime divisor larger than p/

√
n. Then β(G) < 2p

√
n.

Proof. Let V be an arbitrary FG-module, L = F [V ] the polynomial algebra and
R = LG and I = LZp the respective group invariants. Put s = [p/

√
n]. As

β(Zp) = p we have β(L+/L+R+, I) ≤ p. Hence by Proposition 2.2,

β(G,V ) ≤ (n− 1)s+max{p, β(L+/L+R+, F [I≤s])− s}.

The first term of this sum is smaller than p
√
n so it is enough to prove that

(2) β(L+/L+R+, F [I≤s]) ≤ p
√
n+ s.

We assume that the basis of the dual module V ∗ is a Zp-eigenbasis {x1, x2, . . . , xl}
permuted by G/Zp. Now apply Proposition 2.1. The space L+/L+R+ is spanned
by monomials m that either have a Zp-invariant divisor of degree at most s or
have a gapless monomial divisor of degree at least deg(m) − (p − 1). The former
kind are in F [I≤s] so we need an upper bound for the degrees of the latter kind.
More precisely, we have that if m′ is the largest degree gapless monomial with no
Zp-invariant divisor of degree at most s then

(3) β(L+/L+R+, F [I≤s]) ≤ p− 1 + deg(m′).

Consider now the row decomposition g1, . . . , gh of fm′ . In the submonomial
f = g1 + g2 + · · ·+ gs of fm′ all the exponents are at most s, so by Proposition 2.4,
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deg f ≤ p− 1. This implies that deg(gs) ≤ (p− 1)/s. It is below
√
n+1 because if

s = (p/
√
n)− ε then

(
p√
n
− ε)(

√
n+ 1) = p+

p√
n
− ε

√
n− ε > p− 1.

So deg(gs) ≤
√
n+1. In particular, deg(gs) < n and by (1), deg(gi+1) < deg(gi)

for i ≥ s. Hence we have the following bound on the degree.

deg(m′) =

s∑
i=1

deg(gi) +

h∑
i=s+1

deg(gi) < p− 1 +
1

2

√
n(
√
n+ 1) = p− 1 +

n+
√
n

2
.

Now (3) and 2 + n
2(p−1) ≤ 2.5 <

√
n+ 1√

n
(as n > 5) imply that

β(L+/L+R+, F [I≤s]) ≤ p− 1 + deg(m′) ≤ 2(p− 1) +
n+

√
n

2
=

= (p− 1)

(
2 +

n

2(p− 1)

)
+

√
n

2
<

< (p− 1)

(√
n+

1√
n

)
+
√
n− 1 < p

√
n+ s,

which is exactly (2). �

We continue with a useful tool.

Lemma 2.8 (Schmid [14] and Sezer [15]). Let H be a subgroup and N a normal
subgroup in a finite group G. Then β(G) ≤ β(N)β(G/N) and β(G) ≤ |G : H|β(H).

Proof. See Schmid [14, (3.1), (3.2)] and Sezer [15, Propositions 2 and 4]. �

Corollary 2.9. Let N be a normal subgroup of prime order p in a finite group G.
Assume that N = CG(N) and that G/N is cyclic of order m prime to p. Then
β(G) ≤ pm0.9.

Proof. The group G is an affine Frobenius group. If m is prime, then the claim
follows from Lemma 2.6. For m = 4 we have β(G) ≤ p + 6 < 40.9p by [3,
Corollary 2.9]. If m has a prime divisor q > p/

√
m then first, m < p < q

√
m

implies q >
√
m. Second, Zp o Zq ≤ G, so by Lemma 2.6 and Lemma 2.8,

β(G) ≤ m
q pq

0.8 = mpq−0.2 < pm0.9. Finally, if m ≥ 6 has no prime divisor

larger than p/
√
m then by Theorem 2.7 we have β(G) ≤ 2p

√
m ≤ pm0.9. �

3. Solvable groups

In this section we will give a general upper bound for β(G) in case G is a finite
solvable group.

Proposition 3.1. Let C be a characteristic cyclic subgroup of maximal order in a
finite nilpotent group G. Then β(G) ≤ |C|0.2|G|0.8.
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Proof. Suppose that G is a counterexample with |G| minimal. By the afore-
mentioned result of Noether [10], Fleischmann [5] and Fogarty [6], G must be
non-cyclic. By Lemma 2.8, G must also be a p-group for some prime p. Then
G/Φ(G) must be a non-cyclic elementary Abelian p-group where Φ(G) denotes the

Frattini subgroup of G. By Lemma 2.5, β(G/Φ(G)) < |G/Φ(G)|0.8. By minimality,
there exists a characteristic cyclic subgroup C in Φ(G), characteristic in G, such

that β(Φ(G)) ≤ |C|0.2|Φ(G)|0.8. We get a contradiction using Lemma 2.8. �

We repeat the following result from the Introduction.

Theorem 3.2 (Domokos and Hegedűs [4] and Sezer [15]). For any non-cyclic finite
group G we have β(G) ≤ 3

4 |G|.

The next bound holds for every finite solvable group, but it is slightly weaker
than the one in Proposition 3.1.

Theorem 3.3. Let C be a characteristic cyclic subgroup of maximal order in a
finite solvable group G. Then β(G) ≤ |C|0.1|G|0.9.

Proof. By Proposition 3.1, we may assume that G is not nilpotent. Consider the
Fitting subgroup F (G) and the Frattini subgroup Φ(G) of G. Since F (G) is normal
in G, we have, by [8, Page 269], that Φ(F (G)) ≤ Φ(G) ≤ F (G). Thus F (G)/Φ(G)
is a product of elementary Abelian groups. The socle of the group G/Φ(G) is
F (G)/Φ(G) on which G/F (G) acts completely reducibly (in possibly mixed char-
acteristic) and faithfully (see [8, III. 4.5]).

Let N be the product of Op(G) ∩ Φ(F (G)) for all primes p for which Op(G) is
cyclic, together with the subgroups Op(G) ∩ Φ(F (G)) for all primes p for which p
divides |F (G)/Φ(G)| but p2 does not, together with Op(G)∩Φ(G) for all primes p
for which p2 divides |F (G)/Φ(G)|. Clearly, F (G)/N is a faithful G/F (G)-module
(of possibly mixed characteristic) with a completely reducible, faithful quotient.

We claim that the bound in the statement of the theorem holds when C is taken
to be the product of the (direct) product of all cyclic Sylow subgroups of F (G) and
a characteristic cyclic subgroup of maximal order in N . By our choice of C and
Proposition 3.1, we have β(N) ≤ (|C|/s)0.1|N |0.9, where s denotes the product of
the primes for which Op(G) is cyclic. In order to finish the proof of the theorem, it

is sufficient to show that β(G/N) ≤ s0.1|G/N |0.9.

This latter bound will follow from the following claim. Let H be a finite solvable
group with a normal subgroup V that is the direct product of elementary Abelian
normal subgroups of H. Let π be the set of prime divisors of |V | and write V
in the form ×p∈πOp(V ). Assume that V is self-centralizing in H and that the
H/V -module V has a completely reducible, faithful quotient module. We claim

that β(H) ≤ s0.1|H|0.9 where s denotes the product of all primes p for which
|Op(V )| = p.

We prove the claim by induction on |π|. Let p ∈ π. Assume that |π| = 1. If
|V | = p then Corollary 2.9 gives the claim. Assume that |V | ≥ p2. By a result of

Pálfy [12] and Wolf [18], |H/V | < |V |2.3. First assume that |V | is different from 22,
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32, 52. By Lemma 2.5 and Lemma 2.8,

β(H) < |V |0.67|H/V | < |H|0.9.

Thus assume that |V | = 22, 32, or 52. If |H| < |V |2, then

β(H) < |V |0.8|H/V | < |H|0.9,

again by Lemmas 2.5 and 2.8. So assume also that |H| ≥ |V |2, in particular that

H/V is not cyclic. By Theorem 3.2, we have β(H) < 3
4 |V |0.8|H/V | ≤ |H|0.9, since

H is solvable.

Assume that |π| > 1. The group H can be viewed as a subdirect product in
Y = Yp × Yp′ where Yp and Yp′ are solvable groups with the following properties.
There is an elementary Abelian normal p-subgroup Vp in Yp and a direct product
Vp′ of elementary Abelian normal p′-subgroups in Yp′ such that both the Yp/Vp-
module Vp and the Yp′/Vp′ -module Vp′ have a completely reducible, faithful quotient
module. Let N be the kernel of the projection of H onto Yp. Clearly, N satisfies
the inductive hypothesis with the set π \ {p} of primes. Thus Lemma 2.8 gives the
bound of the claim. �

4. Finite simple groups of Lie type

The following is inherent in [3] without being explicitly stated. We reproduce
their argument with a slight modification.

Lemma 4.1. If G is a nonsolvable finite group then n(G) > 2.7.

Proof. By Lemma 2.8, it is enough to prove this for minimal non-Abelian simple
groups. By a theorem of Thompson [17, Corollary 1] these are PSL(3, 3), Suzuki
groups Sz(2p), for p > 2 prime and PSL(2, q), where q = 2p, 3p (p a prime, p > 2
for q = 3p) or q > 3 is a prime such that q ≡ ±2 (mod 5).

If G ∼= Sz(2p) or G ∼= PSL(2, 2p), for p > 2 then G has an elementary Abelian
subgroup H ∼= Z3

2 of index k = |G : H| ≥ 63. So n(G) ≥ 8k
2k+3 = 4 − 12

2k+3 > 3.9.

(See the proof of [3, Theorem 1.1 case (2a)].)

If G ∼= PSL(3, 3) or G ∼= PSL(2, 3p), for p > 2 then G has an elementary Abelian
subgroup H ∼= Z2

3 of index k = |G : H| ≥ 624. So n(G) ≥ 9k
3k+2 = 3− 6

3k+2 > 2.9.

(See the proof of [3, Theorem 1.1 case (2b)].)

If G ∼= PSL(2, 4) ∼= A5 or G ∼= PSL(2, p) then G contains a subgroup H ∼= A4 of
index k = |G : H| ≥ 5. So n(G) ≥ 6k

2k+1 = 3 − 3
2k+1 > 2.7. (See the proof of [3,

Theorem 1.1 case (2c)].) �

This implies that if G is a nonsolvable group with order less than 2.740 then
β(G) < |G|/2.7 < |G|39/40. The following theorem claims this bound for every
finite simple group of Lie type.

Theorem 4.2. Let S be a finite simple group of Lie type. Then β(S) ≤ |S|39/40,
in other words, n(S) ≥ |S|1/40.
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Table 1. Elementary Abelian groups in finite simple groups of Lie type

type order bound lower bound for |E| lower bound for log|S| n(E)

Am(q) qm
2+2m q[(

m+1
2 )2] 0.11 (m = 3, q = 2), 0.051 (m = 2, q = 2)

2Am(q) qm
2+2m q[

m+1
2 ]2(+1) 0.11 (m = 3, q = 2), 0.066 (m = 2, q = 3)

Bm(q) q2m
2+m q2m−1, q1+(

m
2 ) 0.12 (m = 2, q = 3)

Cm(q) q2m
2+m q(

m+1
2 ) 0.15 (m = 3, q = 2), 0.15 (m = 2, q = 4)

Dm(q) q2m
2−m q(

m
2 ) 0.11 (m = 4, q = 2)

2Dm(q) q2m
2−m q(

m
2 ), q2+(

m−1
2 )(+1) 0.11 (m = 4, q = 2), 0.15 (m = 4, q = 3)

2B2(q) q5 q 0.066 (q = 8)
3D4(q) q28 q5 0.086 (q = 2)
G2(q) q14 q3, q4 0.1 (q = 5), 0.14 (q = 3)

2G2(q) q7 q2 0.17 (q = 27)
F4(q) q52 q11, q9 0.14 (q = 2), 0.12 (q = 3)

2F4(q) q26 q5 0.14 (q = 8)
E6(q) q78 q16 0.15 (q = 2)

2E6(q) q78 q12, q13 0.11 (q = 3), 0.11 (q = 2)
E7(q) q133 q27 0.16 (q = 2)
E8(q) q248 q36 0.12 (q = 2)

Proof. The proof requires a case by case check of the 16 families of simple groups
of Lie type. In each case we find a subgroup E ≤ S with Noether index n(E)
relatively large, more precisely n(E) ≥ |S|1/40 and hence n(S) ≥ n(E) ≥ |S|1/40 as
required.

If the rank of the group is at least 2 then we find a non-cyclic elementary Abelian
p-subgroup E in the defining characteristic p satisfying |E|8 > |S|. The relevant
data can be found for example in [7, Tables 3.3.1 and 2.2] which we summarise
below. By Lemma 2.5 we have n(S) ≥ n(E) > |S|1/40 which implies our statement
in this case. However Table 1 gives the best bounds for each type that can be
obtained this way. (For notational ease C2(2

a) is used instead of B2(2
a) below.

The Tits group is not in the list, but using a Sylow 2-subgroup we can easily obtain
n(S) > |S|0.2 for that S.)

So this method gives a better bound log|S| n(E) ≥ 0.051 > 1/20, the worst group

being S ∼= PSL(3, 2), with |E| = 4.

The rank 1 case remains. First let p > 3 be a prime and S = PSL(2, p). Then
S contains a Frobenius subgroup H ∼= Zp o Z(p−1)/2 of index |S : H| = p + 1. By

Corollary 2.9, we have the bound β(H) ≤ p(p−1
2 )0.9. It follows by Lemma 2.8 that

β(S) ≤ (p+ 1)β(H) ≤ (p+ 1)p(p−1
2 )0.9. This implies β(S) < |S|1−1/40 for p ≥ 13.

For S ∼= PSL(2, p) with p = 5, 7, 11 the order of the group S is less than 2.740,
so the theorem holds by the remark after Lemma 4.1.

Finally let S = PSL(2, q) where q = pf , p a prime and f > 1. Then S = PSL(2, q)
contains an elementary Abelian subgroup E of order pf for which, by Lemma 2.5,
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β(E) = (p− 1)f + 1 < p0.8f . Since |S| < q3 = p3f , we have

n(E) =
pf

(p− 1)f + 1
> p0.2f > |S|1/15.

This finishes the proof. �

5. A reduction to almost simple groups

We will proceed to prove the following result.

Theorem 5.1. Let G be a finite group and C a characteristic cyclic subgroup in G
of largest size. Then β(G) ≤ |C|ϵ|G|1−ϵ

with ϵ = (10 log2 k)
−1

, where k denotes the
maximum of 210 and the largest degree of a non-Abelian alternating composition
factor of G, if such exists. If G is solvable, then β(G) ≤ |C|0.1|G|0.9.

The second statement of Theorem 5.1 is Theorem 3.3. The following result
reduces the proof of Theorem 5.1 to a question on almost simple groups.

Theorem 5.2. Let G be a finite group. Let ϵ be a constant with 0 < ϵ ≤ 0.1 such
that β(H) ≤ 2−ϵ|H|1−ϵ

for any (if any) almost simple group H whose socle is a
composition factor of G. Let C be a characteristic cyclic subgroup of maximal order
in G. Then β(G) ≤ |C|ϵ|G|1−ϵ

.

Note that for any finite group G the ϵ in Theorem 5.2 can be taken to be positive
by Theorem 3.2.

Proof. Let G be a counterexample to the statement of Theorem 5.2 with |G| min-
imal. By Theorem 3.3, G cannot be solvable. Let R be the solvable radical of G.
By Theorem 3.3 there exists a characteristic cyclic subgroup C of R (which is also

characteristic in G) such that β(R) ≤ |C|ϵ|R|1−ϵ
. If R ̸= 1, then, by minimality,

β(G/R) ≤ |G/R|1−ϵ
, and so Lemma 2.8 gives a contradiction. Thus R = 1.

Let S be the socle of G. This is a direct product of, say r ≥ 1, non-Abelian
simple groups. Let K be the kernel of the action of G on S. By our hypothesis on
almost simple groups and by Lemma 2.8, β(K) ≤ |K|1−ϵ

/2ϵ·r.

Let T = G/K. We claim that β(T ) ≤ 2ϵ(r−1)|T |1−ϵ
. By Lemma 2.8 this would

yield β(G) ≤ |G|1−ϵ
, giving us a contradiction.

To prove our claim we will show that if P is a permutation group of degree n
such that |P | ≤ |T |, n ≤ r, and every non-Abelian composition factor (if any) of

P is also a composition factor of T , then β(P ) ≤ 2ϵ(n−1)|P |1−ϵ
. Suppose that P

acts on a set Ω of size n. Let P be a counterexample to the bound of this latter
claim with n minimal. Then n > 1. Suppose that P is not transitive. Then P
has an orbit ∆ of size, say k, with k < n. Let B be the kernel of the action of
P on ∆. Then β(P/B) ≤ 2ϵ(k−1)|P/B|1−ϵ

and β(B) ≤ 2ϵ((n−k)−1)|B|1−ϵ
. We

get a contradiction using Lemma 2.8. So P must be transitive. Suppose that
P acts imprimitively on Ω. Let Σ be a (non-trivial) system of blocks with each
block of size k with 1 < k < n. Let B be the kernel of the action of P on Σ. By
minimality, β(P/B) ≤ 2ϵ((n/k)−1)|P/B|1−ϵ

. By minimality and Lemma 2.8, we also

have β(B) ≤ 2ϵ(k−1)(n/k)|B|1−ϵ
. Again, Lemma 2.8 gives a contradiction. Thus P
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must be primitive. If the solvable radical of P is trivial, we get β(P ) ≤ |P |1−ϵ
by

|P | < |G|. In fact, the same conclusion holds unless n is prime and P is meta-cyclic.

In this latter case Corollary 2.9 gives β(P ) ≤ nϵ|P |1−ϵ
. We get a contradiction by

n ≤ 2n−1. �

6. Almost simple groups

Let H be an almost simple group. In view of Theorem 5.2 in this section we will
give a bound for β(H) of the form 2−ϵ|H|1−ϵ

where ϵ is such that 0 < ϵ ≤ 0.1. Let
S be the socle of H.

6.1. The case when S is a finite simple group of Lie type. We first show

that we may take ϵ = 0.01. By Theorem 4.2, β(S) ≤ |S|39/40. By this and Lemma
2.8, we get

β(H) ≤ |H : S| · |S|39/40 = |H : S|0.01 · |S|0.01−(1/40) · |H|0.99.

Thus it is sufficient to see that |H : S|0.01 · |S|0.01−(1/40) ≤ 2−0.01. But this is clear

since |H : S| ≤ |Out(S)| < |S|1.5/2.

For the remainder of this subsection set ϵ = 0.1. In order to prove the bound for
this ϵ, by the previous argument, it would be sufficient to show that β(S) ≤ |S|0.8.
We claim that this holds once the Lie rank m of S is sufficiently large. Let E
be an elementary Abelian subgroup in S of maximal size. By Lemma 2.5 and
by Table 1, if m → ∞, we have log2 |E|/ log2 β(E) → ∞. Again by Table 1,
log2 |S|/ log2 |E| = 4 + o(1) as m → ∞. Thus we have

log2 β(S) ≤ log2 β(E)− log2 |E|+ log2 |S| = (−1 + o(1)) log2 |E|+ log2 |S| =

= (−(1/4) + o(1)) log2 |S|+ log2 |S| = ((3/4) + o(1)) log2 |S| < 0.8 log2 |S|,
as m → ∞.

Let p be a defining characteristic for S and let q = pf be the size of the field
of definition. Unfortunately we cannot prove the bound β(H) ≤ 2−0.1|H|0.9 for
all groups H with q large enough, but we can establish this bound in case f is
sufficiently large. By Table 1, if the Lie rank m is at least 2 then S contains an
elementary Abelian p-subgroup E such that |E|8 > |S|. Notice that this bound also
holds for m = 1, at least for sufficiently large groups S. Thus log2 |S|/ log2 |E| < 8.
If f → ∞, then log2 |E|/ log2 β(E) → ∞. In a similar way as in the previous

paragraph, we obtain log2 β(S) < ((7/8)+ o(1)) log2 |S|, that is, β(S) < |S|0.89, for
sufficiently large S. Since |H : S| is at most a universal constant multiple of f , we

certainly have |H : S| < |S|o(1), as f → ∞. The claim follows by Lemma 2.8.

6.2. The case when S is a sporadic simple group or the Tits group. In
this subsection we set ϵ = 0.1 and try to establish the proposed bound in as many
cases as possible. Here we also complete the proof of Theorem 1.3.

In this paragraph for a prime p and a positive integer k let pk denote the ele-
mentary Abelian p-group of rank k and let 21+4 denote a group of order 25 with
center of size 2. By the Atlas [1], the groups S = J4 and S = Co1 contain a section
isomorphic to 212. Furthermore the groups S = Co2, Co3, M

cL, Fi22, Fi23, Fi24, B
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and M contain a section isomorphic to 210, 35, 34 : M10, 2
10, 210, 212, 222, and 224

respectively and the group S = O
,
N contains a subgroup isomorphic to 34 : 21+4. If

S is any of these previously listed groups, we may use Lemmas 2.8 and 2.5 together
with the estimate β(M10)/|M10| ≤ 3/4 in one case (see Theorem 3.2) to obtain the

bound β(H) ≤ 2−ϵ|H|1−ϵ
with ϵ = 0.1. The same estimate holds in case S is the

Tits group, as shown in the proof of Theorem 4.2.

If S is not a group treated in the previous paragraph, then |H| < 2.740. Thus,

by the remark after Lemma 4.1, we have β(H) < |H|/2.7 < |H|39/40. This and
Theorem 4.2 complete the proof of Theorem 1.3. Notice also that for ϵ = 0.01 we

have |H|39/40 < 2−ϵ|H|1−ϵ
.

6.3. The case when S is an alternating group. Let S = Ak be the alternating
group of degree k at least 5.

Assume first that k > 10. Put s = [k/4] ≥ 2. There exists an elementary Abelian
2-subgroup P ≤ Ak of rank 2s. By Lemma 2.5, we have β(P ) = 2s+1. By Lemma
2.8, this gives n(S) ≥ n(P ) = 22s/(2s+ 1). Thus log2(n(S)) > k log2 1.11 > k/10.
This gives β(H) < |H|/2k/10. Thus if

ϵ =
k

10 + 10 log2 |H|
>

1

(10/k) + 10(log2(k)− 1)
>

1

10 log2 k
,

then β(H) < 2−ϵ|H|1−ϵ
.

Now let k ≤ 10. Then |H| < 2.716. By the remark after Lemma 4.1 we have

β(H) < |H|/2.7 < |H|15/16. This is certainly less than 2−ϵ|H|1−ϵ
for ϵ = 0.01.

7. Proofs of three main results

Proof of Theorem 5.1. Let G be a finite group. By Theorem 3.3, we may assume
that G is nonsolvable. Let H be an almost simple group whose socle S is a compo-
sition factor of G. By Sections 6.1, 6.2, and 6.3, we see that β(H) ≤ 2−0.01|H|0.99
provided that S is not an alternating group of degree at least 210. If S is an alterna-
ting group of degree k at least 210, then β(H) ≤ 2−ϵ|H|1−ϵ

with ϵ = (10 log2 k)
−1

.
The result now follows from Theorem 5.2. �

Proof of Theorem 1.1. Let G be a finite group with Noether index n(G). Let k de-
note the maximum of 210 and the largest degree of a non-Abelian alternating com-
position factor of G, if such exists. Let C be a characteristic cyclic subgroup in G
of largest possible size. Put f = |G : C|. By Theorem 5.1, β(G) ≤ |C|ϵ|G|1−ϵ

with

ϵ = (10 log2 k)
−1

. In other words, n(G) ≥ f ϵ. Thus G has a characteristic cyclic

subgroup of index at most n(G)
10 log2 k

. If G is solvable, then β(G) ≤ |C|0.1|G|0.9

by Theorem 5.1. In other words, n(G) ≥ f0.1 and so f ≤ n(G)
10
. �

Proof of Corollary 1.2. Let G be a finite group with Noether index n(G). By Theo-
rem 1.1 we may assume that G is nonsolvable. Thus n(G) > 2.7 by Lemma 4.1. By
Theorem 1.1 we may also assume that G has an alternating composition factor Ak

with k ≥ 210. From Section 6.3 we have k < 10 log2(n(Ak)). Since n(Ak) ≤ n(G)
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by Lemma 2.8, we get 10 ≤ log2 k < log2 10 + log2 log2(n(G)). The result now
follows from Theorem 1.1. �

8. Questions

We close with three questions which suggest another connection between the
Noether number of a group and the Noether numbers of its special subgroups.

Question 8.1. Is it true that β(S) ≤ max{o(g)2|g ∈ S} for a finite simple group
S?

Question 8.2. Is it true that β(G) ≤ max{β(A)100|A ≤ G, A Abelian} for a finite
group G?

Question 8.3. Let V be a finite dimensional FG-module for a field F and finite
group G. Is it true that β(G,V ) ≤ dim(V )|G : H|β(H,V ) for every subgroup H of
G?
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14 PÁL HEGEDŰS, ATTILA MARÓTI, AND LÁSZLÓ PYBER
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