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Abstract: In this study some general aspects of the thermodynamics of systems with interfaces 

are discussed, and a brief treatment of interfaces within the framework of classical 

thermodynamics is presented. Special attention is paid to the theory of electrified interfaces. 

The intensive parameter conjugate to surface area (“surface tension” or “interfacial tension”) is 

an important parameter also in the thermodynamic theory of electrodes, because the interactions 

between the adjacent bulk phases take place via interfaces, e.g. via the interface between a metal 

and an electrolyte solution. As a consequence, the thermodynamic properties of the interface 

region (i.e. the electronic conductor | ionic conductor interface) directly influence the 

electrochemical processes. First, to introduce the reader to the topic, basic concepts (such as 

“surface”, “interface”, “interphase”, “interfacial or interface region”, “dividing surface”, 

“adsorption”) are reviewed, a reasonably simple thermodynamic treatment of interfaces, 

together with a brief description of the models widely used in the literature, are presented, and 

the characteristics of the Gibbs „dividing plane” model and the Guggenheim „interphase” 

model are outlined. The derivation of the electrocapillary equation, the Gibbs adsorption 

equation, and the Lippmann equation for an ideally polarizable electrode is given. A simple 

illustrative example for the application of the electrocapillary equation is presented. Some 

important mathematical concepts (e.g. theory of homogeneous functions and partly 

homogeneous functions, Euler's theorem and Legendre transformation) and various functional 

relationships of the thermodynamics of surfaces and interfaces are summarized. 
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Introduction and basic concepts 

A “thermodynamic system” is a part of the physical world constituted by a significantly 

large number of particles (i.e., atoms, molecules or ions). A “homogeneous thermodynamic 

system” is defined as the one whose intensive thermodynamic properties are constant in space. 

If a portion of a thermodynamic system behaves in this way throughout all its volume, it is 

called a “phase”, i.e. the term “phase” is used for a region that is chemically and structurally 

homogeneous. According to a more general definition, a “phase” is a region of (spatially) 

constant or continuously changing physical (intensive thermodynamic) and chemical 

properties. 

A “heterogeneous system” can involve more than one phase, and the passage through the 

interface among two phases leads to a discontinuous variation of one or more intensive 

functions, such as concentrations, density, electric potential, etc.  

The plane ideally marking the boundary between two phases is called the “interface”. 

Although interfaces are always dealt with from a thermodynamic point of view, if attention is 

actually focused on only one of the two phases, the plane between the phase and the 

environment is called the “surface” of the phase (see e.g. [1]). The region between two phases 

where the properties vary between those in the bulk is the “interfacial or interface region”. It is 

sometimes regarded as a distinct – though not autonomous – phase and is called the 

“interphase”.  

The primary objectives of all thermodynamic treatments are to describe systems involving 

interfaces in terms of experimentally observable quantities and to derive equations (functions) 

that enable one to relate the thermodynamic properties of a system under one set of conditions 

to those valid for another set of conditions. An interface or a surface does not exist in isolation. 

It is the interface region in a two-phase system and valid thermodynamic conclusions can only 

be drawn by considering the system, namely, the interface and the two regions adjacent to the 

interface, as a whole. Provided that the radius of curvature is sufficiently large, the 

interface/interphase may be regarded as plane and its energy then differs from that of a bulk 

phase by a term expressing the contribution of changes of energy due to a change of the area of 

contact. Edge effects can be eliminated by considering a section of an interface in a larger 
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system. There is no clear boundary between the interfacial region and the bulk of the phases so 

that the thickness of the interphase depends on the model chosen to describe this region.  

The words “interface” and “surface” are often used synonymously, although interface is 

preferred for the boundary between two condensed phases and in cases where the two phases 

are named explicitly, e.g. the solid/gas interface [2]. Nevertheless, solid surfaces are usually not 

perfectly flat but are somewhat rough. The geometric area, as represented by the product of the 

length and breadth of a rectangle enclosing part of a surface, is not the same as the actual surface 

area which takes into account the areas of the hills and valleys within the rectangle. If the 

surface is very rough, the geometric area may be considerably smaller than the actual area. The 

properties of a portion of surface are dependent on orientation, and if there are many portions 

of different orientation, correct summation over the whole surface may be a difficult task. Such 

a surface is unlikely to be in a state of equilibrium and caution should be exercised when 

considering systems containing such surfaces. (This complication is not always dealt with in 

standard textbooks because they tend to concentrate on the surface thermodynamics of liquid 

systems which usually possess smooth surfaces.) Consideration will be restricted here to 

systems in which the difference between geometric and actual areas is not of major importance.  

Generally, the thickness of the interface or local values of physical quantities (parameters) 

cannot be measured. That is the reason why integrated quantities (which are accessible 

experimentally, or can be calculated from experimental data) are used for the thermodynamic 

characterization of interfaces. Usually, these quantities are given by the expression 

   zzΞΨ d

ββ

αα

s

  [1a] 

or by 

   VzξΨ d

ββ

αα

s

 , [1b] 

where z is the coordinate perpendicular to the plane of the interface, Ψ
s
 is the integrated quantity, 

αα and ββ are the two adjacent phases, dV represents the volume element, Ξ(z) is the “local” 

value (related to the area) and ξ(z) is the volume density of any extensive physical quantity in 

the interfacial region. 

In heterogeneous systems, mobile electric charges may accumulate at the interfaces 

between the constituent phases, thus a thermodynamic approach requires us also to be able to 

characterize the state of the system containing electrified interfaces. It is obvious that 

heterogeneous systems with electrified interfaces can only be described by complex 
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thermodynamic models. In electrochemistry, a heterogeneous electrochemical system in which 

an electronic conductor phase is in contact with an ionic conductor phase is often called an 

“electrode” [3-5]. Electrodes are, in fact, capillary systems, because the interactions between 

the different phases occur at the interface. Thus, the understanding of the thermodynamics of 

these interfaces is of importance to all surface scientists and electrochemists.  

The aim of this brief review is to present a simple and concise treatment of electrified 

interfaces within the framework of classical thermodynamics, together with a brief description 

of the models widely used in the literature. More detailed discussions can be found in several 

comprehensive reviews and research papers [5-24]). 

Models of the interface region 

As already mentioned in the introduction, interfacial thermodynamics is the study of the 

application of thermodynamics to interfacial phenomena, addressing topics including 

adsorption, interfacial energies, interfacial tension, superficial charge, etc. and about relations 

between them [see e.g. 5-26]. “Adsorption” of one or more of the components, at one or more 

of the phase boundaries of a multicomponent, multiphase system, is said to occur if the 

concentrations in the interfacial layers are different from those in the adjoining bulk phases. 

The concentration of a particular species varies as a function of the distance perpendicular to 

the surface, as shown in Figure 1a. The overall stoichiometry of the system therefore deviates 

from that corresponding to a reference system of (hypothetical) homogeneous bulk phases 

whose volumes and/or amounts are defined by suitably chosen dividing surfaces, or by a 

suitable algebraic method (see later). 
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Figure 1   a) Schematic representation of the concentration profile (c
i 
) of the i-th component of the 

system as a function of distance (z) normal to the phase boundary in the “real system” (full line); 

Broken lines: boundaries of the interfacial layer;  

b) Schematic representation of the concentration profile (c
i 
) according to the Gibbs model of the 

interface; σ: the Gibbs “dividing surface” (“surface of discontinuity” or “mathematical plane”); Full 

line: the concentration profile (c
i 
) as a function of distance (z) in the real system and in the reference 

system (chain-dotted lines); Broken lines: boundaries of the interfacial layer; The surface excess 

amount n
i

σ
 (or the surface excess concentration n

i

σ
/A, where A is the area of the interface) corresponds 

to the sum of the areas of the two shaded regions of the diagram. 

c) The concentration profile (c
i
) according to the Guggenheim model of the interface; τ: thickness 

of the “interfacial layer” (“interphase”); Broken lines: boundaries of the interfacial layer;  

On the right-hand sides: the macroscopic subsystems selected for investigation are represented by 

the ABCD rectangles. 
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Historically, there are two main approaches to describing the thermodynamic properties of 

interfaces. The classic work is that of Gibbs [27]; a paper by Guggenheim and Adam [28] 

discusses the physical interpretation of surface excesses, and Guggenheim [29] has given a 

good summary of interfacial thermodynamics emphasizing a viewpoint somewhat different 

from that of Gibbs. 

 

 

 

Figure 2   Schematic representation of the interfacial region. a) Real system; b) The Gibbs model 

of the interface; c) The Guggenheim model of the interface; On the right hand side: the macroscopic 

subsystems selected for investigation are represented by the ABCD rectangles. 

σ is the Gibbs “dividing surface” (“surface of discontinuity” or “mathematical plane”), τ is the 

thickness of the “interface layer” (“interphase”);  
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As outlined above, many properties of a system vary as a function of the distance 

perpendicular to the surface as shown in Figure 2a (or in Figure 1a, where the concentration 

profile of a component is shown as a function of the position variable z). Gibbs found it 

mathematically convenient to consider an idealized system depicted in Figure 2b, with 

properties identical with those of the whole real system, that is, his approach is based on a model 

in which a real interface layer is replaced by a dividing surface. The “surface of discontinuity” 

or “dividing surface” in the idealized system is a two-dimensional region whose position is 

determined by the requirements that the property under consideration should maintain a uniform 

value in each bulk phase right up to the dividing surface (Figures 2a and 2b). A disadvantage 

of this approach is that the position of the dividing surface alters according to the property 

considered.  

In the alternative model (Guggenheim model, see Figures 1c and 2c), two dividing 

surfaces, one at each boundary, are employed. It is assumed that there is an “interface” or 

“surface” layer of finite thickness () bounded by two appropriately chosen surfaces parallel to 

the phase boundary, one in each of the adjacent homogeneous bulk phases. A layer of this kind 

is sometimes called a Guggenheim layer, or “interphase”. A disadvantage is that terms 

dependent on surface volume are present in the equations, but it is difficult to assign values to 

these terms. (It should be noted that for very highly curved surfaces, i.e. when the radius of 

curvature is of the same magnitude as , the notion of a surface layer may lose its relevance.) 

Given a system, subsystems consisting of a segment of the interface and finite volumes 

of the adjacent phases can be selected. In principle, these subsystems should not be 

geometrically regular in shape; however, the rectangular parallelepiped-shaped domain is 

usually the most expedient selection. In two dimensions, the macroscopic subsystem selected 

for investigation is represented by the ABCD rectangle (see Figures 1 and 2).  

Let the area of the interface in the system defined according to the above concepts 

denoted by A, and the internal energy by U. The V volume of the system is the sum of the 

volumes of the two homogeneous phases  and , and the volume of the inhomogeneous 

(heterogeneous) region:  

 inhββαα VVVV   [2] 

The internal energy can be given as:  

 inhββαα UUUU   [3] 

etc.  
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Of course, this division is completely arbitrary, since the values on the right hand sides of 

equations [2] and [3] depend on the (arbitrary) choice of the dividing surface(s). In the 

Guggenheim model the V

 volume of the interfacial layer is  

 AV σ  [4] 

The Gibbs dividing surface (or Gibbs surface) is a geometrical surface chosen parallel to the 

interface and used to define the volumes of the bulk phases. That is: 

 ββαα VVV  , [5] 

and the volume of the “surface phase is” V
  0. 

 

Adsorption 

As already discussed above, the Gibbs interface is a two-dimensional homogeneous 

phase without thickness (i.e. the interface is regarded as a mathematical dividing surface). In 

Guggenheim’s approach the interface is considered to be a 3-dimensional phase with finite 

thickness and volume treated in a way analogous to bulk phases, except that the thermodynamic 

equations contain terms related to the contributions of changes of energy due to changes of area 

and electrical state of the interface [5].  
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Figure 3   In the middle: the real system (an idealized surface or surface phase is separating two 

homogeneous bulk phases αα and ββ), and the reference systems α and β. V is the volume of the real 

system, V
α
 and V

β
 are the volumes of the reference phases, 

α~
iμ and 



iμ
~  are the electrochemical 

potentials, x
i

α
 and x

i

β
  are the mole fractions of component i (or constituent i) in phase α and phase β, 

respectively. a) Gibbs model; b) Guggenheim model. 

 

According to these two core properties the above two (apparently different) approaches 

can be characterized by the following procedure:  

a) There is an idealized surface or surface phase separating two homogeneous bulk phases (see 

Figures 1 and 2). The bulk phases are in equilibrium with the surface or surface phase.  

b) Two separated reference systems  and  thought to be noninteracting homogeneous bulk 

phases have to be chosen (see Figure 3), the conditions of temperature, pressure, composition, 

etc. being identical to those in the adsorption equilibrium. Both reference phases consist of 

suitably defined amounts of the components. Each of the selected reference amounts is 

characterized by its respective molar or specific properties. 
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c) Any extensive property of the reference systems is simply the sum of the contributions from 

the reference amounts, without any contributions from interactions with the interfacial region 

in the real system.  

d) The “excess thermodynamic quantities” (surface excess quantities) are the respective 

differences between the real system and the chosen reference systems (reference phases). The 

surface excess amount of component i, ni
σ 
 which may be negative or positive, can be defined 

in the Gibbs sense as the total extensive quantity minus its amount residing in hypothetical bulk 

phases that are uniform up to a mathematical dividing surface (“Gibbs adsorption of component 

i ”), or in the Guggenheim sense as an excess in the boundary zone (“surface phase”) of finite 

but small thickness (see equation [5]).  

According to the assumptions of the Gibbs model, the reference amounts in the two 

reference phases are thought to be contained in and making up the volume of the actual real 

system, but can equally well be thought to be quite independent and spatially apart one from 

the other. However, it should also be noted here that from the mathematical point of view the 

volume of the chosen reference amounts should not be necessarily equal to the volume of the 

real system. (This means, that the geometric conventions employed by Gibbs in his treatment 

of capillary thermodynamics are replaceable by an algebraic formalism in which no mention is 

made of “dividing surfaces” [5,11,15,16].) It is even not necessary that the corresponding 

phases are effectively present in their chosen reference states within the real system. In 

principle, this is why the Gibbs and the Guggenheim approaches can be considered as 

equivalent. Nevertheless, there is an important restriction in the Guggenheim approach 

replacing the condition of equivalent volumes in the Gibbs method: The reference systems must 

be chosen in such a manner that the remaining “surface phase” has a constant thickness. Thus, 

this restriction essentially affects the choice of the geometrical shape of the reference systems. 

However, since the reference systems are homogeneous bulk phases, their thermodynamic 

properties are independent of the shape. For this reason, a set of appropriate reference systems 

can be always selected without loss of generality. This consideration determines implicitly the 

selection of thermodynamic systems simply as a “section” of the interface cut out by 

perpendicular planes (a “parallelepiped”, a system “with cylindrical shape”, etc.) [30-34]. 

The surface excess amount or Gibbs adsorption of component i is n
i
 is given as 

 βββαααββααβασ

iiiiiiiiii xnxnnxnxnnnnnn   [6] 
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where ni is the total amount of component i in the “real” system, x
i
 and x

i
 are the mole fractions 

in phases  and , respectively. n and n are the total amounts of the components (“total 

number of moles”) in the reference systems. From equation [6] it is obvious that the surface 

excess amount is well defined only when n and n are fixed. It can be also seen that with 

different n and n values we have different values for n
i
. 

On the other hand, using the volumes of the two reference systems (V
α
 and V

β
 ) and the 

corresponding concentrations (ci
α
 and ci

β
 ), the surface excess amount of component i can also 

be expressed as  

 βββαααββαασ

iiiiiii xVxVncVcVnn  , [6a] 

or, according to the Gibbs model if ci is the concentration of species i in a volume element dV, 

then 

     

surface Gibbs to
 upββphase

ββ

surface Gibbs to
 upααphase

αασ dd VccVccn iiiii
. 

[6b] 

The total surface excess amount of adsorbed substance, n
σ
 is 

 
i

σ

i

σ nn . [7] 

According to the above rules the surface excess X  of any extensive property X is 

calculated as  

 
βασ XXXX  , [8] 

where X denotes the value of the extensive property in the whole system, X
α
and X

β
 are the 

values in the reference systems.  

The relation that gives the internal energy U as a function of the extensive parameters 

is a fundamental relation. If the fundamental relation of a particular system is known, all 

conceivable thermodynamic information about this system can be ascertained [35]. 

The internal energies of the reference phases are given by  

  αα

1

αααα ,, mnnVSUU   [9a] 

and 



12 
 

  ββ

1

ββββ ,, mnnVSUU   [9b] 

The internal energy (U ) of the system depends on the entropy (S ), volume (V ), the amounts 

n1 ... nm of the components 1 ... m, and the surface area (A), respectively:  

  mnnAVSUU 1,,, . [10] 

The excess of the internal energy is given by 

 
βασ UUUU  , [11] 

and the excess of the entropy is  

 
βασ SSSS  . [12] 

The excess internal energy function  

  σσ

1

σσσσ ,,, mnnAVSUU   [13] 

is a homogeneous function of degree one with respect to all variables (see Appendix I), if V   0 

(Gibbs model), or V  = A (Guggenheim model), since under these conditions 

    σσσσσσσσσσ ,,,,,, mimi nnAVSkUknknkAkVkSU    [14] 

for all k > 0 real numbers. Therefore, in the framework of the Gibbs model:  

 
σσσσσ

i

i

i nγASTU    [15] 

where γ is the intensive (interfacial) parameter conjugate to the extensive variable A. 

Equation [15] follows from Euler’s theorem for homogeneous functions (Appendix II), i.e. it is 

a simple mathematical consequence of the homogeneous degree one property of the excess 

internal energy function [5,36]. 

For a system in thermodynamic equilibrium  

 TTTTTT  ββααβασ , [16] 

and 

 iiiiii   ββααβασ , [17] 
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etc. This means that is not necessary to use superscripts to distinguish T, 1 … m, in the 

different equilibrium phases because these must have uniform values throughout , , ,  

and  (due to the equilibrium assumptions).  

In the two reference phases the following relationships are valid:  

 
αααα

i

i

inpVTSU   ,
 

[18a] 

and 

 
ββββ

i

i

inpVTSU   .
 

[18b] 

According to equation [15] γ is defined by 

 
σσ

1
σ ,

σ

mnnS
A

U
γ














  [19] 

Although this expression is mathematically correct, it is not really useful for practical purposes. 

Equation [15] expresses the dependence of the excess internal energy on the variables S σ, A, n1
σ
 

… nm
σ
 . This set of independent variables is not by any means the most convenient. It is usually 

preferable to use T as an independent variable instead of S. If the experiment is such that the 

external conditions are constant temperature and constant pressure, the most convenient 

potential function to use is the Gibbs free energy function, G(T,p,n1 … nm), obtained from 

U(S,V, n1 … nm) by two subsequent Legendre transformations (Appendix III): 

 αααα TSpVUG   [20a] 

and 

   TSpVUG . [20b] 

Consequently: 

 
αα

i

i

inG  
 

[21a] 

and 
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ββ

i

i

inG   .
 

[21b] 

The excess Gibbs free energy function is given as  

 
σσ

i

i

inγAG    [22] 

and γ is defined by  

 
σσ

1,

σ

mnnT
A

G
γ














 . [23] 

Unfortunately, this definition of γ is still not appropriate for experimental studies or to confirm 

experimental results since G
σ
(T,A, n1

σ
 … nm

σ
 ) remains ill-defined and arbitrary (because n1

σ
 … nm

σ
  

clearly depend on the selection of the reference systems). The Gibbs free energy function for 

the whole system can be expressed as:  

   
i

iiiii

i

ii

i

ii

i

i nnnμγAnμnμnμγAG σβασβα
. [24] 

Equation [24] indicates that γ can also be defined in terms of the Gibbs free energy function of 

the whole system as  

 

mnnpT
A

G
γ

1,,













 . [25] 

or in terms of the Helmholtz (free) energy function as 

 
mnnVT

A

F
γ

1,,

H













 . [26] 

(The Helmholtz energy or “free energy” function is defined as the Legendre transform of the 

internal energy function (FH = U – T·S ).) On the other hand ‒ still remaining in the framework 

of the Gibbs model ‒ it should be noted, that since no volume term appears in equation [15] 

there is no distinction between the surface Helmholtz and Gibbs free energies. 

According to the above discussions, G is a partly homogeneous function of degree one 

in the variables A and n1
σ
 … nm

σ
 . The expression for the total differential of G is  
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σ

,

σσσ
σ dddd

σσσ
1

σσ
1

i

i nT,AnT,nnA,n

n
A

G
A

A

G
T

T

G
G

ijmm














































.

 

[27] 

Taking into account that  













S

T

G

mnA,n σσ
1

σ



, γ
A

G

mnT,n














σσ
1

σ



, and i

nT,A ij

A

G















σ,

σ

, 

equation [27] can be written as: 

 
σσσ dddd i

i

i nAγTSG   . [28] 

We can get another expression for dG
σ
 by taking the differential of equation [22] : 

  
i

iii

i

i nnγAAγG  ddddd σσσ
 [29] 

There are thus two (general) expressions for dG (equations [28] and [29]), both of which are 

correct [5,36]. This can only be the case if  

 0ddd σσ  
i

iinγATS  . [30] 

Equation [30] is the so-called Gibbs-Duhem equation for interfaces.  

At constant temperature:  

 
i

iinγA dd σ
. [31] 

Dividing both sides of equation [31] by A yields  

  
i

ii

i

i
i Γ
A

n
γ  ddd

σ

 [32] 

where Γ
i
 is the surface excess concentration of species i. Equation [32] is commonly called the 

Gibbs adsorption equation.  

In the case of liquid/liquid interfaces the interfacial intensive parameter (γ) can be 

identified with the “interfacial tension” or “surface tension”. (Note that in case of solid/liquid 

interfaces there is some controversy in the literature concerning the correct name and meaning 

of γ [5,23,24,30,37,38].) 
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Two remarks on equation [32] are in order here: 

1. First, in the case of ionic components (charged species, electrified interface) 

“electrochemical potentials” (μ~
i
) may be used instead of “chemical potentials” in the 

corresponding equations.  

2. It follows from Equation [6] (which is the definition equation of the surface excess amounts) 

that the Γ
i
 values are uncertain, since they depend on the arbitrary selection of n and n.  

However, for comparison of model predictions with experimental observations experimentally 

determinable (“measurable”) physical quantities are required that do not depend on the size of 

the reference phases.  

The following procedure can be used for this purpose: 

At constant T and p the Gibbs-Duhem relationships for the two reference bulk phases are  

 0dα  i

i

ix   [33a] 

and 

 0dβ  i

i

ix  .
 

[33b] 

Using the above two relationships it is possible to express d
1
 and d

2
 (i.e. the differential 

changes of the chemical potentials of two selected components) as a function of the other di 

values and the mole fractions at constant temperature and pressure  

 i

i
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x

x
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1

α
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1 
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[34a] 

and 

 i

i

i

x

x

x

x
 ddd

1,2
β

2

β

1β

2

β

1
2 



 .
 

[34b] 

 

Combining equations [32],[34a] and [34b] and by taking into account that 

  ββαα1
iiii xnxnn

A
Γ 

 
[35] 
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we obtain 
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or 
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




 . [37] 

Equation [37] can be written in the simpler form: 

 iiΓγ dd
1,2i

'


 , [38] 

where Γ
i
' denotes the (relative) surface excess of component i with respect to the two selected 

components. It is obvious from equations [36] and [37] that the Γ
i
' values do not depend on the 

selection of the reference systems (that is, on the selection of n and n). As a consequence of 

the above equations, the Γ
i
' values can be determined from experimental data according to the 

following formula: 
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 [39] 

(or more exactly 
   

ijij apTiiμii
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 ,,2,12,1

'

ln

1

d
), where a

i
 denotes the relative 

activity of component i.  

Equation [38] (the Gibbs adsorption isotherm or also called the Gibbs adsorption 

equation) is one of the most important results from interfacial thermodynamics and it is used 

all the time in physical chemistry and surface science. 

The electrocapillary equation 

When dealing with heterogeneous electrochemical systems containing electrified 

interfaces the expressions derived above should be modified. In such systems, the “electrode” 

is a typical basic unit. The term "electrode" is used here to denote heterogeneous 

electrochemical systems, in which at least two phases are connected and one of them is an 
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electronic conductor or a semiconductor, the other is an ionic conductor, usually an electrolyte 

solution. 

In case of an electronic conductor (metal)/electrolyte solution interface we should take 

into account that the solvent of the electrolyte solution is not a component of the electronic 

conductor or semiconductor phase. The same may be true for other components. Let  denote 

an ionic conductor phase (e.g. an aqueous electrolyte solution) and let  denote the electronic 

conductor (or semi-conductor) phase. In the electrolyte solution component 1 (the “solvent” S) 

is e.g. water (or another component which is absent from the electronic conductor phase). We 

denote the mole fraction of this component by xS
α
 , and therefore 

 
α

S

α

1 xx  . [40] 

and 

 0β

S

β

1  xx . [41] 

On the other hand, we can select a component (constituent) M of the metal phase (component 

2), which is absent from the electrolyte solution, i.e.  

 β

M

β

2 xx   [42] 

and 

 0α

M

α

2  xx . [43] 

We can consider that in the metal phase there is a formal electrochemical (“dissociation”) 

equilibrium between atoms of metal Mi and the corresponding cations iz

iM  of ionic charge zi 

and the electrons e
–
 (i.e. we can consider these species as constituents of the metal phase). The 

condition of electroneutrality can be temporally relaxed, so, all the extensive variables 

appearing in equation [38] may be treated as independent. The electron is the only component 

besides metal ions in a pure metal phase. Of course, in case of alloys we have several 

components. According to the above equation [38] can be rewritten as 

 i

i

ii
i

x

x
Γ

x

x
ΓΓγ ~dd

1,2
β

M

β

Mα

S

α

S












 . [43] 

For “ideally polarizable” electrodes: 
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 k
k

kj

j

j
x

x
ΓΓ

x

x
ΓΓγ  ~d~dd

M

M

S

S  

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

















  , [44] 

where index j denotes components in the electrolyte solution (phase α), index k refers to 

components of the metal phase (phase β). (The term “ideally polarizable interface” is used when 

no charged component is common to both phases adjoining the (electrified) interface. 

Heterogeneous electrochemical systems that possess this property are called “ideally 

polarizable” or “ideal polarized” electrodes. The concept of ideal polarizability implies the total 

absence of charge transfer between the two adjacent phases.)  

Electrocapillary measurements, like any other electrochemical measurements, require 

the use of a complete cell containing (at least) two electrodes. In a two-electrode cell one 

electrode is the ideal polarized electrode; the other electrode is a reversible charge-transfer 

electrode, which is reversible (in the Nernstian sense) to one of the ions of the solution. This 

second electrode of the electrocapillary cell is called the indicator electrode and is usually 

denoted by the symbol IN. The particular ion of the solution to which electrode IN is reversible 

will be called the indicator ion. An electrolyte solution containing c cationic species and a 

anionic species could be prepared in many different ways. However, a general electrocapillary 

equation can be derived if we assume that the ions of the solution are furnished by neutral binary 

salts [5,10,13]. Of the c × a different binary salts that could be chosen, we shall select c + a – 1 

binary salts in the following way: If the indicator electrode IN is reversible to cation j’, we 

arbitrarily select an anion, say k’. If the indicator electrode is reversible to anion k’, we 

arbitrarily select a cation, say j’. In either case we have selected a binary salt containing ions j’ 

and k’. We call this salt the indicator salt. The electrolyte solution is then considered to have 

been made up by dissolving c + a – 2 additional binary salts of which c – 1 have anion k’ in 

common with the indicator salt; the remaining a – 1 salts have cation j’ in common with the 

indicator salt [5,10,13]. Thus the Gibbs adsorption equation for an ideally polarizable electrode 

and for the cation-reversible indicator electrode at constant temperature T and pressure p can 

be given in the following form [5,13,28,39]:  
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ddddd M

, [45] 
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where γ  is the interfacial intensive parameter, qM is the charge density on the metal side of the 

interface, E+ is the electrode potential with respect to the cation-reversible indicator electrode, 

subscript i indicates the components (metals) in the metallic phase (a single phase alloy), 

subscript h designates the neutral molecular species in the solution, the z-s are the ionic charges, 

the Γ and μ values are the surface excesses and chemical potentials of the various components, 

respectively, and the  -s indicate the number of moles of cations (or anions) per formula weight 

of the salt.  

The above equation or more generally, the equation 
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 [46] 

is usually called the “electrocapillary equation”. Equations [45] and [46] can sometimes be 

written in somewhat simpler forms [1]. However, even in the case of a very simple system the 

Gibbs adsorption equation could take various forms depending on the choice of independent 

components, the indicator electrolyte and the indicator ion. 

From equations [45] and [46] 

 M

,,,

q
γ

kjTp
















 , [47] 

where  

 k

k

kj

j

j ΓzFΓzFq  M . [48] 

Equation [47] is usually called the Lippmann equation [1,5,13,39].  

A simple illustrative example for the application of the electrocapillary equation 

We consider a planar interface between two homogeneous phases. The phase β is 

supposed to be a pure liquid metal (e.g. mercury) thought to dissociate into metal ions M+ and 

electrons e–. Let phase  be an electrolyte solution with cations K+ and anions A– (originating 

from the dissolved salt, KA) in a not dissociated solvent L. Let the interface between the two 

phases be. The amounts of a component i in the two bulk phases and in the interphase are ni
, 
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ni
 and ni

σ, and the (total) chemical amounts of M+, e–, K+ and A– in the whole system are nK+ , 

nA– , nM+ , ne–, respectively. 

The total differential of the (excess) internal energy of the interface is  

 
σσσσ d~ddd i

i

i nAγSTU    , [49] 

with the intensive interfacial parameter γ. The Gibbs–Duhem equation can be written as  

 0~ddd σσσ  
i

iinγATS   , [50] 

Electroneutrality in the bulk phases and in the whole system corresponds to 

 
α

A

α

K   xx  , [51a] 

 
β

e

β

M   xx  , [51b] 

and 

 
0

eMAK
  nnnn . [52] 

The excess amounts in the interface can be calculated with the help of the following material 

balance equations: 
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 α
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At constant temperature the Gibbs adsorption equation can be written as:  
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In (electro)chemical equilibrium, the electrochemical potentials     zF~  are constant 

across the system for each species (F is the Faraday constant, the superscript indicates the 

corresponding phase). Consequently 
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The Gibbs–Duhem equations for the bulk phases at constant T and p have the following forms: 
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From equations [50]–[64] one obtains 
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The change in the potential difference between the two phases can only be measured in an 

electrochemical cell containing a reference electrode. If the reference electrode is reversible 

with respect to the anion A–, the change in the (measurable) electrode potential can be 

expressed as 

    βαβ

e

α

A
ddd

1
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F
. [66] 

Combining equation [65] with equation [66], we find after some algebra, 
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with the relative surface excess of the cation on the solution side and the surface charge qM on 

the metal side. Thus, the Lippmann equation can be written as follows: 
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Appendix I. Homogeneous functions 

A homogeneous function is a function of one or several variables that satisfies the 

following condition [5,36,40]: when all independent variables of a function are simultaneously 

multiplied by the same (arbitrary) factor, the value of the function is multiplied by some power 

of this factor. That is, if 

    m

n

m xxxfkkxkxkxf ,,,,,, 2121    (A.I.1) 

for all k > 0, then f is said to be a homogeneous function of degree n. The degree n can take on 

any value (positive, negative, or zero). A function f is linearly homogenous if it is homogeneous 

of degree 1. If for a function f the equation 

    wm

n

wm yyxxfkyykxkxf ,,,,,,,,,, 1111    (A.I.2) 

is true then we say that this function is homogeneous of degree n in the variables x
1
, x

2
, …, x

m
. 

Such functions are called partly (or partially) homogeneous functions [5,36,40,41]. A function 

f is called “partly homogeneous” of degree 1 in terms of m among m+w variables if  

     )0(,,,,,,,,,, 1111  kyyxxkfyykxkxf wmwm   (A.I.3) 

i.e. the function f is homogeneous of degree one with respect to certain variables (x
1
, x

2
, …, x

m
), 

but not homogeneous with respect to all of the variables. These functions are important as they 

are frequently encountered in thermodynamics.  

Appendix II. Euler's theorem 

Euler's theorem states that, the differentiable function f of m variables is homogeneous 

of degree n then the following identity holds 
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It can be shown that the converse theorem also holds, that is if the function f of the real variables 

x
1
, x

2
, …, x

m
 satisfies the identity (A.II.1), then the function f is homogeneous of degree n 

[5,36,40].  

Appendix III. Legendre transformation 

Let f (x
1
, x

2
, …, x

m
) an arbitrary analytic function of variables x

1
, x

2
, …, x

m
. The 

differential of f is:  
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Consider a new function g of the variables p
1
 and x

2
, x

3
,…,x

m
: 

   )(,,),(),,,( 11121121 pxpxxpxfxxpg mm   , (A.III.2) 

where 
1

1
x

f
p




 . A necessary condition is the existence of a one to one relation between p

1
 and 

x
1
; that is, the function p

1
(x

1
, x

2
, … , x

m
) can be inverted to give x

1
( p

1
). 

Note, that the transformation (A.III.2) is often called the “negative Legendre transform”, and 

the Legendre transform is then defined as:    mm xxpxfpxpxxpg ,,),()(,,, 21111121    

[5,36,40,42,43]. 
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Nomenclature 

Symbols and Units 

A   area of the interface 

iz

iA     cation of ionic charge zi  

ci
α
, ci

β
   concentrations of component i in phases  and  

e
–
    electron 

E   electrode potential 

E+   electrode potential with respect to the cation-reversible indicator electrode 

F   Faraday constant 
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FH   Helmholtz (free) energy 

G   Gibbs energy 

Mi    atoms of the metal i 

iz

iM    cation of ionic charge zi  

i   index denoting the component i 

j    index denoting components in the electrolyte solution 

k   positive real number, or index denoting components of the metal phase  

ni    total amount of component i in the system 

n
i
   surface excess amount of component i 

n
σ
    the total surface excess amount of adsorbed substance  

p   pressure 

q   surface charge density 

S   entropy 

T   temperature (K) 

U   internal energy 

V   volume (in general), volume of the system 

V
α
, V

β
   volumes of the two reference systems 

V

    volume of the interfacial layer 

X     surface excess of any extensive property X 

x
i
 , x

i
   mole fractions of component i in phases  and  

xS
α
    mole fraction of the solvent (component S) in phase α (electrolyte solution) 

x
M

β
    mole fraction of component M in phase β (the metal phase) 

zi charge number 

,  symbols designating the homogeneous reference phases, or superscripts, 

indicating quantities referring to the reference phases 

, β symbols designating the two homogeneous bulk phases in the “real” system 

γ intensive parameter conjugate to the surface area (surface tension, interfacial 

tension) 

Γ
i
  the surface excess concentration of species i 

Γ
i
'  the (relative) surface excess of component i  

 superscript, indicating the corresponding phase 
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μi chemical potential of component i 

μ~
i
   electrochemical potential of component i 

   number of moles of cations or anions per formula weight of a salt 

σ symbol designating the Gibbs dividing surface, or superscript, indicating excess 

quantities referring to the Gibbs surface 

τ thickness of interphase (“interface layer”) 

 

Abbreviations and Acronyms 

IN   indicator electrode 
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