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Abstract: Forward modeling of diffraction peaks is a potential way to compare the results of
theoretical mechanical simulations and experimental X-ray diffraction (XRD) data recorded during
in situ experiments. As the input data are the strain or displacement field within a representative
volume of the material containing dislocations, a computer-aided efficient and accurate method to
generate these fields is necessary. With this aim, a current and promising numerical method is based
on the use of the fast Fourier transform (FFT)-based method. However, classic FFT-based methods
present some numerical artifacts due to the Gibbs phenomenon or “aliasing” and to “voxelization”
effects. Here, we propose several improvements: first, a consistent discrete Green operator to
remove “aliasing” effects; and second, a method to minimize the voxelization artifacts generated by
dislocation loops inclined with respect to the computational grid. Then, we show the effect of these
improvements on theoretical diffraction peaks.

Keywords: dislocations; diffraction; fast Fourier transform (FFT)-based method; discrete green
operator; voxelization artifacts; sub-voxel method; simulated diffraction peaks; scattered intensity

1. Introduction

X-ray diffraction (XRD) is one of the most powerful non-destructive tools to investigate materials,
as their wavelength is commensurate with the distance between atoms within a crystal [1–9].
Successive improvements of both the X-ray sources (from X-ray tubes to third generation synchrotrons)
and detectors (from photographic plates and gas counters to fast two-dimensional arrays) have led to
a tremendous increase in the quantity of data recorded per unit time, allowing real time in situ or in
operando measurements [10,11]. It is now possible to determine the 3D grain microstructure of a bulk
material with a submicron resolution (using topo-tomography), to follow the evolution of the elastic
strain state of the grains of a polycrystal during mechanical tests (3D-XRD, far field diffractometry),
or to measure the distribution of strains within a few grains in real time (2D diffractometry) [12,13].
Such experiments result in terabytes of data recorded within a few days, which need to be analyzed
efficiently. In fact, only a low fraction of those data is actually treated because scientists lack both time
and numerical tools (software) for further analysis [14].

The classical techniques used to analyze the 1D or 2D diffraction patterns recorded during
tests performed on polycrystalline specimens such as the Rietveld method, the square sines
method to measure internal stresses, or CMWP (convolutional multiple whole profile) fitting for
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dislocations content often rely on simplified and mathematically tractable models of a microstructure.
Calculations which may involve a simplifying hypothesis lead to a general formula which can be used
to fit one or several parameters of the microstructure (dislocation densities and type, internal stress
tensor etc.) to the diffraction pattern (peak profiles, variation of the 2θB angle with orientation etc.).

During the last 10 years, several authors proposed the opposite approach: forward modeling [15–22].
This requires the design of a microstructure and the simulation of its behavior (often under process or
thermo-mechanical solicitation), and the computation of the elastic strain field or the displacement
field. The last step is the generation through a ‘virtual diffractometer’ of a theoretical diffraction pattern
(different G vectors and different orientations of the lattice planes), which can be compared with the
experimental one. Depending on the size of the simulated representative volume of matter and the
experimental conditions such as the X-ray beam coherence, different assumptions can be made such
as a coherent beam (where the amplitudes scattered by different points add) or an incoherent beam
(scattered intensities add), or for a partially coherent beam where a full calculation may be necessary.
Such modeling can be quite successful and can be used to validate the different steps involved, mainly
the microstructure and the constitutive law used to simulate the material’s behavior.

However, as diffraction peaks contain information on different scales of a specimen: from average
quantities such as Type I (average) stresses related to the peaks’ positions, Type II (at grain level)
stresses related to its width, and Type III stresses (near the core of defects such as dislocations) related
to the peaks’ tails, a realistic simulation of a diffraction peak requires a description of a material’s
representative volume element with a very fine mesh, i.e., a huge amount of CPU time with classical
methods used for simulations such as the finite element method.

Numerical approaches based on the fast Fourier transform (FFT) for calculating the stress and
strain fields within a composite material received a surge of interest since the pioneering work
of Moulinec and Suquet [23,24]. They were first developed to compute effective properties and
mechanical field of linear elastic composites [23–26] and were extended to heterogeneous materials
with eigenstrains (dislocations, thermal strains etc.) [14,27–30]. They are also used for conductivity
problems [31], non-linear materials [25,27], and viscoplastic or elasto-viscoplastic polycrystals [32–36].
Today, FFT-based approaches represent an attractive alternative to the finite element method because
of lower computation time [32].

However initial tests indicate that the displacement field computed (essential for diffraction
pattern generation) with FFT algorithms presents some numerical artifacts. These numerical artifacts
are due to Gibbs phenomenon or “aliasing” and to voxelization. The accuracy of the calculated strain or
displacement field is strongly influenced by these shortcomings and the simulated peaks may provide
wrong information on mechanical behavior or material characteristics. Therefore, it is important to
control these artifacts in order to simulate correct diffraction pattern in the case of a microstructure
containing different phases, grains, and crystal defects.

The aim of this paper is to improve the accuracy of the displacement field for diffraction peak
generation. This improvement is based on the introduction of a consistent discrete periodized
Green operator associated with the displacement field in order to take explicitly into account the
discreteness of the discrete Fourier transform method [37]. The improvement of the voxelization
in FFT-method is performed through a sub-voxelization method described for inclined dislocation
loops. These improvements are reported and discussed in the present contribution. In the Section 2,
the FFT-based method to compute the displacement field in a periodic medium is described.
In Section 3, the treatment of voxelization problems in FFT-based approaches by a sub-voxelization
method is detailed in the case of slip plane not conforming to FFT grid. In the Section 4, simulation of
diffraction peaks is reported and discussed.
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2. Fast Fourier Transform (FFT)-Based Numerical Calculation of the Displacement Field and
Periodized Green Operators

2.1. FFT-Based Algorithm and Mechanical Fields

Let us consider a homogeneous elastic medium with eigenstrain assuming a periodic unit cell
discretized in N × N × N voxels and subjected to a uniform overall strain tensor denoted E. Here, this
overall strain is the spatial average of the strain field in the unit cell (with external loading and a given
eigenstrain field). The unit cell may contain voxel size defects (0D) such as chemical inhomogeneities,
line defects (1D) with arbitrary shape and distribution, planar (2D) defects such as stacking faults,
or 3D precipitates which are all modeled with an eigenstrain tensor. (See [14].) These defects create a
displacement field and thus generate strain and stress fields [38].

The displacement vector is denoted u and in the forthcoming equations, x denotes any position
vector within the unit cell. All vector and tensor fields will be written using bold characters.

Starting from the equation for mechanical equilibrium, div σ(x) = 0, and using field equations
(strain compatibility, generalized Hooke’s law, decomposition of total strain compatible strain into
elastic strain and eigenstrain), the displacement field is given at every position by the Green’s function
technique [39]:

u(x) =
(

B ∗ c0 : ε∗
)
(x) (1)

where the symbol ∗ denotes the spatial convolution product, c0 is the homogeneous linear elastic
stiffness, ε∗ is the eigenstrain field and B is a third order Green operator defined in Fourier space as:

B̂ijk(ξ) =
i
2

(
Ĝijξk + Ĝikξ j

)
(2)

in which B̂ is the Fourier transform of B and Ĝ is the Fourier transform of the elastic Green tensor [39].
Therefore, using the Fourier transform of spatial convolution product, Equation (1) can be written in
Fourier space as:

û(ξ) = B̂(ξ) : c0 : ε̂∗(ξ) (3)

Several numerical results showed that the use of the third order operator B̂ derived from the
classic Green Ĝ leads to spurious oscillations on the computed displacement field near materials
discontinuities and dislocations [37]. The discrete Fourier transform (DFT) used in this algorithm
indeed transforms a periodic function in real space into a periodic function in reciprocal space.
However, the operator B̂ commonly used is the continuous analytic operator truncated to the size
of the unit cell of the reciprocal space: it is not periodic function. To fix this problem, we very
recently developed a periodized consistent discrete Green operator using the DFT. The mathematical
derivations of this discrete Green operator are given elsewhere [37]. The Fourier transform of this
discrete Green operator denoted B̂′ is written as function of B̂ and reads:

B̂
′(

ξijk

)
= Aijk

+∞

∑
m,n,p=−∞

(−1)m+n+p

(mN + i)
1

(nN + j)
1

(pN + k)
B̂
(

ξmN+i,nN+j,pN+k

)

With Aijk =

(
N
π

)3
sin
(

iπ
N

)
sin
(

jπ
N

)
sin
(

kπ

N

)
(4)

Discrete frequencies appearing in this equation are given when N is even by (T is the period of
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Here, the sum on the B̂ operator is extended to the whole reciprocal space (in practice for m, n, p
up to a few tens) and folded up onto the unit cell of the DFT with suitable coefficients. The inverse
transform of û(ξ) gives the displacement field at the center of each voxel.

We can also compute the displacement field at each voxel’s corner with a shifted operator using
the shift theorem:

B̂′
′(

ξijk

)
= Aijkepπ

i+j+k
N

+∞

∑
m,n,p=−∞

1
(mN + i)

1
(nN + j)

1
(pN + k)

B̂
(

ξmN+i,nN+j,pN+k

)
(5)

2.2. Numerical Examples

Let us consider a homogeneous material with isotropic elastic constants: Young’s modulus
E = 333.4 GPa and Poisson ration ϑ = 0.26. This approximately corresponds to the room temperature
elastic constants of single crystalline Ni-based superalloys. The unit cell (Figure 1a) is discretized
in 128× 128× 128 voxels and contains a square-shaped inclusion discretized in 32× 32× 1 voxels
corresponding to an Eshelby-like square prismatic loop perpendicular to the z-axis. In order to generate
a shift of the upper surface of the inclusion relative to its lower surface by a Burgers vector b(0, 0, b3),
only the voxels within the inclusion are submitted to a non-zero eigenstrain tensor defined as: ε∗ij = 0
except ε∗33 = 1. Then, we have b3 = t× ε∗33 where t the thickness of the inclusion in the z-direction (i.e.,
the voxel size). This displacement field computed with the FFT algorithm using the different Green
operators defined in Section 2.1 is represented along z-axis in Figure 1.
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Figure 1. (a) Simulation of a square dislocation loop in plane (001) by a platelet with eigenstrain;
(b) component u3 of the displacement field (normalized by b3) along the z axis (arrow) computed with
the Green operator B and showing spurious oscillations; (c) same component u3 computed with B′.
The displacement at voxel (64,64,64) is zero in the center of the inclusion (c) and b3/2 on its surface;
(d) same component u3 computed with B′′ .
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When computed along a line crossing a dislocation loop, the displacement field exhibits
a discontinuity with a jump equal to Burgers vector b. This is indeed observed in Figure 1.
However, the displacement field computed with the usual Green operator B (Figure 1b) also shows
spurious oscillations as soon as the discontinuity is approached. These oscillations (numerical artifacts)
are not observed with the periodized operators B′ and B′′ . An artificial damping of the oscillations in
Figure 1b (such as a low pass filtering) might smooth these oscillations, but it would also smooth the
discontinuity, which is not searched.

2.3. Voxelization Effect on the Displacement Field

While the displacement field computed for dislocation loops having their planes parallel to the
faces of the simulated volume is correctly given with discrete Green operators B′ or B′′ , voxelization
artifacts appear for inclined loops, as shown with B′ in Figure 2 for a dislocation loop with a

[
011
]

Burgers vector lying in a (111) slip plane of a fcc crystal. The eigenstrain tensor is constrained in the
region occupied by the dislocation loop (transformed voxels) and is given by:

ε∗ij =
As

2V
(
nibj + njbi

)
(6)

where As is the area on which planes with normal n(n1,n2, n3) has slipped by a relative amount
b(b1,b2, b3) and V is the volume occupied by the dislocation loop [40,41]. As before, the dislocation
loop is 32 voxels wide in the x and y directions, and 1 voxel thick but now with a z position such that
x + y + z = constant. The displacement has been computed at the center of voxels with the periodized
operator B′ along z (Figure 2b). As in Figure 1c, the displacement in the center of a voxel belonging to
the loop plane (black dot in the reddish transformed voxel in Figure 2b) is zero. The displacement in
the first neighboring voxels (red dot in Figure 2b) are shifted relative to the expected position, so that
the displacement difference between these voxels is significantly lower than b, see Figure 2c. It can be
checked in Figure 2b that each of these voxels shares three faces with a transformed voxel. A more
detailed analysis shows that the second neighbors (which share three edges with transformed voxels)
are also slightly shifted in the opposite direction. The result is shown in Figure 2d with: a strong
localized oscillation of the phase (taken here as the displacement modulo b).

Although the amplitude of this shift is small (less than 10% of the Burgers vector) it has unwanted
consequences on the diffraction peak simulation:

The dislocation loops are surrounded by four impaired layers of voxels: As the scattered X-ray
amplitude is proportional to the Fourier transform of G·u (see Equation (8) in Section 4), we can expect
a phantom streak in the intensity in a direction perpendicular to the loop plane.

The displacement field near the edges of the loop (near the dislocation line) will be quite different
from its expected value, and the strain field will not vary with the distance r to the dislocation line as
1/r. This will strongly affect the tails of the diffraction peaks.
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Figure 2. (a) Modeling of a dislocation loop in a (111) plane as a layer of voxels with eigenstrain;
(b) position of the computed points relative to the transformed voxels with eigenstrains; (c) plot of
the displacement field u3 (normalized by b3) along the z direction for the dislocation loop of Figure 2;
(d) local oscillation of the phase due to the voxelization of the dislocation loop (the representation is
made for 32 voxels centered in the unit cell along z direction). The red line is approximately equal to
the phase expected for this displacement field.

3. Sub-Voxelization Method to Correct Voxelization Artifacts

3.1. Sub-Voxelization Method

The (conceptually) simplest way to remove this voxelization artifact would be to work on a
multiple grid (to multiply the number of voxels along each direction by 2, 4, or more), then to
downsample the displacement field data. In that case, FFT algorithms would lose much of their
interest due to these more demanding computational efforts. We show below that this can be done in a
more “economical”—and simple—way by applying a patch to the FFT-computed displacement field.
The basic method is to compute, on the same grid, the difference vector:

∆i(x) = usub
i (x)− uhom

i (x) (7)

where usub
i (x) is the displacement vector calculated for voxels where this eigenstrain is concentrated

on a single plane of sub voxels (Figure 3b) and uhom
i the displacement field in direction i of voxels with

a uniform eigenstrain (Figure 3a). For the sake of clarity, we use 2D diagrams in Figure 3, but here the
technique is applied to real 3D problems.
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Figure 3. 2D representation of a dislocation loop in a tilted plane on a (8× 8) fast Fourier transform
(FFT) grid: (a) with a homogeneous eigenstrain ε∗ in the voxels occupied by the dislocation loop;
(b) with each voxel subdivided into 4 × 4 sub-voxels, only 4 of which have a 4 ε∗ eigenstrain field.

In order to compute the displacement due to sub-voxels, we use a N × N (N × N × N) grid for
2D (resp. 3D) problems where each voxel can be subdivided into n× n (n× n× n) sub voxels. Only n
(n× n) sub voxels are submitted to an eigenstrain field. At a point A of the grid (black dots, Figure 4a),
we need to compute the sum of the displacements uj

i due to the n (n× n) sub voxels j (center Bj) within
a voxel centered at point O. This sum is equivalent to the sum of the displacements due to a strained
sub voxel at point O on the grid points Aj such as OAj = BjA (Figure 4b). It is also equivalent to the

sum of the displacements u′ji due to a full voxel at point O on the initial grid on points A′j such as OA′j
= nBjA (Figure 4c). The only difference between these last two sums is due to the long-range strain
field, and approximately results in a linear drift of the displacement. As the end of the vectors OA′j
does not lie on the grid points (voxel centers) but on the corners of the voxels, the u′ji displacements

must be calculated with the shifted operator B′′ (Equation (5)). A last point is the scaling of the uj
i

and u′ji sums during the operations of Figure 4. To keep the one Burgers vector jump between both
sides of the sub voxels plane in Figure 4a, the eigenstrain in the sub voxels must be multiplied by n.
The backwards change of scale requires a division by n: there is no scaling factor between uhom

i and

usub
i = ∑ u′ ji .
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Figure 4. (a) 2D representation of the computational grid. The black dots correspond to the voxels
centers. A voxel with center O is discretized in 4× 4 in 2D (4× 4× 4 in 3D) sub-voxels. The red
sub-voxels have a non-zero eigenstrain. We want to compute the displacement field at point A, due to
these deformed sub-voxels centered at Bj. (b) Displacement field generated by a deformed sub-voxel
centered at O on a row of sub-voxels centered at Bj such as OAj = BjA. The sum of these displacements
is equal to the previous displacement field. (c) Displacement field generated by a deformed voxel
centered at O on a row of voxels (computed at the corners A′j using Green operator B′′ ) such as OA′j
= nBjA. This sum is equal to the previous sum.

We need to compute ∆ij_pl(x) the difference in displacement in direction i due to a voxel which
belongs to the plane “pl” (for fcc “pl” is equal to (111),

(
111
)
,
(
111
)
,
(
111
)
) of a dislocation loop with a

Burgers vector j at a position x relative to the transformed voxel. In practice, in a material with cubic
symmetry, it is sufficient to compute ∆13_(111)(x) and ∆33_(111)(x), and to use the symmetries of the
cube (fourfold [001] axis, threefold [111] axis, and

(
110
)

symmetry plane) (and suitable exchanges
of the components of x) to obtain the required components. As can be seen in Figure 2b, ∆ij_pl(x)
is non-zero only for the neighbors of the transformed voxel, except the drift due to the long range
strain alluded above. The final computational procedure to determine ∆ij_pl(x) and use the patch is
now detailed:

Compute the field c0 : ε∗ defined in Equation (1) for an isolated voxel with the eigenstrain
associated to a dislocation loop (Equation (6)) with a Burgers vector [001] in a (111) plane (see Figure 2).

Compute the displacement field in directions x (uhom
1 ) and z (uhom

3 ) at the voxels’ center around
the transformed voxel by convolution with the discrete periodized operator B′ (Equation (4)).

Compute the displacement field in directions x and z at the voxels’ corners around the transformed
voxel by convolution with the shifted operator B′′ (Equation (5)).

Calculate the usub
1 = ∑ u′j1 and usub

3 = ∑ u′j3 sums (n× n terms for each sum) as in Figure 4c, then
the raw ∆13_(111)(x) and ∆33_(111)(x) for (x1, x2, x3) going from −3 to 3 times the voxel size t.

Use the farthest voxels to correct the drift of the components so that all terms for large x are zero,
and keep non zero only the terms for the first three neighbors.

The patch can then be applied on the raw (FFT-based) displacement field by adding the
convolution of all transformed voxels of the different slip systems by the relevant ∆ij_pl(x).
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3.2. Results

For numerical tests, we used the same 128× 128× 128 grid as before, and the transformed voxel
was divided into 8 × 8 × 8 sub voxels (using a reference medium with the same elastic constants as
before). Only the final values in units of b (after drift correction) of ∆13_(111)(x) and ∆33_(111)(x) are
used and other components are obtained by symmetries (Appendix A).

The patch was used on the same configuration as in Figure 2. Figure 5a shows the resulting
displacement field and Figure 5b the phase (i.e., the displacement modulo a Burgers vector) in Burgers
vector units. As it can be observed from Figure 5a, the voxelization artifacts of the displacement field
are removed thanks to the sub-voxelization method. In addition, the resulting phase varies smoothly
even during the crossing of the dislocation loop which is more realistic, see Figure 5b.
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Figure 5. (a) Plot of the displacement field u3 (normalized by b3) along the z direction for dislocation
loop illustrated on Figure 2. The voxelization artifacts are removed by the sub-voxel method described
above. (b) The phase (i.e., the displacement modulo a Burgers vector). With this correction, the phase
is almost continuous.

4. Application on Diffraction Peak Simulation

In this section, we show simulated diffraction peaks in order to point the effects of voxelization
artifacts and of the patch on numerical results. Under kinematical conditions and assuming a coherent
beam, the amplitude of a diffracted wave at a position q in the vicinity of a reciprocal G lattice vector
is [14,18,42–44]:

A(q) = FT[A0(x)× F(G, x)× exp(−2iπ G·u(x))] (8)

where x is the position of the scattering atom, A0(x) is the amplitude of the incidence wave, F(G, x)
is the local structure factor, and u(x) the displacement field. The scattered intensity is I(q) = |A(q)|2.
For a face-centered cubic crystal, this intensity is non zero when G (h, k, l) is such as h, k, and l have the
same parity. Here two diffraction vectors G (200) and G (002) are used. They respectively correspond
to G·b = 0 and G·b = 1. The 3D diffracted intensity has been calculated using the FFT instead of the
continuous Fourier transform, then summed in the planes perpendicular to the G vector to obtain a
linear plot along G equivalent to a I(2θ) plot. In Figure 6a (G (200)) and Figure 6c (G(002)), we show
the diffracted intensity (logarithmic scale) as a function of the pixel position i, and in Figure 6b,d a
logarithmic/logarithmic plot of the intensity vs. |i− i0| where i0 is the center of the peak. In order to
only study the effect of the displacement fields, we set A0(x) = 1 and F(G, x) = 1 for these simulations.
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Figure 6. Simulated diffracted intensity as a function of the pixel position (logarithmic scale).
3D configuration is represented in a 1D plot by making the sum in each plane along an x-axis.
Different way for computing the displacement fields are studied for a dislocation loop with a a
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[
011
]

Burgers vector lying in a (111) slip plane. (a) Diffracted vector studied is G (200) corresponding
to G·b = 0. (b) Log/log representation of the intensity vs. |i− i0|. (c) and (d) same as (a) et (b) but the
studied diffracted vector is G (002) (G·b = 1).

The peak shape near the top of the peaks is the same for both computing methods. It is perfectly
symmetric in the G·b = 0 case and exhibits a bump on the right side for G·b = 1. The long-range behavior
is, however, quite different. When the displacement field has been calculated with the usual truncated
operator (black line), a phantom peak is observed at large |i− i0| (at large q), which is due to the short
period oscillations near the displacement field discontinuity (Figure 1a). The behavior of the peak
calculated with the modified Green operator (red curve) is only slightly better: the intensity at large q
is underestimated in one case and overestimated in the other. When the intensity has been calculated
with the sub voxel patch (dark blue curve) the long range intensity follows the expected I0|i− i0|−3

law [45,46]: the peak tails are indeed related to the highly distorted zones near the dislocations’ cores.
However, the dark blue curve saturates at very large q. We suppose this is due to the use of the FFT
instead of the continuous Fourier transform in the calculation of the scattered amplitude (Equation (8)).
The plot of Figure 6 represents only one period in Fourier space, and is repeated over and over on all
Fourier space. We can now calculate the intensity of the tails of these repetitions:

Ineib. = ∑ I0|i− i0 − 128m|−3 (9)

where m varies from −5 to 5 (zero excluded). If we now plot the difference between the dark blue
intensity curve and this background line, we obtain the pink curve. On the log./log. plots, Figure 6b,d,
it can be checked that this curve follows the I0|i− i0|−3 law to the end. Thus, the residual error in the
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intensity computed by FFT results of the FFT itself, and not from an error on the sub voxel-corrected
displacement field. If the number of voxels is increased to 5123 or 10243 while keeping the physical
size of the representative volume constant, this residual error should fall down to undetectable levels.

5. Conclusions

In this paper, we have shown that although the use of a periodized Green operator in the
FFT-based method improves the final displacement field solution in a representative volume containing
discontinuities (dislocation loops), artifacts due to the voxelization of the dislocation loop planes are
still present with respect to analytical solutions. These artifacts have unwanted consequences on the
tails of diffraction peaks simulated by using this displacement field as input data.

We have introduced a patch through a sub-voxelization method, which corrects these artifacts by
simulating the displacement field without employing a finer grid resolution. A simple construction
method for this patch has been given and the patch can be used in a single post-processing step to
modify the initial FFT-based displacement field.

The modified displacement field has been used to simulate one-dimensional diffraction peaks.
The procedure strongly improves the shape of the peaks’ tails, i.e., it gives a good description of the
displacement field and the phase near the dislocation lines.
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Appendix A

∆33_(111)(x1, x2, x3) and ∆13_(111)(x1, x2, x3) have these symmetries due to the permutation
properties of the plane (111):

∆33_(111)(x1, x2, x3) = ∆33_(111)(x2, x1, x3)

∆33_(111)(x1, x2, x3) = −∆33_(111)(−x1,−x2,−x3)

∆13_(111)(x1, x2, x3) = −∆13_(111)(−x1,−x2,−x3)

The others values of ∆ij_(111)(x) are given as function of ∆33_(111)(x1, x2, x3) and
∆13_(111)(x1, x2, x3):

∆11_(111)(x1, x2, x3) = ∆33_(111)(x3, x2, x1) ∆12_(111)(x1, x2, x3) = ∆13_(111)(x1, x3, x3)

∆22_(111)(x1, x2, x3) = ∆33_(111)(x1, x3, x2) ∆31_(111)(x1, x2, x3) = ∆13_(111)(x3, x2, x1).

∆32_(111)(x1, x2, x3) = ∆13_(111)(x3, x1, x2) ∆21_(111)(x1, x2, x3) = ∆13_(111)(x1, x3, x2)

∆23_(111)(x1, x2, x3) = ∆13_(111)(x2, x1, x3)
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The value of ∆33(x1, x2, x3) and ∆13(x1, x2, x3) for the remaining plane
(
111
)
,
(
111
)
,
(
111
)

are
obtained using these symmetries:

∆33_(111)(x1, x2, x3) = ∆33_(111)(x2,−x1, x3)

∆13_(111)(x1, x2, x3) = ∆13_(111)(−x1, x2, x3)

∆33_(111)(x1, x2, x3) = ∆33_(111)(−x2, x1, x3)

∆13_(111)(x1, x2, x3) = ∆13_(111)(x1,−x2, x3)

∆33_(111)(x1, x2, x3) = −∆33_(111)(x2, x1,−x3)

∆13_(111)(x1, x2, x3) = −∆13_(111)(x1, x2,−x3)
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