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ABSTRACT.  The pyrolysis of four biomasses (corn stalk, rice husk, sorghum straw and wheat straw) 

was studied at different temperature – time functions in inert gas flow by thermogravimetric analysis 

(TGA).  Linear and stepwise heating programs were employed.  A distributed activation energy model 

(DAEM) with three pools of reactant (three pseudocomponents) was used due to the complexity of the 

biomass samples of agricultural origin.  Compensation effects were observed between the kinetic 

parameters similarly to the works of other investigators.  The compensation effects result in ambiguous 

parameter values hence they were eliminated by decreasing the number of the unknown parameters.  For 

this purpose part of the kinetic parameters was assumed to be the same for the four biomasses.  This 

approach also helps to express the similarities of the samples in the model.  The sixteen experiments 

were evaluated simultaneously by the method of least squares to obtain dependable kinetic parameters.  
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The resulting models described well the experimental data and were suitable for predicting experiments 

at higher heating rates.  The checks on the prediction capabilities were considered to be an essential part 

of the model verification. 

Keywords: Corn stalk; rice husk; sorghum; wheat straw; thermal decomposition; kinetics; prediction. 

 

1. Introduction 

There is a growing interest in biomass fuels and raw materials due to climatic change problems.  The 

thermal decomposition reactions play a crucial role during several of the biomass utilization processes.  

Thermogravimetric analysis (TGA) is a high-precision method for the study of the pyrolysis at low 

heating rates, under well defined conditions in the kinetic regime.  It can provide information on the 

partial processes and reaction kinetics.  On the other hand, TGA can be employed only at relatively low 

heating rates because the true temperature of the samples may become unknown at high heating rates. 

TGA has frequently been employed in the kinetic modeling of the thermal degradation of biomass 

materials.  Due to the complex composition of biomass materials, the conventional linearization 

techniques of the non-isothermal kinetics are not suitable for the evaluation of the TGA experiments. 

Therefore the TGA experiments of biomass materials are usually evaluated by the non-linear method of 

least squares (LSQ), assuming more than one reaction.1-18  

The biomass fuels and raw materials contain a wide variety of pyrolyzing species.  Even the same 

chemical species may have different reactivity if their pyrolysis is influenced by other species in their 

vicinity.  The assumption of a distribution on the reactivity of the species frequently helps in the kinetic 

evaluation of the pyrolysis of complex organic samples.19  The distributed reactivity is usually 

approximated by a Gaussian distribution of the activation energy, though other approaches are also 

available.19  Distributed activation energy models (DAEM) have been used for biomass pyrolysis 

kinetics since 1985, when Avni et al. applied a DAEM for the formation of volatiles from lignin.20  
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Later this type of research was extended to a wider range of biomasses and materials derived from 

plants, including several studies on tobacco devolatilization.21-32 

Despite the complicated mathematics of this type of modeling, the works based on DAEM kinetics 

have frequently employed more than one parallel reaction.  The resolution of the overlapping curves by 

parallel DAEM reactions and the finding of a good fit were achieved by a trial-and-error parameter-

search in several studies.24,25,28,33  Burnham et al. reported a versatile computer software in 1987 that 

was capable for the determination of the unknown model parameters by nonlinear regression.34  The 

same software was also able to determine discrete, empirical distribution functions for the activation 

energy during the evaluation of non-isothermal experiments. 

Holstein et al.35 and de Jong et al.28 reported a strong compensation effect between the parameters of 

the Gaussian DAEM.  As de Jong et al.28 wrote:  “... it is more advantageous to fit A, E0, and σ values to 

experimental data using a trial-and error approach. Non-unique solutions are usually found as a result of 

this fitting procedure, which is due to the so-called compensation effect. In other words, different pairs 

of kinetic parameters provide an equally good fit to experimental data. For this reason, the values of pre-

exponential factors are often fixed, and selected ... so that they are consistent with the transition-state 

theory (A  1011–1016 s-1).”  The ill-conditioned behavior of the DAEM model was confirmed by other 

investigations, too.  For example, a ca. 10% change in E0 can be well compensated by a proper change 

of the corresponding distribution width and pre-exponential factor.31 

Várhegyi et al.23,31-32 and Becidan et al.29 based DAEM kinetic studies on the simultaneous evaluation 

of experiments with linear and stepwise temperature programs.  This method served to increase the 

available experimental information, as outlined elsewhere.36  The increase of the information content of 

the experiments is particularly important when overlapping processes are described by parallel DAEM 

reactions.  The determination of the unknown model parameters and the verification of the model were 

based on the least-squares evaluation of series of experiments.  This approach led to favorable results 

and allowed predictions outside the experimental conditions of the experiments used in the parameter 
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determination.23,29  The prediction capabilities were checked as a test on the goodness of the employed 

models. 

In a recent article on pyrolysis kinetics, Várhegyi et al. assumed identical means (E0,j) and distribution 

widths (0,j) for the activation energies of different biomasses in a DAEM with two 

pseudocomponents.30  This approach emphasized the similarities between the studied samples and 

decreased the problems of ill-conditioning mentioned above.  The experimental part of this study was 

limited to linear heating programs.  In a more detailed study Várhegyi et al. systematically investigated 

the effects of assuming common kinetic parameters for two tobaccos at linear and non-linear 

temperature programs.31 

The present work stepped further in the above directions.  Various assumptions of common kinetic 

parameters were tested on four biomasses at linear and non-linear temperature programs.  The goodness 

of the models was judged both by the quality of fit and by their ability for predictions.  The latter was 

considered as a stricter criterion.  Experiments of slow heating were used to predict the pyrolysis 

behavior at a considerably higher heating rate and the predictions were compared to actual experiments.  

Such modeling / evaluation strategy was searched that produced good results in the prediction tests.  

Model variants producing rougher approximations were also considered if they offer additional 

advantages. 

 

2. Samples and Methods 

2.1. Samples.  Corn stalk, rice husk, sorghum straw and wheat straw samples were obtained from the 

Shandong Shanxian Biomass Power Plant.37  The samples were used as received.  They consisted of ca. 

0.1 – 3 mm particles.  The larger particles were oblong in the straws and flat in the other samples.  The 

moisture content of the samples was between 5 and 6% m/m.  These values, however, are irrelevant in 

thermogravimetic studies, because the samples dry completely before the start of the thermal 

decomposition reactions.  The rest of the analytical data are summarized in Table 1.  As Table 1 shows, 

the ash content varied between 4 and 16 percent.  The other analytical characteristics, however, 
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exhibited only low or moderate variations.  Future work is planned to test the methods and 

considerations of the present paper on biomasses varying in wider ranges. 

Table 1.  Analytical Characteristics of the Samplesa 

 

corn 

stalk 

rice 

husk 

sorghum 

straw 

wheat 

straw 

ash / % (db) 12.1 16.0 4.4 8.1 

C / % (daf) 47.2 49.2 46.1 46.8 

H / % (daf) 7.0 5.3 5.8 7.3 

N / % (daf) 1.1 0.7 0.7 0.6 

S / % (daf) 0.3 0.2 0.1 0.4 

O / % (daf) 44.4 44.6 47.3 45.0 

Ash composition data (% m/m): 

Al 1.2 0.6 1.0 1.5 

Ca 4.0 1.4 5.7 3.6 

Fe 0.7 0.4 0.7 0.7 

K 32.6 13.6 28.0 26.3 

Mg 2.6 2.2 3.6 1.5 

Mn 0.0 0.1 0.1 0.1 

Na 0.7 0.7 0.9 4.8 

P 1.0 4.4 1.4 0.2 

S 2.4 0.8 2.6 3.7 

Si 16.3 32.3 17.2 19.3 

a The ash was prepared by CEN/TS 14775 standard.  db and daf stand for dry and dry ash free basis, 

respectively.  The ash analysis was carried out by ICP-OES method on 19 elements of which the 

components with concentration above 0.1% are shown. 

 

2.2. Thermogravimetric experiments.  The TGA measurements were performed by a computerized 

Perkin-Elmer TGS-2 thermobalance in a gas flow of argon.  Low initial sample masses (1 – 4 mg) were 

used to avoid the thermal lag problems in the biomass during the pyrolysis.  The samples were spread in 
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a platinum sample pan of  6 mm.  The apparatus was purged with the carrier gas for 45 min before 

starting the heating programs.  The experimental curves were normalized by their sample mass value 

after the drying section.  For this purpose the value at 120°C was used.  Two linear heating programs 

with heating rates 4 and 40 °C/min and two stepwise heating programs were employed for each sample 

to increase the amount of information in the series of experiments, as mentioned above.  Figure 1 shows 

the normalized mass-loss-rates (-dm/dt) of the samples at 40 °C/min heating rate.  The mass loss started 

at 160-200°C and terminated around 600°C; hence the domain 150-600°C was selected for kinetic 

evaluation.  The level of a considerable mass loss rate was achieved above 200°C.  The slow, flat tailing 

of the -dm/dt peak in the upper part of the T domain was considered less interesting than the main 

decomposition steps.  On this basis stepwise heating programs were defined that contained isothermal 

sections of 25 minutes between 225 to 400 °C, as shown in Figure 2a.  The rice husk sample evidenced a 

small side peak around 240°C, as shown in Figure 1.  Around 450°C, after the main peak, the mass loss 

rate was higher than those of the other samples although the main peak itself was the lowest at this 

sample.  For these reasons a slightly wider domain was selected for the isothermal steps of the rice husk 

experiments, as displayed in Figure 2b.  The initial sample mass was 1 and 4 mg in the experiments with 

40 and 4°C/min heating rates, respectively, while 2 mg was employed at stepwise T(t). 
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Figure 1.  Mass-loss rate curves normalized by the initial dry sample mass at 40 °C/min heating rate. 
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Figure 2.  Temperature programs for the corn stalk, sorghum straw and wheat straw samples (a) and for 

the rice husk sample (b). 

2.3. Evaluation by the method of least squares.  The unknown model parameters were evaluated 

from series of experiments by minimizing the difference between the observed data and their 

counterparts calculated from the given model: 
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Here N is the number of experiments in the evaluated series.  Subscript k indicates the different 

experiments.  ti denotes the time values in which the discrete experimental values were taken, and Nk is 

the number of the ti points in a given experiment.  hk denotes the heights of the evaluated curves that 

strongly depend on the experimental conditions.  The division by hk
2 serves for normalization.  The 

quality of the fit was characterized by the following quantity: 

fitN (%) =  100 5.0

NS   (2) 

Equations 1 and 2 can be employed to express the quality of the fit for any group within the evaluated 

experiments.  When the fit quality is calculated for one experiment, 
5.0

1S equals to the normalized root 

mean square (rms) deviation of the calculated data from the observations. 
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2.4. Distributed activation energy model (DAEM).  As outlined in the Introduction, a model of 

parallel reactions with Gaussian activation energy distribution was chosen due to the favorable 

experience with this type of modeling on similarly complex materials.  According to this model the 

sample is regarded as a sum of M pseudocomponents, where M is between 2 and 4.23-25,28-2929,31,33,35  

Here a pseudocomponent is the totality of those decomposing species which can be described by the 

same reaction kinetic parameters in the given model.  The number of reacting species is obviously much 

higher than M in a complicated mixture of plant materials.  The reactivity differences are described by 

different activation energy values.  On a molecular level each species in pseudocomponent j is assumed 

to undergo a first-order decay. The corresponding rate constant (k) and mean lifetime () are supposed to 

depend on the temperature by an Arrhenius formula: 

k(T)= -1 = Aj e-E/RT (3) 

Let j(t,E) be the solution of the corresponding first order kinetic equation at a given E and T(t) with 

conditions j(0,E)=0 and j(∞,E)=1: 

dj(t,E)/dt = Aj e-E/RT [1-j(t,E)] (4) 

The density function of the species differing by E within a given pseudocomponent is denoted by 

Dj(E). Dj(E) is approximated by a Gaussian distribution with mean E0,j and width-parameter (variation) 

j.  The overall reacted fraction of the jth pseudocomponent, j(t) is obtained by integration: 

                    

j(t) =  Dj(E) j(t,E) dE (5) 

                 0 

The normalized sample mass, m, and its derivative are the linear combinations of j(t) and dj/dt, 

respectively: 

-dm/dt = 


M

j

jj dtdc
1

/     and    m(t) = 1 – 


M

j

jj tc
1

)(  (6) 

where a weight factor cj is equal to the amount of volatiles formed from a unit mass of 

pseudocomponent j. 
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2.5. Numerical methods.  The software (Fortran 95 and C++  programs) was developed by one of the 

authors and has already been used in earlier work.23,29-32. The applied algorithms were described in 

details in a recent article.31 

 

3. Results and discussion 

3.1. About the magnitudes of the observed reaction rates.  As described above, four common 

biomasses of agricultural origin were studied at linear and stepwise temperature programs.  Table 2 

shows the highest and the average reaction rates observed at the four heating programs.  The averaging 

was carried out in the temperature domain of the kinetic evaluation, from 150 to 600 °C.  Table 2 serves 

to estimate the extent of extrapolation in the prediction tests outlined in Section 3.5  In these tests the 

40°C/min experiments are predicted from the slower experiments.  As the data of Table 2 shows, this 

procedure is an extrapolation to 4 – 11 times higher reaction rates. 

Table 2.  The highest and mean normalized mass loss rates (-dm/dt × 103 /s-1) in the experimentsa 

Experiment corn stalk rice husk sorghum straw wheat straw 

 peak mean peak mean peak mean peak mean 

4 °C/min 0.59 0.010 0.49 0.010 0.66 0.011 0.67 0.011 

Stepwise 1 0.62 0.009 0.93 0.008 1.07 0.011 0.86 0.010 

Stepwise 2 1.09 0.010 0.73 0.008 1.14 0.011 1.42 0.010 

40 °C/min 4.94 0.103 4.44 0.098 6.43 0.115 6.21 0.110 

a The means were calculated in the temperature domain of the kinetic evaluation, from 150 to 600 °C.  

Heating programs “Stepwise 1” and “Stepwise 2” are shown in Figure 2 by blue solid lines and red 

dotted lines, respectively. 

 

3.2. The necessary number of pseudocomponents.  The biomasses contain a wide variety of 

decomposing species and the catalytic activity of the inorganic ions increases further this diversity.  This 

complexity is described by a distributed activation energy model with more than one pseudocomponent 

(pool of reactant), as outlined in the Introduction and in Section 2.4.  At 40°C/min heating rate the mass 
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loss rate curves of corn stalk, rice husk and sorghum straw reveal a main peak around 360 °C and a side 

peak around 300 °C.  (See Figure 1). These peaks can be attributed to the cellulose and hemicellulose 

decomposition, respectively.38  The two peaks are highly merged in the case of the wheat straw.  The 

merging of the cellulose and hemicellulose peaks can probably be due to the catalytic activities of the 

mineral content.38  As a first step, the evaluation was tried with the assumption of two 

pseudocomponents, of which the first described the hemicelluloses and cellulose pyrolysis and the 

second covered the other decomposition reactions.  The corresponding simulated curves however, could 

not mimic the double peaks shown in Figure 1.  For this reason the number of pseudocomponents was 

increased to 3.  The chemical aspects of the three pseudocomponents will be briefly discussed in Section 

3.6.   

3.3. Separate evaluation of the samples.  In evaluation I each sample was assumed to have its own 

parameters: E0,j, j, Aj and cj (j=1, 2, 3). Accordingly 4×3×4=48 parameters were needed for the 

description of the experiments on the four samples.  In this case the number of experiments evaluated 

simultaneously (N in eq 1) was 4 for each sample.  Column I of Table 3 shows an overview of the 

corresponding results.  The first value, fit16 , represents the quality of the fit for the whole series of 

experiments.  The quality of the fit of the four 40°C/min experiments, fit40°C/min , was also calculated for 

a comparison with the results of the prediction tests of Section 3.5.  The kinetic parameters will be 

discussed in Section 3.6. 

3.4. Assumption of common parameters.  In the next step of the work the 16 experiments were 

evaluated simultaneously by the method of least squares to obtain dependable kinetic parameters.  Part 

of the parameters was assumed to be the same for the four biomasses.  This approach helps to emphasize 

the similarities of the samples and eliminate the ill-conditioning of the parameter determination that was 

mentioned in the Introduction.  In Evaluation II the mean activation energies, E0,j were assumed to be 

identical for the different biomasses.  This approach only slightly changed the quality of the fit, while 

the parameter estimation became better defined due to the lower number of unknown parameters.  (See 

Section 3.5.)  The quality of the fit and the partial curves at 40°C/min heating rate are illustrated in the 
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left side of Figure 3.  The full version of this figure with all the 16 experiments can be found in the 

Supporting Information, alongside with the electronic version of this article. 

Table 3.  Comparison of the results of the model variants employed 
a 

Evaluation I II III IV V 

Identical 

parameters 
none E0,j E0,j, j E0,j, Aj E0,j, j, Aj 

fit16 / % 1.8 1.9 2.2 3.0 3.6 

fit40°C/min / % 1.8 1.9 2.5 3.4 4.1 

E0,1
 / kJ mol-1 <173> 176 177 178 176 

E0,2
 / kJ mol-1 <186> 185 185 185 185 

E0,3
 / kJ mol-1 <205> 195 194 192 189 

1
 / kJ mol-1 <5.5> <5.5> 4.3 <4.5> 7.1 

2
 / kJ mol-1 <1.1> <1.1> 1.9 <1.3> 1.7 

3
 / kJ mol-1 <35.7> <33.8> 34.5 <34.2> 32.7 

log10 A1
 / s-1 <13.96> <14.21> <14.43> 14.41 14.13 

log10 A2
 / s-1 <13.83> <13.77> <13.77> 13.75 13.71 

log10 A3
 / s-1 <14.91> <14.19> <14.23> 14.23 13.90 

c1 <0.15> <0.14> <0.10> <0.11> <0.12> 

c2 <0.31> <0.31> <0.33> <0.31> <0.31> 

c3 <0.26> <0.27> <0.29> <0.30> <0.29> 

Nparameters 48 39 30 30 21 

Nparameters/N 3.0 2.4 1.9 1.9 1.3 

Characteristics of the partial peaks simulated at 40°C/minb 

Tpeak,1 / °C 296 – 336 295 – 335 294 – 317 307 – 314 312 

Tpeak,2 / °C 360 – 366 360 – 366 359 – 368 361 – 363 363 

Tpeak,3 / °C 353 – 401 352 – 397 350 – 379 359 361 

FWHM1 / °C 43 – 91 44 – 88 49 – 52 38 – 90 69 

FWHM2 / °C 42 – 51 42 – 52 45 – 47 43 – 49 46 

FWHM3 / °C 250 – 271 250 – 273 260 – 272 175 – 316 257 

a Brackets < > indicate average values.  Hyphens indicate intervals.  FWHM stands for full width at 

half maximum 
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b The listed peak characteristics belong to simulations at ideal (error-free) T(t) programs with 

dT/dt  2/3 °C/s (40 °C/min). 

In Evaluation III E0,j and σj were assumed to be identical for the different biomasses.  The quality of 

the fit slightly worsened; fit16 increased from 1.9 to 2.2 %.  In this approximation: the compositional 

differences in the biomasses and the different catalytic effects were expressed by the different cj and Aj 

values. One should emphasize here that the larger part of the experimental errors are not statistical in 

thermal analysis.  Hence no statistical background is available to assess the statistical significance of a 

change in the quality of the fit.36  The two other variations, Evaluations IV and V resulted in visibly 

worse fit qualities than Evaluations I-III.  Nevertheless, Evaluation V may have practical advantages in 

numerical simulations: all structural and compositional differences are expressed by the cj parameters in 

this case.  Note that the solution of the model, m(t) and –dm/dt depend linearly on cj.  This might involve 

practical advantages: the adjustment of the model to a changed feedstock is particularly simple in this 

model variant.  Among others the mixing of various biomass components can be expressed by the 

mixing of their simulated m(t) and –dm/dt functions in this approximation at any T(t).  The quality of the 

fit and the partial curves of evaluation V are illustrated at 40°C/min heating rate in the left side of Figure 

4.  The full version of this figure with all the 16 experiments can be found in the Supporting 

Information.  In this approximation the model provides the same calculated partial peaks (thin solid 

lines of blue, red and dark green colors) at a given temperature program; only their multiplier factors (cj) 

depend on the biomass properties.  Accordingly the peak temperatures (Tpeak,j) and peak widths 

(FWHMj) in Table 3 do not depend on the biomass properties in this case.  The parameters and peak 

characteristics of evaluations II and V are listed in Table 4. 
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Figure 3.  Results for the 40°C/min experiments in Evaluation II.  The experimental data (○○○), their 

simulated counterparts (—) and the calculated partial curves (blue, red and green —) are displayed. The 

left hand side (Parts a, c, e, g) illustrates the simultaneous evaluation of all available experiments.  The 

right hand side (Parts b, d, f, h) shows the prediction of the 40°C/min experiments from the evaluation 

of the slower experiments of the study. 
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Figure 3.  (Continued) 
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Figure 4.  Results for the 40°C/min experiments in Evaluation V, when identical kinetic parameters 

(E0,j, σj and Aj values) were assumed for the four biomasses.  The experimental data (○○○), their 

simulated counterparts (—) and the calculated partial curves (blue, red and green —) are displayed.  The 

left hand side (Parts a, c, e, g) illustrates the simultaneous evaluation of all available experiments.  The 

right hand side (Parts b, d, f, h) shows the prediction of the 40°C/min experiments from the evaluation 

of the slower experiments of the study. 
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Figure 4.  (Continued) 
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Table 4.  Parameters and peak characteristics of Evaluations II and V. 

Evaluation II V 

Identical 

parameters 
E0,j E0,j, σj, Aj 

Sample 
corn 

stalk 

rice 

husk 

sorghum 

straw 

wheat 

straw 

corn 

stalk 

rice 

husk 

sorghum 

straw 

wheat 

straw 

fit16 / % 1.9 3.6 

fit40°C/min / % 2.2 2.0 1.9 1.3 3.8 2.9 4.2 3.3 

E0,1
 / kJ mol-1 176 176 

E0,2
 / kJ mol-1 185 185 

E0,3
 / kJ mol-1 195 189 

σ1
 / kJ mol-1 5.8 2.5 4.3 9.4 7.1 

σ2
 / kJ mol-1 0.0 0.0 3.5 1.0 1.7 

σ3
 / kJ mol-1 36.6 35.6 32.0 31.2 32.7 

log10 A1
 / s-1 14.64 14.19 14.52 13.48 14.13 

log10 A2
 / s-1 13.86 13.73 13.64 13.86 13.71 

log10 A3
 / s-1 14.68 14.63 13.98 13.53 13.90 

c1 0.11 0.09 0.10 0.26 0.14 0.10 0.08 0.16 

c2 0.28 0.24 0.44 0.29 0.25 0.23 0.36 0.38 

c3 0.32 0.35 0.22 0.19 0.31 0.34 0.33 0.19 

Characteristics of the partial peaks at 40°C/mina: 

Tpeak,1 295 314 300 335 312 

Tpeak,2 360 365 366 360 363 

Tpeak,3 352 354 379 397 361 

FWHM1 58 44 50 88   69 

FWHM2 42 43 52 43   46 

FWHM3 273 267 250 252 257 

a Here the peak characteristics belong to simulations at ideal (error-free) T(t) programs with 

dT/dt  2/3 °C/s (40 °C/min). 
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3.5. Prediction of the fastest experiments from the evaluation of the experiments of 4°C/min and 

stepwise T(t).  In these tests the 12 slower experiments were evaluated in the same way as the whole 

series (16 experiments) and theoretical –dm/dt curves were determined for the 40°C/min experiments.  

This procedure corresponds to an extrapolation to considerably higher heating rates from a given data 

set, as outlined in Section 3.1.  The fit quality of the extrapolated curves, fit40°C/min, is obviously worse 

than in the case of the regular evaluation of all the 16 experiments.  However, the difference between the 

fit40°C/min values of the prediction and the corresponding regular evaluation,  fit40°C/min has moderate 

values, as shown in Table 5.  Table 5 also displays the differences between the parameters obtained from 

the slower experiments and from the whole data sets. 

According to the data in Table 5, Evaluation II gives the best prediction performance; fit40°C/min and 

 fit40°C/min are the lowest here.  Figure 3 shows the fit quality of the predicted 40°C/min experiments.  In 

the case of Evaluation II the kinetic parameters calculated from the subset of the 12 slow experiments 

and from all the 16 experiments are practically equivalent:  the rms( E0,j), rms( j), rms( log10 Aj) 

and rms( cj) values are negligible, indicating that the 12 slower experiments are enough for the 

determination of the parameters.  This observation demonstrates that the parameters are mathematically 

well-defined (i.e. unambiguous) in the evaluation of the experiments.  Evaluation I (i.e. the separate 

evaluation of the samples) produced worse prediction fit quality, fit40°C/min , than Evaluation II.  In this 

case the differences between the parameters obtained from 12 and 16 experiments are much higher than 

the corresponding values of Evaluation II.  This behavior can probably be due to the ill-condition of the 

parameter determination, as outlined in the Introduction: the information content of the experiments 

proved to be insufficient for the unambiguous determination of 48 unknown parameters.  A further 

decrease of the number of parameters resulted in poorer prediction ability and higher differences 

between the parameters obtained from 12 and 16 experiments.  Accordingly, the assumptions used in 

these variants reduced the performance of the model.  As Table 5 shows, Evaluation II is the optimum 

among the assumptions tested.  Nevertheless, Evaluation V was inspected in details due to its 

computational advantages outlined in Section 3.4.  Figure 4 illustrates its performance in the prediction 
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tests.  The comparison of the corresponding panels of Figures 3 and 4 shows that difference in the 

prediction capabilities of Evaluations II and V are visible, but not particularly high.  As outlined earlier, 

the fit1 values in these figures express the rms difference between the predicted and the observed values 

as a percent of the peak maximum.  The range of fit1 was 1.8 – 3.4 and 3.6 – 6.4 in the right-hand sides 

of Figures 3 and 4, respectively.  Evaluation V gave the worse prediction for the wheat straw, where fit1 

was 6.4%.  However, such a prediction precision is considered to be good in many areas of science and 

technology. 

 

Table 5.  Differences between the evaluation of the whole series and the result of the prediction tests 
a 

Evaluation I II III IV V 

Identical 

parameters 
none E0,j E0,j, j E0,j, Aj E0,j, j, Aj 

fit40°C/min / % 3.2 2.6 3.2 4.0 5.1 

 fit40°C/min / % 1.4 0.7 0.8 0.7 1.0 

rms( E0,j) / kJ mol-1 15 1 6 9 18 

rms( j) / kJ mol-1 2.0 0.5 0.8 1.1 1.1 

rms( log10 Aj) 1.5 0.1 0.6 0.8 1.8 

rms( cj) 0.02 0.01 0.01 0.01 0.01 

a Here fit40°C/min characterizes the distance between the predicted curves and their observed 

counterparts in the 40°C/min experiments, and  fit40°C/min is the difference between the fit40°C/min values 

of Tables 5 and 3.  rms( E0,j), rms( j), rms( log10 Aj) and rms( cj) are the root mean square 

differences of the parameters obtained from all experiments and from the subset of the slower 

experiments. 

 

3.6.  Notes on the pseudocomponents and on the magnitudes of the obtained kinetic parameters.  

The chemical identification of the calculated peaks is difficult because there is a high overlap in the 

decomposition domains of the biomass components.  The shape and position of the first (blue) and 

second (red) peaks in Figures 3 and 4 are similar to the partial curves of hemicelluloses and celluloses in 

biomass materials, respectively.5,38,39  The third, very wide peak denoted by dark green in Figures 3 and 
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4 originates from the contributions of several decomposing components.  Lignin has a crucial role here 

because it decomposes in a wide temperature range.40  The extractive components of the plants have 

similarly wide decomposition curves.41,42  Probably the hemicelluloses and the cellulose can also 

contribute to this partial curve though the main part of these components is described by partial curves 1 

and 2, respectively. The high-temperature part of the third peak belongs mainly to the slow 

carbonization of the carbonaceous residues (i.e. to the formation and slow devolatilization of the 

charcoal). 

Table 3 shows that the activation energy distribution of the second, red-colored peak is narrow; 2 is 

only 1 – 2 kJ/mol.  Note that the employed DAEM is equivalent to a first order reaction at =0 because 

the Gaussian distribution is a Dirac delta function with respect to .  Hence this reaction is near to a first 

order kinetics, in accordance with the earlier works showing that the cellulose pyrolysis can be 

approximated by first order kinetics.  The E0,2 values were found to be 185 – 186 kJ/mol, which is safely 

in the range of the activation energies reported for the cellulose components of biomass materials.1-18  

On the other hand, the E0,1 and E0,3 values of Table 3 are considerably higher than the reported 

activation energies for the decomposition of hemicelluloses and lignin in studies based on first order or 

nth order kinetics.8  One can consider here that the activation is nearly inversely proportional to the 

width of the DTG curves in the first order and nth order models at linear T(t).43  Accordingly flat, wide 

peaks result in low formal activation energy values.  This problem does not arise in the DAEMs because 

DAEMs can describe wide, flat peaks with realistic magnitudes of activation energies.  Table 6 

compares the magnitudes of the E0 and  values of four recent papers on biomass employing kinetics 

with parallel DAEM reactions and least squares evaluation.  Note that the kinetic parameters of the 

different studies are not directly comparable due to the different number and kind of the 

pseudocomponents in the different works.  Hence the comparison of the magnitudes was based only on 

the mean and the domain of variation of the E0,j and j values published in a given article. 
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Table 6.  Comparison of the magnitudes of the E0,j and j values in four recent articles on biomass 

pyrolysis that employed DAEM kinetics and least squares evaluation a 

Sample Experi-

ments 

Evaluated 

curves 

Heating 

programs 

E0 

/ kJ mol-1 
 
/ kJ mol-1 

Reference 

Wood pellets and 

miscanthus sinensis 

TGA-FTIR FTIR linear <186> 

136-299 

<11> 

2-32 

de Jong et 

al., 200324 

brewer spent grains, 

coffee waste, 

fiberboard 

TGA DTG linear, 

stepwise, 

and CRR 
b 

<211> 

175-236 

<14> 

0-33 

Becidan et 

al., 200729 

Straws of cereals and 

Ethiopian mustard 

TGA TGA, 

DTG 

linear <198> 

167-232 

<18> 

2-35 

Várhegyi et 

al., 200930 

Cornstalk, rice husk, 

sorghum straw, 

wheat straw 

TGA DTG linear and 

stepwise 

<184> 

176-195 

<14> 

0-37 

Table 4 of 

the present 

work 

a For this comparison the means (in angular brackets) and intervals (denoted by hyphens) were 

determined from all E0,j and j values published in the given article. 

b CRR (constant reaction rate) stands for temperature programs at which the reaction rate fluctuates 

around a constant level. 

 

4. Conclusions 

Four common biomasses of agricultural origin were studied by thermogravimetry at linear and 

stepwise temperature programs.  The complexity of the thermal decomposition of these biomasses was 

described by three partial reactions assuming Gaussian distributions for their activation energies.  Such 

parameters were determined that provided a good fit for the experiments at linear and stepwise heating 

programs for the studied samples. 

Part of the kinetic parameters was assumed to be common for the four samples for two reasons: 

(i) to express/explore the similarities of the decomposition of the different samples due to their similar 

chemical composition 

(ii) to eliminate the ill-definition (compensation effect) problems by determining less parameters from 

the given amount of experimental data. 
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Five assumptions were investigated.  The best results were obtained when the E0,j parameters were 

assumed to be identical for the different biomasses.  Another model variant was found to be interesting 

due to its practical aspects.  In this latter case all the kinetic parameters (E0,j, j, Aj) were assumed to be 

common and the differences between the biomasses are expressed only by the the area of the partial 

peaks, cj .  Because the model is linear for the cj parameters, the adjustment of the model to a changed 

feedstock is particularly simple in this model variant.  Among others, the mixing of various biomass 

components can be expressed by the mixing of their simulated m(t) and –dm/dt functions in this 

approximation at any T(t). 

The models provided reasonable fit to the experimental data.  Besides, the evaluation of a narrower 

subset of the experiments (the 12 slower experiments) provided similar parameters as the evaluation of 

the whole series of experiments.  In the best case, when identical E0,j parameters were assumed for the 

different biomasses, the parameters from the slower experiments were practically the same as their 

counterparts determined from the whole data set.  This is an indication that the evaluation of the 

experiments results in well-defined (i.e. unambiguous) parameters. 

The obtained models proved to be suitable to predict the behavior of the samples outside of those 

temperature programs at which the model parameters were determined.  The checks on the prediction 

abilities of the models corresponded to an extrapolation to 4 – 11 times higher reaction rates than the 

mean and peak reaction rates of the experiments used for parameter determination in the prediction tests.  
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Supporting Information Available: Figures showing the partial curves and the quality of the fit on 

16 experiments at Evaluations II and V. This material is available free of charge via the Internet at 

http://pubs.acs.org. 

NOMENCLATURE 

j reacted fraction of a pseudocomponent (dimensionless) 

Aj pre-exponential factor (s-1) 

cj normalized mass of volatiles formed from a pseudocomponent (dimensionless) 

E0,j mean activation energy in a distributed activation energy model (kJ/mol) 

fitN fit quality calculated for a group of N experiments by equations 1 - 2 (%) 

fit40°C/min fit quality calculated for the 40°C/min experiments by equations 1 - 2 (%) 

FWHM peak width (full width of half maximum, °C) 

hk height of an experimental curve (s-1) 

m normalized sample mass (dimensionless) 

N number of experiments in a given evaluation 

Nk number of evaluated data on the kth experimental curve 

R gas constant (8.3143×10-3 kJ mol-1 K-1) 

rms root mean square 

j width parameter (variance) of the Gaussian distribution (kJ/mol) 

SN least squares sum for N experiments (dimensionless) 

t time (s) 

T temperature (°C, K) 

Subscripts: 

i digitized point on an experimental curve 

j pseudocomponent 

k experiment 

http://pubs.acs.org/
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