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Abstract 10 
Developing easy-to-use mathematical models for describing temperatures of solar storage 11 
tanks is important for the practice, since solar storages are unavoidable elements in solar 12 
heating systems, where some heat should be stored in the form of hot fluid. In this paper, a 13 

new, general and easy-to-apply black-box model, called LR model (where LR is the 14 
abbreviation of linear regression), is proposed for solar storages on the basis of multiple 15 
linear regression. This linear model may be the simplest black-box type model, which can 16 
follow the transient processes of solar storages precisely. Accordingly, the LR model proves 17 

to be more precise than a slightly modified version of a physically-based storage model used 18 
successfully for different applications in the literature. The modified physically-based model 19 

accounts for the short circuit effect occurring in storages. Comparing measured and simulated 20 

data on a real solar storage, both models are validated and their efficiency is discussed in 21 

details. The general and simple usability of the LR model is mentioned and future research 22 
proposals are given. 23 

Keywords: 24 
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Nomenclature 26 

t : time, s; 27 

Time-dependent variables 28 

coldT : inlet temperature of the cold fluid to be heated in the storage, °C; 29 

eT : temperature of the environment of the storage, °C; 30 

inT : inlet temperature to the storage from the heating loop, °C; 31 

loadT : temperature of the outlet fluid discharged from the storage by the consumer, °C; 32 

sT : geometrical average temperature inside the storage, °C; 33 

meassT , : measured geometrical average temperature inside the storage, °C; 34 

mod,sT : modelled geometrical average temperature inside the storage, °C; 35 

outT : outlet temperature from the storage to the heating loop, °C; 36 

v : pump flow rate in the heating loop (according to on/off operation), m
3
s

-1
; 37 

loadv : flow rate of the consumption load, m
3
s

-1
 38 

Constant parameters 39 

A : outside area of the storage, m
2
; 40 

c : specific heat capacity of the fluid in the storage, Jkg
-1

K
-1

; 41 
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vc : modifying coefficient related to the short circuit of the heating loop inside the storage, -; 42 

k : heat loss coefficient of the storage to the environment, Wm
-2

K
-1

; 43 

V : volume of the storage, m
3
; 44 

 : mass density of the fluid in the storage, kgm
-3

; 45 

t : time period between successive measurements, s; 46 

 : time delay with respect to the effects of the inlets to (the interior of) the storage, s; 47 

A : time lag before Case A in the LR model, s; 48 

B : time lag before Case B in the LR model, s 49 

Abbreviations 50 

ANN: artificial neural network; 51 
CFD: computational fluid dynamics; 52 
LR: linear regression; 53 
MLR: multiple linear regression; 54 
ODE: ordinary differential equation; 55 

PDE: partial differential equation 56 

1. Introduction 57 
Developing mathematical models for describing temperatures of solar storage tanks is of 58 
great importance for the practice, since these elements are unavoidable in any solar heating 59 

systems, where some heat should be stored in the form of hot fluid. There are two chief kinds 60 

of mathematical models of hydraulic storages: physically-based models (or white-box 61 

models), describing exact physical relations (on the basis of theory) and black-box type 62 
models, standing for empirical correlations based on (measured) experiences. Grey-box type 63 

models are mixed versions of physically-based and black-box ones. 64 
The literature contains many physically-based models. In [1], both a mixed storage model of 65 
one dimension (assuming homogeneous temperature) and a multidimensional model of 66 

several nodes for stratified storages are presented. In the first one-node model, an ordinary 67 
differential equation (ODE), while in the latter one, a system of ODEs represent the 68 

corresponding mathematical description. Zeghib and Chaker [2] propose a similar model, 69 
where the storage is divided into several layers (nodes) of homogeneous temperatures, each 70 
of which is represented with a single ODE. 71 

If only one node is applied, we recall in essence the linear ODE model from Buzás and 72 
Farkas [3]. This is one of the simplest physically-based ODE models, which can follow the 73 

transient processes of solar storages with proper accuracy. This is confirmed by many works 74 
showing also the successful and simple usability of the model (see e.g. [4]). Simple usability 75 

is an important advantage featuring linear models. In this paper, the slightly modified version 76 

of this ODE is used, which is completed with a modifying coefficient vc  responsible for the 77 

so-called short circuit effect. The short circuit effect is the following: although the inlet 78 

heating flow rate v  can be measured, its effective value may be lower because of that a part 79 
of the corresponding fluid stream flowing into the storage (from the heating loop) may 80 
directly turn back and leave the storage (to the same heating loop) through the outlet pipe 81 

without any heating of the bulk of the storage fluid. Based on experiences, this effect can be 82 

significant and should be considered for better modelling precision. In particular, the short 83 
circuit effect influences the thermal efficiency of storages [5] and, naturally, extends the 84 

stagnation time of the fluid [6], which may be unhealthy in drinking water applications. 85 
Temperature stratified type, heat balance, turbulent mixing and displacing mixing storage 86 
models on different physical phenomena and mathematical relations with both time and space 87 
dependence are summarized in [7]. The first two models are distributed ones described by 88 
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partial differential equations (PDEs) while the latter two ones are discretized models. A more 89 
recent, dimensionless PDE model for storages of solar power plants can be found in [8]. 90 
CFD (computational fluid dynamics) codes for computers are important tools of realistic 91 
modelling of storages [9, 10, 11, 12] using many physical equations, solving them with 92 
numerical methods, but, the multistep application process of them requires expert users, 93 

furthermore, their computational demand are high. In [13], the measured data and the results 94 
simulated with a CFD software are compared (see Fig. 6 in [13]), based on which the 95 
modelling error (the average absolute difference of the measured and simulated temperatures 96 
divided by the (positive) difference between the maximal and minimal measured values) is 97 
about 30% at the top of the storage and 10% in the middle. Another frequent modelling code 98 

is TRNSYS, working also with numerical solution methods, which can deal with 99 

stratification, internal auxiliary heating, inner heat conduction and mixing with respect to 100 

storages [14]. 101 
The difficulties of the exact physically-based modelling caused by the complex/complicated 102 
physical phenomena, like the effect of the inlet fluid flow on the thermal stratification [12, 103 
15], can be often overcome by means of empirical black-box type models. The most frequent 104 
black-box model version may be the artificial neural network (ANN) for thermal engineering 105 

applications. Kalogirou et al. [16] model the temperature change in a solar storage with an 106 
ANN with a modelling error of 7-10%. This can be called proper precision for similar 107 

systems [17]. An ANN is established in [18] to predict the temperatures of the layers in a 108 
storage tank for domestic water. In general, ANNs are precise tools for modelling but quite 109 

arduous to use because of the so-called, quite complex and time consuming, training/learning 110 

process. The uncertainty problem that there are no general and detailed algorithms for 111 

designing successful ANNs, is also significant. Similar modelling tools, for example genetic 112 
algorithms, can be found as well [19]. Another black-box method is given in [20], where a 113 

general linear storage model is used describing the simple sum of the unperturbed process 114 
and a perturbation. The coefficients in the mathematical relation are not constant but depend 115 
on the so-called time shift operator. 116 

Grey-box storage models are given in [21] and [22]. In the first reference, the parameter 117 
values of a serial grey-box model structure are adjusted with a stochastic approximation 118 

technique to simulate the oil temperature in the storage of a solar power plant. In the latter 119 
work, a grey-box model and its identification procedure is presented for describing the 120 

temperature of hot water tanks. The identification procedure is aimed at being a suitable tool 121 
for model-based controllers. 122 
Because of the above problems on arduousness and time consumption, this paper intends to 123 

establish a simple, general and still precise black-box model, which can be used fast and 124 
easily for a wide range of storages. This model is built on a known method of statistics, 125 

namely, the multiple linear regression (MLR). After studying the literature, it can be stated 126 
that MLR is a missing black-box modelling method in case of storage tanks in spite of the 127 
simple applicability. MLR-based models have been worked out in recent works for other 128 
working components of hydraulic heating systems, namely, for solar collectors [23] and for 129 
pipes [24]. As proposing a new MLR-based storage model, called LR model in short, the 130 

present one can be considered as the continuation of these works, in the Conclusion of which 131 

it was suggested to work out MLR-based models for further elements of heating systems. The 132 

contribution of the present paper is the following in details. 133 

1. The linear storage model from Buzás and Farkas [3] that has been already applied 134 
successfully in many works in the literature, is slightly modified (according to the short 135 
circuit effect) and validated with the measurements on a real solar storage treating it as a 136 

separate working component. The gained results support the practical usability of the 137 
modified model (as a simple ODE) called physically-based model in short below. 138 
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2. A general, new and easy-to-apply MLR-based black-box model with low computational 139 
demand, called LR model, is proposed for solar storages. The model stands for empirical 140 
relations directly between the input variables and the storage temperature and may be the 141 
simplest possible black-box model with a rather good precision. 142 

3. Based on measurements, the LR model is validated then compared with the physically-143 

based model with respect to precision. The results show that the LR model is significantly 144 
more precise (with a rather low modelling error) than the physically-based model. 145 

It is worth mentioning in advance that the proposed LR model is more easy-to-use and has a 146 
much lower computational demand compared to other black-box models. Furthermore, more 147 
complex models (e.g. ANNs) can have the same or even lower precision (see e.g. [17]). 148 

The organization of the paper is as follows: Section 2 serves with general features on the 149 
studied solar storage type. In Section 3, the physically-based model used for comparison is 150 

introduced. The new LR model is worked out in Section 4. Based on measurements and 151 
simulated data, Section 5 details the identification and validation of the models, which are 152 
compared quantitatively in Section 6. Conclusions and future research proposals close the 153 
work in Section 7. 154 

2. General features on the studied solar storages 155 
Fig. 1 shows the schematic view of the studied solar storage type. The storage can be heated 156 

up through a heating loop, within which the fluid enters the storage with temperature inT  and 157 

leaves it with outT . A pump circulates the fluid in the heating loop with 0 or a prefixed 158 

constant flow rate value v  according to the on/off state of the pump. This working is in 159 

accordance with the well-known on/off control, which is likely the most widely used control 160 
method in the thermal engineering practice to date (see e.g. [25]) because of its simplicity and 161 

that this control method is the nearly optimal or even optimal one in many cases (see e.g. 162 
[26]). Sometimes a consumer discharges some fluid from the storage tank with the flow rate 163 

loadv . The tank, with (geometrical) average inner temperature sT , has some heat loss to the 164 

environment through its insulation. 165 

 166 
Fig. 1. Schematic view of the solar storages 167 

All time dependent variables coldT , eT , inT , loadT , outT , sT , v  and loadv  are measured 168 

periodically according to a time period t . 169 

Below, sT  denotes the geometrical average storage temperature generally, while mod,sT  and 170 

meassT ,  denote the modelled and measured geometrical average storage temperature, 171 

respectively. 172 

3. Physically-based model 173 
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Eq. (1) represents the physically-based tank model used in this paper, which is the slightly 174 

modified version (completed with a modifying coefficient vc ) of the linear ODE of Buzás 175 

and Farkas [3]. 176 

   
    

 
         tTtT
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V

tv
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tvc

dt

tdT
seloadcold

load
outin

vs

mod,

mod,



               (1) 177 

In Eq. (1), the short circuit effect (mentioned in the Introduction) is considered with the 178 

modifying coefficient vc  (which is between 0 and 1) for better modelling precision. 179 

4. LR model 180 
Because of the bounded propagation speed of physical effects and the bounded speed of 181 

measurements, the inputs of the LR model are  tTin ,  tvload  and  tTs  with respect 182 

to the output (which is the modelled value of  tTs , that is,  tTs mod, ) at the current time t. 183 

Here   is the time delay with respect to the effects of the inlets (more particularly inT  and 184 

loadv ) to the interior of the storage tank. Clearly, the previously detected value of the storage 185 

temperature (as some initial value of the model) has also essential effect on its current value 186 

 tTs . For simplicity,  tTs  is taken as this previous temperature to be considered in the 187 

model. 188 
Regarding the solar storage as a black-box, it can be realized that distinct sub-models should 189 

be identified as separate parts of the LR model (as a black-box model) for considerably 190 
different working conditions. More particularly, the storage tank behaves in an absolutely 191 

different way if the pump is on (v>0) or off (v=0) permanently. Namely, under the same 192 

initial tank temperature, sT  basically increases if the pump is on and decreases if the pump is 193 

off. Furthermore, the effect of inT  can be omitted if the pump is permanently switched off as 194 

there is no fluid flow into the tank from the heating loop then. Regarding a typical day, when 195 

the temperature increase of sT  is high enough (and the consumption load is not extremely 196 

high), three different working cases are worth distinguishing in accordance with Fig. 2. 197 

 198 
Fig. 2. Solar storage temperature and state of the pump on an average day 199 
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Cases A and B relate to permanently switched off and switched on pump, respectively, while 200 
Case C relates to frequent switch-offs and -ons. The specification of all Cases can be found 201 
below in details (see also Fig. 2). 202 

Case A: Time of permanently switched off pump. More precisely, this Case contains the time 203 
period, which starts at the beginning of the day and finishes at the first pump switch-on, and 204 

each such time period, which starts at a time point when the pump has been continuously 205 

switched off for exactly A  time and finishes at either the time of the next switch-on or at the 206 

end of the day. 207 

Case B: Time of permanently switched on pump. More precisely, this Case contains each 208 

time period, which starts at a time point when the pump has been continuously switched on 209 

for exactly B  time and finishes at the next switch-off. 210 

Case C: This Case contains all time periods beyond Cases A and B. (That is, if the current 211 
time point does not fit into the above conditions of Cases A and B, then it belongs to Case C.) 212 

Remark 213 
1. Since the fluid in the pipes of the heating loop may be colder than the storage tank at the 214 

first switched on working terms of the pump, the heating loop may cool down the tank in the 215 

corresponding time period (see the graph of sT  in Fig. 2 just before Case B). 216 

2. A  is the time which is to be passed after a switch-off to proceed with Case A. More 217 

particularly, A  is the time which is usually enough for sT  to become permanently decreasing 218 

(see also Fig. 2), and, this behaviour is attributed to Case A as its characteristic feature. 219 

Similarly, B  is the time which is to be passed after a switch-on to proceed with Case B. 220 

More particularly, B  is the time which is usually enough for sT  to become permanently 221 

increasing (see also Fig. 2), and, this behaviour is attributed to Case B as its characteristic 222 

feature. In fact, it is subjective to some extent to determine the time point when the storage 223 
temperature just begins its permanently increasing section (the end of the first section C in 224 

Fig. 2) and the time point when the temperature just begins its permanently decreasing 225 

section (the end of the second section C in Fig. 2), that is, to determine the value of A  and 226 

B . Nevertheless, we can estimate these values based on the (already given) measured 227 

temperature graph of more days in the identification (in Section 5.1.2) then the estimated 228 

daily values can be averaged, which improves the precision or, alternatively, reduces the 229 
roughness of the estimate. Furthermore, rather different estimated values can serve with 230 

similarly good results, because of, for example, the following effect. If B  is overestimated, 231 

the length and significance of Case C clearly increases, nevertheless, the number of the time 232 
points within Case C also increases, which will allow us in the identification process to 233 
identify the model parameters with respect to Case C more precisely. (Similar considerations 234 

hold for A .) 235 

 236 

For better modelling precision, separate sub-models are established for each working case 237 

based on MLR. In the sub-models for Cases B and C, inT  is considered an input, since some 238 

fluid flows into the storage from the heating loop according to the permanent or intermittent 239 

pump working. Regarding the sub-model of Case A, inT  is omitted according to the 240 

permanently switched off pump. The schemes of the MLR-based sub-models of each Case 241 
are presented in Figs. 3 and 4. 242 
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 243 
Fig. 3. Scheme of the MLR-based sub-model for Case A 244 

 245 

 246 
Fig. 4. Scheme of the MLR-based sub-models for Cases B and C 247 

The LR model is formed with Eqs. (2A), (2B) and (2C), which are simple linear algebraic 248 
relations representing the corresponding sub-models of the separate working cases. 249 

Case A:                                      tTctvctT sAsloadAloads ,,mod,                                    (2A) 250 

Case B:                            tTctvctTctT sBsloadBloadinBins ,,,mod,                         (2B) 251 

Case C:                           tTctvctTctT sCsloadCloadinCins ,,,mod,                         (2C) 252 

Aloadc , , Asc , , Binc , , Bloadc , , Bsc , , Cinc , , Cloadc ,  and Csc ,  are constant coefficients to be identified. 253 

5. Identification and validation 254 
In this section, the physically-based (Eq. (1)) and the LR (Eqs. (2A), (2B) and (2C)) model 255 
are applied to a real storage tank in order to identify and validate them. Then the efficiencies 256 

of the models are compared by means of measured and modelled data. For the calculations, 257 
the Matlab software [27] has been applied. 258 

In the physically-based model,  0,meassT  is used as initial value and the measured coldT , eT , 259 

inT , loadT , outT , v  and loadv  values are also used for solving Eq. (1) numerically to gain 260 

 tTs mod, . In the identification of the LR model, when the measured values of sT  can be 261 

applied,  tT meass,  is used as  tTs . During the validation of the already identified LR 262 

model, the previously modelled value  tTs mod,  is used as  tTs  when modelling  tTs . 263 

Measured  tTin  and  tvload  values are available both during the identification and the 264 

validation. According to the specification of t , the measurements happen at times 265 

,...3,2,,0 tttt   Practically, the modelled value of sT  (that is mod,sT ) is determined in the 266 

LR model also at times ,...3,2,,0 tttt   Furthermore, for simplicity, t  is assumed in 267 

the LR model. Case A holds and    0,measss TtT   is used as measured initial condition in 268 

Eq. (2A) at t=  (at the beginning of the day). 269 
The modelled real storage tank is the solar storage of a measured solar heating system [28] 270 

installed at the Szent István University (SZIU) in Gödöllő, Hungary. This storage tank will be 271 
called SZIU storage in short. Fig. 5 shows the photo of the SZIU storage, which contains 272 
preheated domestic water for a kindergarten at the campus of the university. 273 
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 274 
Fig. 5. SZIU storage [29] 275 

The heat is transferred from a solar collector field into the SZIU storage by means of a 276 

heating loop equipped with a pump working in on/off working. Since the heating loop 277 
contains rather long (more than 100 metres long) pipes, the cooling down effect mentioned in 278 

the Remark may be significant. The measurements are carried out once a minute, that is, t279 

=1 min. The volume of the SZIU storage is 2 m
3
. Based on the observation of the measured 280 

storage temperature of the whole four days for the identification (see Section 5.1), A  and B  281 

are estimated 10 min (see also Note 2 in the Remark). These and other important parameter 282 

values can be found in Table 1. 283 

Table 1. Parameter values of the SZIU storage and the models 284 

 

 
Physically-based model LR model 

A , m
2
 4 - 

c , Jkg
-1

K
-1

 4200 - 

vc , - (identified) 0.60 - 

k , Wm
-2

K
-1

 (identified) 2.87 - 

V , m
3
 2 - 

t , s 60 60 

 , kgm
-3

 1000 - 

 , s - 60 

A , s - 600 

B , s - 600 

Aloadc , , Ksm
-3

 (identified) - 3.6290 

Asc , , - (identified) - 0.9998 

Binc , , - (identified) - 0.0044 

Bloadc , , Ksm
-3

 (identified) - 11.2829 

Bsc , , - (identified) - 0.9958 

Cinc , , - (identified) - 0.0007 
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Cloadc , , Ksm
-3

 (identified) - 24.6179 

Csc , , - (identified) - 0.9994 

There is a temperature sensor inside the upper and another one in the lower third of the 285 
storage, the values of which are averaged geometrically and considered as the measured value 286 

of sT , that is, meassT , . The pump flow rate v  is 0 or 0.55 m
3
/h (based on measured data). 287 

The following indices (corresponding to the currently investigated day) are used in this paper 288 

for the evaluation. The average of error is the time average of  measss TT ,mod,  , the average of 289 

absolute error is the time average of the absolute value measss TT ,mod,  . The average of 290 

absolute error in % is the average of absolute error divided by the (positive) difference 291 

between the (daily) maximal and minimal value of meassT , . 292 

5.1. Identification of the models 293 
For the identification, the measured data of 4 days are selected in such a way that they 294 
represent a wide range of possible working conditions in a selected season (in summer). Two 295 
of the days (8

th
 June, 2012; 28

th
 June, 2012) are with relatively high consumption load (more 296 

than 1000 litres) and two ones (24
th

 June, 2012; 2
nd

 July, 2012) are with relatively low 297 
consumption load (less than 200 litres). Based on numerous computer experiments (cannot be 298 
detailed here), such 4 days has proved to be satisfactory for the identified model to have a 299 
rather good accuracy. Practically, the 4 days are selected from the first third of the summer. 300 

In this way, the already identified model can be conveniently used in the remaining two 301 
summer months. (To apply the model for a year, the identification could be carried out for all 302 

seasons separately to achieve maximal yearly precision.) 303 

coldT , eT , inT , loadT , outT , v  and loadv  are assumed to be piecewise constant in the physically-304 

based model in accordance with the time step of the measurements. 305 

5.1.1. Identification (physically-based model) 306 

The parameters k  and 
vc  are identified in the physically-based model. First, k  is identified 307 

based on such a (measured) time period when both the pump flow rate and the consumption 308 
load are 0. In this case, it is assumed that the heat loss to the environment is the only 309 
phenomenon which is responsible for the temperature change (decrease) of the storage, so the 310 

value of k  can be directly set by fitting the rate of the measured temperature decrease to the 311 

rate of the modelled one. This process has been carried out based on a section of the final part 312 

of the day with decreasing sT  on 2
nd

 July, 2012. More precisely, this time period is between 313 

about 18 and 21 hours on the mentioned day. See the left-hand side of Fig. 7, where it can be 314 

roughly seen that the measured and modelled curves of sT  are really parallel in the 315 

corresponding period. Then the value of 
vc  is set in such a way that the mean % value of the 316 

average of absolute error is minimal with respect to the 4 identified days. The such identified 317 

k  and vc  values can be found in Table 1. 318 

Table 2 presents the average of error and the average of absolute error values for two days 319 

(28
th

 June, 2012; 2
nd

 July, 2012) of the identification (with the already identified physically-320 

based model). The average of absolute error in % is also given for both days. The mean of the 321 
% values relating to all 4 days of the identification can be also seen in Table 2 (11.6 %). 322 

Table 2. Average of error and average of absolute error for the models 323 

 

 

Physically-based 

model 
LR model 
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Id
en

ti
fi

ca
ti

o
n

 28
th

 June 
Average of error -0.46 °C 0.07 °C 

Average of absolute error 0.58 °C; 10.2% 0.15 °C; 2.7% 

2
nd

 July 
Average of error -0.17 °C -0.03 °C 

Average of absolute error 0.34 °C; 3.6% 0.13 °C; 1.4% 

Mean % value for the 

whole identification 

(4 days) 

Average of absolute error 11.6% 2.8% 

V
al

id
at

io
n

 

3
rd

 August 
Average of error 0.25 °C -0.02 °C 

Average of absolute error 0.26 °C; 3.5% 0.11 °C; 1.4% 

5
th

 August 
Average of error 0.51 °C -0.20 °C 

Average of absolute error 0.59 °C; 13.9% 0.22 °C; 5.3% 

Mean % value for the 

whole validation 

(3
rd

 July – 31
st
 

August) 

Average of absolute error 16.1% 6.2% 

On the left-hand side of Figs. 6 and 7, the modelled and measured tank temperatures are 324 
compared for two days (28

th
 June, 2012; 2

nd
 July, 2012) of the identification of the 325 

physically-based model. The pump state (switched on or off) is also presented in both figures. 326 

 327 
Fig. 6. Modelled mod,sT  and measured meassT ,  storage temperatures on 28

th
 June, 2012 for the 328 

physically-based and LR models (identification) 329 
 330 
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 331 
Fig. 7. Modelled mod,sT  and measured meassT ,  storage temperatures on 2

nd
 July, 2012 for the 332 

physically-based and LR models (identification) 333 

5.1.2. Identification (LR model) 334 
Three standard independent MLR routines are used based on the measured data of all distinct 335 

working cases of the LR model (Cases A, B, and C) to identify parameters Aloadc , , Asc , , Binc , , 336 

Bloadc , , Bsc , , Cinc , , Cloadc ,  and Csc ,  in Eqs. (2A), (2B) and (2C) in Section 4. For the 337 

identification, the measured data of all Cases are selected from the same 4 identified days as 338 

in case of the physically-based model in Section 5.1.1. The known standard MLR routine (on 339 
the basis of least squares minimization) is built in most statistical or spreadsheet programs 340 

(SPSS, Excel, etc.), so it is not needed to be detailed. The identified parameters of the LR 341 
model are given in Table 1. The results of an MLR routine is generally evaluated with the 342 

square of the correlation coefficient 2R . Table 3 presents the 2R  values for all working cases 343 
corresponding to the whole identification. 344 

Table 3. 2R  values for the LR model 345 

Mode A B C 

2R  0.99999 0.99998 0.99997 

2R is close to 1 in all of Cases A, B and C, because of which the LR model can be considered 346 
very reasonable. The indices of Table 2 are more expressive and more important, especially, 347 
in the aspect of the comparison with the physically-based model applied already successfully 348 
in the literature. Table 2 presents the average of error and the average of absolute error values 349 

for two days (28
th

 June, 2012; 2
nd

 July, 2012) of the identification (with the already identified 350 
LR model). The average of absolute error in % is also given for both days. The mean of the 351 
% values relating to all 4 days of the identification can be also seen in Table 2 (2.8 %). 352 
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On the right-hand side of Figs. 6 and 7, the modelled and measured tank temperatures are 353 
compared for two days (28

th
 June, 2012; 2

nd
 July, 2012) of the identification of the LR model. 354 

The working state of the pump is also presented in the figures. 355 

5.2. Validation of the models 356 
For validation, the identified physically-based model and the identified LR model are used 357 

with the proper measured inputs from the remaining two months of the summer. More 358 
precisely, one of the inputs of the LR model is changed compared to the inputs of the 359 

identification, that is, the modelled  tTs mod,  is applied as  tTs  in the LR model (2A), 360 

(2B) and (2C) (not  tT meass, ). The modelled period for the validation, from 3
rd

 July, 2012 361 

to 31
st
 August, 2012, contains 56 days (according to some short technical interruptions). 362 

The modelled and the measured storage temperatures are compared and evaluated in case of 363 

the two models. Table 2 presents the average of error and the average of absolute error values 364 
for two days (3

rd
 August, 2012; 5

th
 August, 2012) of the validation for the models. The 365 

average of absolute error in % is also given for both days. The mean of the % values relating 366 
to the whole time period of 3

rd
 July – 31

st
 August can be also seen in Table 2 (16.1% and 367 

6.2% for the physically-based and LR models, respectively). 368 

In Figs. 8 and 9, the modelled and measured tank temperatures are compared in case of both 369 
models for two days (3

rd
 August, 2012; 5

th
 August, 2012) of the validation. The pump state is 370 

also presented in both figures. 371 

 372 
Fig. 8. Modelled mod,sT  and measured meassT ,  storage temperatures on 3

rd
 August, 2012 for the 373 

physically-based and LR models (validation) 374 
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 376 
Fig. 9. Modelled mod,sT  and measured meassT ,  storage temperatures on 5

th
 August, 2012 for the 377 

physically-based and LR models (validation) 378 

6. Comparison and discussion 379 
The LR model can predict the storage temperature rather precisely, particularly, more 380 
precisely than the physically-based model. According to the validation, the mean (absolute) 381 

modelling error (in %) is 6.2% with the LR model and 16.1% with the physically-based 382 
model. The latter has been already used successfully in many works in the literature. Thus the 383 

accuracy of the LR model can be stated very well regarding general solar thermal engineering 384 
purposes (studying and developing the thermal processes of solar storages). 385 

In addition, the 2R  values between the modelled and measured data with respect to the above 386 
selected 4 days (2 identified and 2 validated ones) have been determined for the models. They 387 
are given in Table 4 confirming the better precision of the LR model compared to the 388 

physically-based one. 389 

Table 4. 2R  values for the models for whole days  390 

Date 
28

th
 June, 2012 

(identification) 

2
nd

 July, 2012 

(identification) 

3
rd

 August, 2012 

(validation) 

5
th

 August, 2012 

(validation) 

Physically-based 

model 
0.918 0.990 0.976 0.713 

LR model 0.988 0.995 0.994 0.965 

It should be mentioned that the storage temperature cannot be expected to be predicted 391 
perfectly with relatively simple models, largely because of the above discussed short circuit 392 

effect. This effect must be rather complex, and thus hard to model, depending on the current 393 

flow rate values v , loadv  and, probably, on the different temperature values of the system. In 394 

case of the SZIU storage, v  is relatively high (0.55 m
3
/h) compared to the tank volume (2 395 

m
3
), which likely makes the short circuit effect significant. It should be also mentioned that 396 

0 5 10 15 20 24
61

61.5

62

62.5

63

63.5

64

64.5

65

65.5

Physically-based model

time, h

S
to

ra
g

e
 t

e
m

p
e

ra
tu

re
, 

°C

 

 

Ts,mod

Ts,meas

0 5 10 15 20 24
0

1

time, h

p
u

m
p

o
n

/o
ff

0 5 10 15 20 24
61

61.5

62

62.5

63

63.5

64

64.5

65

65.5

LR model

time, h
S

to
ra

g
e

 t
e

m
p

e
ra

tu
re

, 
°C

 

 

Ts,mod

Ts,meas

0 5 10 15 20 24
0

1

time, h

p
u

m
p

o
n

/o
ff



 14 

neither model takes into account the thermal stratification inside the storage, which must be 397 
more disadvantageous for the physically-based model than for the LR model, since the 398 
strength of black-box models is just that they can often serve with rather precise empirical 399 
relations without dealing with the physical backgrounds. These must be the reason for that 400 
the accuracy of the physically-based model is not outstanding (the error is over 10%). On the 401 

other hand, these difficulties also confirm the reasonability and robustness of the LR model 402 
considering that its error is rather low (close to 5% in the validation). In sum, the accuracy of 403 
the LR model can be stated very well, especially, regarding its simplicity. Furthermore, the 404 
physically-based model can be stated still usable in the practice as a simple ODE model (c.f., 405 
for example, the 30% and 10% error values reported in [13] in the Introduction). 406 

In fact, there are more parameters to be identified in the LR model than in the physically-407 

based model, but, on the whole (and even in the identification), it is much easier and faster to 408 

apply the LR model, since it means only one explicit algebraic operation at each minute (each 409 
time step) as it is a simple algebraic equation (depending on the current Case), while the 410 
physically-based model is a differential equation, which must be discretized then solved 411 
numerically. Generally, at least 100 time steps is suggested per minute for a satisfactorily 412 
precise numerical calculation, which means at least 100 times more algebraic operations than 413 

in case of the LR model. 414 

7. Conclusions 415 
The purpose of the present research was to work out a general, easy-to-apply but still precise 416 
mathematical model for solar storages. After studying the literature, it can be stated that MLR 417 

is a missing black-box modelling method in case of hydraulic storage tanks in spite of the 418 
(linear algebraic) simplicity. In this paper, a new model, called LR model, has been 419 

established and validated based on measured data to fulfil this research gap. The proposed LR 420 
model may be the simplest possible black-box model with a rather low modelling error (close 421 

to 5%, more precisely, 6.2%) and with very low computational demand. 422 
The slightly modified version of the physically-based linear ODE model of Buzás and Farkas 423 
[3] for solar storages has been validated as well with a modelling error of 16.1%. This model 424 

accounts for the short circuit effect in storage tanks. 425 
Considering the complex, and hard to predict, short circuit effect of the modelled solar 426 

storage (the SZIU storage), the accuracy and the robustness of the LR model can be stated 427 
very well, furthermore, the physically-based model is still usable in the practice as a simple 428 

ODE model. It is not difficult to think that both models would be even more accurate in case 429 
of a more regular tank (with less significant short circuit effect). 430 
After assigning Cases A, B and C, it is not difficult to identify the LR model (2A), (2B) and 431 

(2C) for any storage tanks according to the identification method of Section 5.1.2 (in case of 432 
similar inputs and output as there), so the LR model is also general. 433 

Basically, the LR model can be used for very fast but still precise storage 434 
modelling/simulation, nevertheless, because of its simple linear algebraic equations, the 435 
computational demand is very low, which may make it convenient for model-based control 436 
schemes. The advantage of the simple usability and the low computational demand can be 437 
seen especially compared to other, more complex black-box type models having essentially 438 

the same or even lower precision. 439 

MLR-based models have been worked out in recent works for other working components of 440 

hydraulic heating systems, namely, for solar collectors [23] and for pipes [24]. The LR model 441 
can be considered as the continuation of these works, in the Conclusion of which it was 442 
suggested to work out MLR-based models for further elements (like storage tanks) of 443 
hydraulic heating systems. 444 

Future researches may deal with connecting the already worked out MLR-based models of 445 
the separate working components to form an easy-to-use and precise MLR-based model for 446 
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complete solar heating systems. Furthermore, new model-based controls could be created on 447 
the basis of the LR model. 448 

Acknowledgement 449 
The author thanks the Editor for the help in submitting the paper, the Department of Physics 450 
and Process Control in the Faculty of Mechanical Engineering (SZIU) for the measured data 451 

of the SZIU storage and his colleagues, especially Éva Dékány, in the Department of 452 
Mathematics for the support. 453 
This paper was supported by the János Bolyai Research Scholarship of the Hungarian 454 
Academy of Sciences. 455 

References 456 
[1] Duffie JA, Beckman WA (2006) Solar engineering of thermal processes, 3rd edn. John Wiley and 457 

Sons, New York 458 
[2] Zeghib I, Chaker A (2011) Simulation of a solar domestic water heating system. Energy Procedia 459 

6:292-301. 460 
[3] Buzás J, Farkas I (2000) Solar domestic hot water system simulation using blockoriented software. 461 

In: The 3rd ISES-Europe solar world congress (Eurosun 2000), Copenhagen, Denmark, CD-ROM 462 
Proceedings, p. 9. 463 

[4] Kumar R, Rosen MA (2010) Thermal performance of integrated collector storage solar water 464 
heater with corrugated absorber surface. Appl Therm Eng 30:1764-1768. 465 

[5] Jannatabadi M, Taherian H (2012) An experimental study of influence of hot water consumption 466 
rate on the thermal stratification inside a horizontal mantle storage tank. Heat Mass Transf 467 
48(7):1103-1112. 468 

[6] Duer M (2011) Passive mixing systems improve storage tank water quality. Opflow 37(8):20-23. 469 
[7] Han YM, Wang RZ, Dai YJ (2009) Thermal stratification within the water tank. Renew 470 

Sustainable Energy Rev 13:1014-1026. 471 
[8] Bayón R, Rojas E (2013) Simulation of thermocline storage for solar thermal power plants: From 472 

dimensionless results to prototypes and real-size tanks. Int J Heat Mass Transfer 60:713-721. 473 
[9] Altuntop N, Arslan M, Ozceyhan V, Kanoglu M (2005) Effect of obstacles on thermal 474 

stratification in hot water storage tanks. Appl Therm Eng 25:2285-2298. 475 
[10] Zachár A, Aszódi A (2007) Numerical analysis of flow distributors to improve temperature 476 

stratification in storage tanks. Numer Heat Tr A-Appl 51:919-940. 477 
[11] Zachár A (2013) Investigation of a new tube-in-tube helical flow distributor design to improve 478 

temperature stratification inside hot water storage tanks operated with coiled-tube heat exchangers. 479 
Int J Heat Mass Transfer 63:150–161. 480 

[12] Wang Z, Zhang H, Dou B, Huang H, Wu W, Wang Z (2017) Experimental and numerical 481 
research of thermal stratification with a novel inlet in a dynamic hot water storage tank. Renew 482 
Energy 111:353-371. 483 

[13] Johannes K, Fraisse G, Achard G, Rusaouën G (2005) Comparison of solar water tank storage 484 
modelling solutions. Sol Energy 79:216-218. 485 

[14] Klein SA et al. (2005) TRNSYS 16 – A transient system simulation program. Solar Energy 486 
Laboratory, University of Wisconsin-Madison 487 

[15] Meyer JP, Raubenheimer PJA, Kruger E (2000) The influence of return loop flow rate on 488 
stratification in a vertical hot water storage tank connected to a heat pump water heater. Heat 489 
Transfer Eng 21(2):67-73. 490 

[16] Kalogirou SA, Panteliou S, Dentsoras A (1999) Modelling of solar domestic water heating 491 
systems using artificial neural networks. Sol Energy 65(6):335-342. 492 

[17] Kalogirou SA (2000) Applications of artificial neural-networks for energy systems. Appl Energy 493 
67:17-35. 494 

[18] Géczy-Víg P, Farkas I (2010) Neural network modelling of thermal stratification in a solar DHW 495 
storage. Sol Energy 84:801-806. 496 

[19] Cabello JM, Cejudo JM, Luque M, Ruiz F, Deb K, Tewari R (2011) Optimization of the size of a 497 
solar thermal electricity plant by means of genetic algorithms. Renew Energy 36(11):3146-3153. 498 



 16 

[20] Romero JA, Navarro-Esbrí J, Belman-Flores JM (2011) A simplified black-box model oriented 499 
to chilled water temperature control in a variable speed vapour compression system. Appl Therm 500 
Eng 31:329-335. 501 

[21] Arahal MR, Cirre CM, Berenguel M (2008) Serial grey-box model of a stratified thermal tank for 502 
hierarchical control of  solar plant. Sol Energy 82:441-451. 503 

[22] De Ridder F, Coomans M (2014) Grey-box model and identification procedure for domestic 504 
thermal storage vessels. Appl Therm Eng 67(1-2):147-158. 505 

[23] Kicsiny R (2016) Improved multiple linear regression based models for solar collectors. Renew 506 
Energy 91:224–232. 507 

[24] Kicsiny R (2017) Grey-box model for pipe temperature based on linear regression. Int J Heat 508 
Mass Transfer 107:13–20. 509 

[25] Araújo A, Pereira V (2017) Solar thermal modeling for rapid estimation of auxiliary energy 510 
requirements in domestic hot water production: On-off flow rate control. Energy 119:637-651. 511 

[26] Winn CB, Hull DE (1979) Optimal controllers of the second kind. Sol Energy 23:529-534. 512 
[27] Etter DM, Kuncicky D, Moore H (2004) Introduction to MATLAB 7. Springer 513 
[28] Farkas I, Buzás J, Lágymányosi A, Kalmár I, Kaboldy E, Nagy L (2000) A combined solar hot 514 

water system for the use of swimming pool and kindergarten operation. Energy and the 515 
environment, Vol. I. /ed. by Frankovic B/, Croatian Solar Energy Association, Opatija, 2000., 81-516 
88. 517 

[29] Géczyné Víg P (2007) Modelling of solar heating systems with neural network. Dissertation, 518 
Szent István University, Gödöllő, p. 130. [in Hungarian] 519 
https://szie.hu//file/tti/archivum/geczine_v_p_phd.pdf Accessed 10 August 2017 520 


