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A general formulation of the quasiclassical trajectory method for 
reduced-dimensionality reaction dynamics calculations  

Tibor Nagya*, Anna Vikára, György Lendvaya,b* 

Dimension reduction by freezing the unimportant coordinates is widely used in intramolecular and reaction dynamics 

calculations when the solution of the accurate full-dimensional nuclear Schrödinger equation is not feasible. In this paper 

we report on a novel form of the exact classical internal-coordinate Hamiltonian for full and reduced-dimensional vibrational 

motion of polyatomic molecules with the purpose of using it in quasiclassical trajectory (QCT) calculations. The derivation is 

based on the internal to body-fixed frame transformation, as in the t-vector formalism, however it does not require the 

introduction of rotational variables to allow cancellation of non-physical rotations within the body-fixed frame. The formulas 

needed for QCT calculations: normal mode analysis and state sampling as well as for following the dynamics and normal-

mode quantum number assignment at instantaneous states are presented. The procedure is demonstrated on the CH4, CD4, 

CH3D and CHD3 isotopologs of methane using three reduced-dimensional models, which were previously used in quantum 

reactive scattering studies of the CH4+XCH3+HX type reactions. The reduced-dimensional QCT methodology formulated 

this way combined with full-dimensional QCT calculations makes possible the classical validation of reduced-dimensional 

models that are used in the quantum mechanical description of the nuclear dynamics in reactive systems [Vikár et al., J. 

Phys. Chem. A 120 (2016) 5083–5093.]. 

1. Introduction 

Dimension reduction is often used in modeling phenomena 

in chemical physics to reduce the complexity of the model. By 

selecting the degrees of freedom that are relevant to the 

investigated properties of the system, one can concentrate the 

effort on a model whose smaller size allows one to perform a 

simulation at a higher level of sophistication. In molecular 

physics, reduced-dimensional (RD) models have been used in 

the description of nuclear motion both in rovibrational 

spectroscopy1,2 as well as in molecular3–5 and reaction dynamics 

simulations6–17. In both cases, the possibility of simplification is 

offered by the separation of time scales and the weakness of 

the coupling between the various modes of nuclear motion.  

In vibrational spectroscopy, the semi-rigid modes are well 

described by the normal mode approximation18–20 in which the 

potential and kinetic energies are considered as quadratic 

functions of Cartesian or internal coordinates and of the 

conjugate momenta, resp.. The description of large amplitude 

motion (LAM), in floppy molecules, such as hindered rotor type 

modes, however, require a more sophisticated treatment, 

because the quadratic approximation does not work, often 

within the space swept by the zero-point motion. The 

frequencies of such modes are generally much smaller than 

those of stiffer vibrations, and the potential coupling between 

the fast and slow degrees of freedom is often also limited. A way 

to achieve a numerically feasible description of vibration of 

molecules with LAMs is that one reduces the dimensionality of 

the problem to those of the strongly anharmonic low-frequency 

modes by freezing the fast vibrations1,2.  

In molecular dynamics simulation of, for example, 

biomolecules in water, when a large number of solvent 

molecules are present, the high-frequency OH stretching 

vibrations require the integration time step to be small. 

However, their instantaneous phase has no effect on the much 

slower conformational motion, thus one can freeze them,4,5 

which allows a significantly faster, yet realistic simulation of the 

system.  

In reaction dynamics, the reactive event often concerns a 

small number of internal coordinates involving only a few 

atoms, called active modes, and the rest are considered as 

“spectators”. Dimension reduction is possible because the 

potential- and often the kinematic coupling between the active 

and spectator modes are small. In the corresponding scattering 

calculation the active degrees of freedom are treated explicitly, 

while the coordinates of spectator modes are frozen at their 

values at the saddle point of the potential energy surface (PES) 

or at the equilibrium geometry of reactant molecules. In 

quantum and state-to-state quasiclassical dynamical 

calculations it is necessary to know the quantum states of the 

reactants and products, for which one needs to properly 
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characterize the vibrational motion involving only the active 

degrees of freedom of the reactant and product molecules, 

respectively. This is equivalent to the reduced-dimensional 

vibrational spectroscopic problem. RD models are mostly used 

in quantum mechanical simulations of reactions, because of the 

exponential growth of the computational effort with the 

number of degrees of freedom,1,2,6–16 but only rarely in 

quasiclassical trajectory (QCT) simulations, where the growth is 

linear. 

In the QCT method,20,21 the motion of the atoms is described 

classically and the only nuclear quantum effect considered is 

that the rovibrational energies of the reactant molecules are 

discrete. Accordingly, each rovibrational quantum state of the 

reactant molecules is simulated by an ensemble of 

semiclassically quantized classical states (i.e. coordinates and 

momenta). In RD reaction dynamical models the spectator 

degrees of freedom are frozen during the reaction. This means 

that the number of vibrational degrees of freedom of the 

reactant and the product molecules is also reduced. 

Consequently, the problem of semiclassical quantization also 

arises when state-to-state reactivity parameters or simply state 

distributions of product molecules are to be determined. In 

what follows, the generation of classical states corresponding 

to a quantum state will be called the direct problem, and the 

determination of the quantum state corresponding to a given 

classical state will be referred to as the inverse problem. 

Application of dimension reduction in QCT simulations is 

rather scarce. One of the reasons for this is that there is no 

general theory for the vibrational analysis, initial state 

preparation and final state analysis is available. Among the few 

reduced-dimensional trajectory calculations performed so far, 

in a set only trivial reductions were applied: some of the 

Cartesian coordinates were simply disregarded. Lu and Hase22 

applied RD models of benzene, obtained by constraining and 

truncating the molecule to planar C3H3 and C3H moieties to 

prevent zero-point energy leakage from neighboring high-

frequency modes during the simulation of intramolecular 

vibrational energy redistribution (IVR). Klossika and Schinke23 

investigated the photodissociation of HNCO induced by NH 

vibrational excitation, by constraining the atoms into a plane 

using a reduced-dimensional analytic potential energy surface 

calculated only for planar arrangement of atoms. 

In another set of dynamical studies the vibrations of 

molecules or fragments were completely frozen and only their 

relative motion was simulated. Raff and coworkers24,25 applied 

rigid-body dynamics to investigate rotational energy transfer 

between CO2 and He as well as H2. Rotational dynamics in 

collisions of H2O and H2 with frozen stretch vibrations were 

studied by Faure et al..26 In some reactive scattering calculations 

bond lengths and angles were frozen, focusing again on 

rotational dynamics in the capture step of some bimolecular 

reactions (Maergoiz et al.27., Faure et al.28, Harding et al.29). 

Harding et al.30 investigated the roaming dynamics of the 

photochemical decomposition of CH3CHO, where they froze the 

vibrations of the fragments to avoid zero-point energy leakage 

and the need for constructing a high-dimensional analytic PES. 

More complex constraints were considered by the authors 

of the present paper in a recent study comparing the results of 

reduced- and full-dimensional (FD) quasiclassical trajectory 

calculations. The purpose of that work was to assess the 

accuracy of the Palma-Clary RD quantum dynamical model of 

the CH4+HCH3+H2 reaction31, whose FD counterpart is 

computationally too expensive to solve. In the present paper 

the general theory of reduced-dimensional QCT calculations 

used in that study is described. We demonstrate how the QCT 

method, including initial condition generation and final state 

can be consistently applied to RD models involving arbitrary 

constraints. 

In the following, first we describe the three fundamental 

coordinate systems used in this work (Section 2.1); then in 

Section 2.2 we derive the vibrational Lagrangian in body-fixed 

Cartesian coordinates and then the vibrational Lagrangian and 

Hamiltonian in internal coordinates (Section 2.3). We discuss 

the connection of our formulation to the t-vector and s-vector 

formalisms in both full and reduced-dimensionality (Section 

2.4). As applications, normal mode analysis (Section 2.5) and 

normal mode sampling (NMS, Section 2.6) in internal 

coordinates and the subsequent transformation of states to 

laboratory frame are described. In Section 2.7, two methods of 

RD trajectory integration are presented and compared. Section 

2.8 is devoted to the inverse problem, where first the classical 

state given in laboratory frame is transformed to the internal 

coordinate system, and the normal coordinate displacements 

and momenta are calculated, from which the normal mode 

quantum numbers are determined. The equations presented in 

Section 2 (apart from Section 2.4) hold not only for reduced-

dimensional models but are also applicable in full 

dimensionality and can also serve as a basis in the derivation of 

RD quantum Hamiltonians. In Section 3, as a proof of principle, 

the method is applied to a hierarchy of three RD models of the 

methane molecule CZ3Y, in each of which the CZ3 group is 

constrained to maintain C3v symmetry. A complete reaction 

dynamics study based on this theory has been presented in Ref. 
31. 

2. Theory 

2.1 Frames and Coordinate Systems. 

Derivation of the classical vibrational Hamiltonian in internal 

coordinates starts from the full Lagrangian expressed in 

Cartesian coordinates in a space-fixed (a.k.a. laboratory) frame:  

𝐿(𝐗, 𝐗̇) =
𝟏

𝟐
𝐗̇T𝐌𝐗̇− 𝐕(𝐗), (1) 

where for an 𝑁-atomic system 𝐗 = (𝑋1𝑥 , 𝑋1𝑦 , 𝑋1𝑧 , … , 𝑋𝑁𝑧)
T

 

and 𝐗̇ are the 3𝑁-component coordinate and corresponding 

velocity column vectors, respectively, which are composed of 

the corresponding atomic coordinate 𝐑𝑖 = (𝑋𝒊𝒙 , 𝑋𝒊𝒚 , 𝑋𝒊𝒛, )
T

 and 

velocity 𝐑̇𝑖  vectors. 𝐌 = diag(𝑚1 , … ,𝑚𝑁) is the diagonal 

3𝑁3𝑁 mass matrix, containing the atomic masses. The 

classical mechanical state of the system can be given either by 

the coordinates and the velocities, (𝐗, 𝐗̇) or by the coordinates 
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and the conjugate momenta,(𝐗,𝐏𝑋), the Cartesian momenta 

being defined as 𝐏𝑋 = 𝐌𝐗̇. 

For the description of molecular vibrations, internal 

coordinates such as valence coordinates (bond lengths, bond 

and torsion angles etc.) are much more meaningful than 

Cartesians as the forces acting between atoms are inherently 

intramolecular, i.e., they do not depend on the position and 

orientation of the molecule. In addition, the force constants 

defined in terms of valence coordinates can be rationalized 

using chemical intuition (for example, they are roughly 

transferable between molecules)32. Furthermore, the use of 

internal coordinates is advantageous also when approximations 

to the Hamiltonian (e.g. quadratic- or quartic-order) are applied 

as they can describe large amplitude curvilinear motion more 

effectively than Cartesians.  

In general, an internal coordinate is such a function of 

Cartesian coordinates, whose value is invariant under 

displacement and rotation of the molecule, thus it is necessarily 

formulated by using scalar (𝐚𝐛 = 𝐚𝐓𝐛), and vector (𝐚𝐛) 

products of atomic Cartesian coordinate vector differences 

𝐑𝑖 − 𝐑𝑗 . Consequently, functions of internal coordinates are 

also internal coordinates. It is worth noting that those internal 

coordinates that are defined in terms of a cross product (e.g., 

torsion angles), change sign under mirroring the molecule 

through a plane (they are pseudoscalars).  

For the description of the vibrating molecule one needs to 

define 𝑛 independent, otherwise arbitrary internal coordinates 

𝐲(𝐗) = (𝑦1(𝐗),… , 𝑦𝑛(𝐗))
T

 in terms of Cartesian coordinates. 𝑛 

is less than or may be equal to 𝑓 =  3𝑁 − 6, the number of 

internal degrees of freedom. If 𝑛 equals 𝑓 then the set of 

internal coordinates is complete and the model is called full-

dimensional. In reduced-dimensional models the set of 

irredundant internal coordinates is incomplete (𝑛 <  𝑓) and the 

remaining 𝑓–𝑛 internal degrees of freedom are constrained by 

fixing 𝑓– 𝑛 functions 𝑦𝑛+1(𝐗),… , 𝑦𝑓(𝐗) at values 𝑦𝑛+1,0 , … , 𝑦𝑓,0. 

These constraint functions are generally expressed in terms of 

the usual valence coordinates. For example, such a function can 

measure the deviation from some desired symmetry, e.g., it 

may be the difference of two bond lengths, which is constrained 

to zero. Variables 𝑦𝑛+1(𝐗), … , 𝑦𝑓(𝐗) expressing the constraints 

are formally internal coordinates, because their values should 

also be independent of the position and the orientation of the 

molecule. Note that these constrained variables are not 

included in vector 𝐲. 

In full-dimensional models of vibrating molecules, the 

kinetic energy in internal coordinates is given with the help of 

the Wilson 𝐁 matrix evaluated at the instantaneous geometry 
19: 

𝐁 =
d𝐲

d𝐗
 , (2) 

The row vectors of the (3𝑁 − 6)3𝑁 dimensional 𝐁 matrix are 

called vibrational s-vectors 1,33 (𝐬𝑖 = dy𝑖/d𝐗). The 

nonredundant internal coordinates 𝐲 are defined for all values 

of laboratory coordinates 𝐗, so that the inverse mass matrix 

𝐆y,vib = 𝐁𝐌
−1𝐁T (3) 

properly assigns masses to the internal coordinates and the 

vibrational kinetic energy in internal coordinates written as,  

𝐸kin =
1

2
𝐩y
T𝐆y,vib𝐩y. (4) 

will be exact. However, in reduced-dimensional models (𝑛 < 𝑓), 

the 𝐗 coordinates are interrelated by the constraints and the 𝐁 

matrix defined in (2) with reduced number of rows lacks the 

information on the corresponding constrained internal 

coordinates, which is required to disentangle them from the 

free ones. Consequently, such a reduced-dimensional 𝐁 matrix 

cannot be used for the construction of the exact reduced-

dimensional kinetic energy expression, unless the frozen 

internal coordinates are orthogonal in some sense to the free 

ones (see ref. 1 and Section 2.4). 

  In order to circumvent this problem, we use the inverse 

transformation, which converts 𝑓 internal coordinates 𝐲 to 3𝑁 

lab Cartesian coordinates 𝐗. The inverse function 𝐗(𝐲) and its 

partial derivatives by definition take into account the 

constraints because they are evaluated under the condition 

𝑦𝑗(𝐗) = 𝑦𝑗,0 for 𝑗 = 𝑛 + 1, . . , 𝑓. However, the internal 

coordinates do not determine the position and orientation of 

the molecule in the Cartesian system. To locate and orient the 

molecule one can utilize an intermediate body-fixed frame and 

an attached Cartesian coordinate system. In this auxiliary body-

fixed frame the Cartesian coordinate 3𝑁-vector and the 

coordinate 3-vector of atom i will be denoted by 𝐱 =

(𝑥1𝑥 , 𝑥1𝑦 , 𝑥1𝑧 , … , 𝑥𝑁𝑧)
T

 and 𝐫𝑖 = (𝑥𝒊𝒙 , 𝑥𝒊𝒚, 𝑥𝒊𝒛, )
T

, respectively. 

The body-fixed coordinates 𝐱 are connected to the space-fixed 

frame by an instantaneous translation and rotation, 

summarized in the function 𝐱(𝐗). The definition of the 

intermediate frame allows us to derive the Lagrangian in 

internal coordinates via converting the kinetic and potential 

energy expressions 1) from space-fixed to body-fixed frame and 

2) from body-fixed to internal frame using the inverse 

transformations 𝐗(𝐱) and 𝐱(𝐲), respectively. 

In what follows we proceed on this route in two steps. First 

we describe the body-fixed frame and its connection to the 

internal coordinates, 𝐱(𝐲) and then its relationship to the 

space-fixed Cartesian frame, 𝐗(𝐱) and show how a classical 

state given in internal coordinates can be transformed into the 

space-fixed frame.  

There are many possible ways of defining a body-fixed 

Cartesian frame, and it depends on the system which one is the 

most favorable. One of the simplest possibilities is that one 

places the origin either at the center of mass of the molecule or 

at one of the atoms and selects four non-coplanar atoms within 

the molecule and orthonormalizes three vectors pointing from 

one of them to the other three to obtain the basis vectors 𝐞  

( =  𝑥, 𝑦, 𝑧).  

The definition of the body-fixed Cartesian coordinates as a 

function of internal ones is given by a vector-vector function  

𝐱 = 𝐱(𝐲), (5) 

whose time derivative connects the internal coordinate and the 
Cartesian velocities: 
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𝐱̇ = 𝐂(𝐲)𝐲̇. (6) 

The columns of the 3𝑁𝑛 matrix 𝐂(𝐲) = d𝐱/d𝐲 are known as 

vibrational 𝐭-vectors1,33,34 (𝐭𝑖 = ∂𝐱/ ∂y𝑖). 

When one knows the 𝐱 coordinates, the Cartesian 

coordinates of the atoms in the space-fixed frame can be 

obtained by considering that the body-fixed and space-fixed 

Cartesian frames can be brought into overlap by a translation 

and a rotation, i.e., the 𝐫𝑖  coordinate vectors need to be rotated 

by matrix 𝐎frame  and shifted by vector 𝐑frame  to get the space-

fixed coordinates 𝐑𝑖 :   

𝐑𝑖 = 𝐑frame +𝐎frame𝐫𝑖. (7) 

The atomic velocity 𝐑̇𝑖  is obtained from that in the body-fixed 

frame (𝐱̇) by differentiating Eq. (7) with respect to time: 

𝐑̇𝑖 = 𝐑̇frame + 𝐎̇frame𝐫𝑖 +𝐎frame𝐫̇𝑖, (8) 

where 𝐑̇frame  is the velocity of the body-fixed frame with 

respect to the space-fixed one. To get  𝐎̇frame , one needs to 

take into account that the body-fixed frame may rotate around 

its origin with angular velocity  frame. The total time derivative 

of the rotation matrix  𝐎frame  is then 𝐎̇frame = frame ×

𝐎frame , where the cross product of frame and matrix 𝐎frame  

needs to be evaluated column by column. With this, the atomic 

velocity 𝐑𝑖  in the space-fixed Cartesian frame is:  

𝐑̇𝒊 = 𝐑̇frame + (frame ×𝐎frame)𝐫𝑖 +𝐎frame𝐫̇𝑖. (9) 

Unless special care is taken, the body-fixed frame does not 

move together with the molecule: its instantaneous linear 

(𝐑̇frame) and angular velocities (frame) differ from those of the 

molecule in the space-fixed frame. For example, when the body-

fixed frame for a vibrating water molecule (H2O) is selected to 

be centered at the O atom with the 𝑥-axis parallel to H1H2, then 

the linear velocity of the origin of the frame is not identical to 

that of the center of mass, and the antisymmetric OH stretch 

vibration generates angular motion of the molecule (see Fig. 1).  

Obviously, the physically correct description of motion 

requires both the displacements of the atoms of the molecule 

in the body-fixed frame and translation + rotation of the body-

fixed frame in the lab frame. Consequently, the transformation 

of internal coordinates and momenta to body-fixed frames 

according to Eqs. (5) and (6) usually generates unphysical (often 

referred to as spurious 35) translation and rotation.  

Figure 1. Schematic drawing of the motion of a water molecule (H1OH2) in a specific 

body-fixed frame, which is centered at the O atom with the x-axis parallel to the H1H2
 

line. Figure (a): the equilibrium geometry with space-fixed displacements (blue arrows) 

due to antisymmetric stretch vibration. Figure (b) : the distorted molecule and the body-

fixed frame aligned according to the new H-H axis. Figure (c) : the distorted molecule 

when the body-fixed frame is aligned as in Figure (a), showing the corresponding atomic 

displacements in the body-fixed frame, which result in a clockwise rotated structure 

whose center of mass (CM) is displaced upward and to the left in the body-fixed frame. 

When the focus is on the vibrational motion of a molecule, 

however, the general procedure is that the motion of the body-

fixed frame is disregarded and extra steps are made to eliminate 

the spurious rotation and translation which would falsify the 

effective masses assigned to internal coordinates. In the t-

vector formalism the cancellation of spurious rotation is 

achieved by the introduction of rotational coordinates when 

vibrational energy levels are calculated1,2.  

In classical mechanics, when a vibrational state is generated 

by normal mode sampling, the molecule can artificially be 

cleared of these unwanted velocities36. In general, it is desirable 

to avoid the appearance of the unphysical translational and 

rotational terms, a novel way of which is proposed in the 

following sections. 

2.2 Vibrational Lagrangian in Body-Fixed Cartesian Coordinates. 

To derive the pure vibrational Lagrangian 𝐿x,vib(𝐱, 𝐱̇) in body-

fixed Cartesian coordinates, first the Lagrangian 𝐿x(𝐱, 𝐱̇) for the 

non-translating and non-rotating body-fixed frame is obtained. 

To achieve this, one substitutes Eqs. (6) and (7) into Eq. (1) and 

eliminates the rotational and translational motion of the body-

fixed frame by setting 𝐑̇frame = 𝟎 and frame = 𝟎. Exploiting 

that matrix 𝐌 is diagonal and matrix 𝐎frame  is unitary, the 

kinetic energy function in the new coordinates can be 

transformed into the same form in body-fixed Cartesian 

coordinates as it was in the lab Cartesian frame, in accordance 

with the expectations. The form of the potential energy 

function will also remain the same because it is a function of 

internal coordinates only, which are defined with dot and cross 

products (brief common notation: ×̇), that are also left 

unchanged by 𝐎frame . 

𝐿𝑥(𝐱, 𝐱̇)= 

= 𝐿 (𝐗(𝐱), 𝐗̇(𝐱, 𝐱̇); 𝐑̇𝐟𝐫𝐚𝐦𝐞 = 𝟎,frame = 𝟎) = 

=∑ 𝟏

𝟐

𝑵

𝒊=𝟏

𝑚𝑖𝐑̇𝑖
T𝐑̇𝑖 − 𝑉({(𝐑𝑗 −𝐑𝑘) ×̇ (𝐑𝑙 −𝐑𝑚)}) = 

=∑ 𝟏

𝟐

𝑵

𝒊=𝟏

𝑚𝑖𝐫̇𝑖
T 𝐫̇𝑖

 −𝑉({(𝐫𝑗 − 𝐫̇𝑘) ×̇ (𝐫𝑙 − 𝐫𝑚)}) = 

= 𝟏

𝟐
𝐱̇T𝐌𝐱̇ − 𝑉(𝐱). 

(10) 

The curly bracket refers to the sets of products involving the 

atomic indices (j,k,l,m) that are used in the definition of internal 

coordinates.  

We would like to obtain the pure vibrational Lagrangian. For 

this we need to decompose the kinetic energy into separate 

vibrational as well as translational and rotational parts. If one 

introduces mass-scaled coordinates 𝐱̃ = 𝐌1/2𝐱, the quadratic 

form of the kinetic energy expressed in the body-fixed Cartesian 

frame (𝑇𝑥 ) reduces to the square of the mass-scaled velocity 

vector (𝐱̇̃). This form is advantageous, because it allows one to 

decompose the instantaneous mass-scaled velocity vector into 

orthogonal translational, rotational and vibrational parts (we 

show later how). Once these components, 𝐱̇̃trans , 𝐱̇̃rot and 𝐱̇̃vib 
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are available, the kinetic energy can also be broken down into 

the corresponding 𝑇trans , 𝑇rot and 𝑇vib terms: 

𝑇x =
1

2
(𝐌

1

2𝐱̇)
T

𝐌
1

2𝐱̇ =
1

2
𝐱̇̃2 =

1

2
(𝐱̇̃trans
2 + 𝐱̇̃rot

2 + 𝐱̇̃vib
2 ) = 

= 𝑇trans + 𝑇rot+ 𝑇vib . 

(11) 

Consequently, the vibrational part can be obtained by 

eliminating the components of the mass-scaled velocity that 

correspond to translation and rotation, i.e., projecting the 

velocities onto the complementary and orthogonal, 

instantaneous (geometry-dependent) vibrational subspace. If 

the 3𝑁3𝑁 matrix that performs the desired projection in the 

space of mass-scaled velocities is denoted by  𝐏vib(𝐱), the pure 

vibrational Lagrangian can be formally written as: 

𝐿x,vib(𝐱, 𝐱̇) =
1

2
( 𝐏vib(𝐱)𝐌

1

2𝐱̇)T 𝐏vib(𝐱)𝐌
1

2𝐱̇ − 𝑉(𝐱) . (12) 

Utilizing the fact that the orthogonal projectors onto the 

translational and rotational subspaces, 𝐏trans and  𝐏rot(𝐱),   can 

be easily found (see below) and their sum is complementary to 

𝐏vib(𝐱), we define 𝐏vib(𝐱) in terms of them:  

𝐏vib(𝐱) = 𝐄 − 𝐏trans−𝐏rot(𝐱), (13) 

where 𝐄 is the 3𝑁3𝑁 unit matrix. In the following we define 

the basis vectors of the translational and rotational subspaces 

and using them, we construct the corresponding projectors.  

The translational subspace of mass-scaled displacements 

and velocities is spanned by the three 3𝑁-component 

translational basis vectors 𝐮trans,𝛼   ( =  𝑥, 𝑦, 𝑧): 

𝑢𝑖𝛾
trans,𝛼 =

∂𝑥𝑖𝛾

∂𝑥CM,𝛼
= (

√𝑚1𝐞𝛼
⋮

√𝑚𝑁𝐞𝛼

)

𝑖𝛾

= √𝑚𝑖(𝐞𝛼)𝛾 =

√𝑚𝑖𝛿𝛼𝛾 = (𝐌
1/2 𝐭 

trans,𝛼)
𝑖𝛾

  

(14) 

𝑢𝑖𝛾
trans,𝛼  denotes the  ( = x, y, z) component of the mass-scaled 

displacement of atom i during translation of the whole molecule 

along axis  (see Fig. 2a-c).  𝛿𝛼𝛾  is the Kronecker symbol, which 

is evaluated using 𝑥 = 1, 𝑦 = 2, 𝑧 = 3 assignments to the 

possible values of its indices  and . The translational basis 

vectors are related to translational t-vectors (𝐭  
trans,𝛼) by mass-

scaling. The translational basis vectors only depend on the 

masses and are independent of the geometry and also of the 

choice of the origin of the body-fixed frame. Consequently, the 

translational subspace is the same at all geometries and thus it 

includes all finite mass-scaled translations of the molecule. 

The rotational subspace is spanned by the three 3𝑁-

component rotational basis vectors 𝐮rot,𝛼(𝐱), which describe 

the relative magnitude of the mass-scaled displacements of 

atoms due to an infinitesimal rotation of the molecule around 

the  principal axis (PA) of the instantaneous moment of inertia 

tensor ( =  1, 2, 3, but not 𝑥, 𝑦, 𝑧). Rotational basis vectors can 

be calculated from the orthonormal unit vectors of principal 

axes 𝐞𝛼
PA  (given in the body-fixed frame) and the instantaneous 

position vectors of atoms 𝛒𝑖 ≔ 𝐫𝑖 − 𝐫CM 
(𝑖 = 1, … , 𝑁) relative to 

the center of mass of the molecule, 𝐫CM: 

𝑢𝑖𝛾
rot,𝛼(𝐱) =

∂𝑥𝑖𝛾

∂𝜑𝛼
PA = (

√𝑚1(𝐞𝛼
PA × 𝛒1)

⋮

√𝑚𝑁(𝐞𝛼
PA × 𝛒𝑁)

)

𝑖𝛾

=

√𝑚𝑖(𝐞𝛼
PA × 𝛒𝑖)𝛾 = √𝑚𝑖∑ ∑ 𝜀𝛾𝜎𝜏𝑒𝛼𝜎

PAρ𝑖𝜏𝜏=𝑥,𝑦,𝑧𝜎=𝑥,𝑦,𝑧 =

(𝐌1/2𝐭 
rot,𝛼)

𝑖𝛾
. 

(15) 

𝑢𝑖𝛾
rot,𝛼characterizes the relative magnitude of the  component 

( =  𝑥, 𝑦, 𝑧) of the mass-scaled displacement of atom I when 

the molecule is rotated infinitesimally around the  (=  1, 2, 3) 

principal axis (see Fig. 2d-e). The angle of the rotation around 

𝐞𝛼
PA  is denoted by 𝜑𝛼

PA . 𝜀𝛾𝜎𝜏  is the Levi-Civita tensor which is 

evaluated using assignments 𝑥 = 1, 𝑦 = 2, 𝑧 = 3 regarding the 

possible values of its indices , and . The rotational basis 

vectors are related to rotational t-vectors (𝐭 
rot,𝛼) corresponding 

to rotations around the principal axes by mass-scaling. The 

rotational basis vectors depend on the geometry. Thus they can 

be used to describe only infinitesimal mass-scaled 

displacements of atoms during the rotation of the molecule. 

The translational and the rotational basis vectors are 

orthogonal to each other, and by normalizing them an 

orthonormal set of translational and rotational basis vectors, 

𝐮0
trans,𝛼  and 𝐮0

rot,𝛼(𝐱) can be obtained. The proof of 

orthogonality and the derivation of the norms of the basis 

vectors are presented in the Appendix. 

 The instantaneous vibrational subspace, which is orthogonal 

to the translational and rotational subspaces, also depends on 

the geometry, thus it will span only infinitesimal mass-scaled 

displacements during the vibration of the molecule. When the 

shape and the orientation of the molecule do not change during 

its motion, for example, during the symmetric stretch vibration 

of CH4 or during the translation of any molecule, the rotational 

and vibrational subspaces will not change either. A possible 

orthonormal basis (𝐮0
vib,𝑖(𝐱e), 𝑖 = 1, . . , 𝑓 ) of the vibrational 

subspace at equilibrium geometry (𝐱𝑒) (is formed by the 

vibrational normal mode eigenvectors (see Fig. 2f), which are 

obtained from harmonic vibrational analysis and are mass-

scaled by definition. The orthonormal basis vectors of the 

translational, rotational and vibrational subspaces of a 

homonuclear diatomic molecule are summarized in Fig. 2. The 

orthogonal projection matrices  𝐏trans and 𝐏rot(𝐱) can be 

defined as dyadic products (𝐚 ∘ 𝐛 = 𝐚𝐛T) of the relevant basis 

vectors: 

𝐏trans = ∑ 𝐮0
trans,𝛼𝐮0

trans,𝛼,T
𝛼=𝑥,𝑦,𝑧 , (16) 

𝐏rot(𝐱) = ∑ 𝐮0
rot,𝛼(𝐱) 𝐮0

rot,𝛼,T3
𝛼=1 (𝐱) . (17) 

These are the projectors to be used in Eq. (13) to generate the 

orthogonal projection matrix 𝐏vib(𝐱) onto the complementary, 

vibrational subspace. Matrix 𝐏vib(𝐱), being an orthogonal 

projector, is idempotent (𝐏vib
2 (𝐱) = 𝐏vib(𝐱)) and symmetric 

while the mass matrix 𝐌 is diagonal. Consequently, by 

introducing an effective vibrational mass matrix: 

𝐌vib(𝐱) = 𝐌
1/2𝐏vib(𝐱)𝐌

1/2, (18) 
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Figure 2. The three translational (a, b, c), two rotational (d, e) and one vibrational (f) normalized basis vectors of a homonuclear diatomic molecule (H2, O2, etc) at a given orientation. 

The Cartesian coordinate system and the indices of atoms are shown in the leftmost panel. In panels (d) and (e), the center of mass (CM) is shown in blue, and the unit vectors along 

the principal axes are shown in red. 

which is geometry dependent and dense as opposed to matrix 

𝐌, the Lagrangian in Eq. (12) can be rewritten in the form: 

𝐿x,vib(𝐱, 𝐱̇) =
1

2
𝐱̇T𝐌vib(𝐱)𝐱̇ − 𝑉(𝐱). (19) 

Matrix 𝐌vib(𝐱) 
is singular, since it assigns non-zero masses only 

to the motion within the vibrational subspace, which has fewer 

dimensions than 3𝑁. Momenta 𝐩x,vib  canonically conjugate to 

coordinates 𝐱 are obtained by differentiating the Lagrangian: 

𝐩x,vib =
d𝐿x,vib(𝐱,𝐱̇)

d𝐱̇
= 𝐌vib(𝐱)𝐱̇. (20) 

While the velocity vector  may describe translation and 

rotation in addition to vibration of the molecule in the body-

fixed frame, the momentum vector 𝐩x,vib describes only 

vibrations, because it is obtained by the singular mass 

matrix 𝐌vib(𝐱). Thus, the Legendre transformation to obtain 

the corresponding Hamiltonian cannot be done in the regular 

way.  

We note that the present derivations are similar to the 

projection method proposed by Miller et al..37 Szalay38 for the 

approximate decomposition of the kinetic energy in the Eckart 

frame. The difference is that we apply the exact decomposition 

of the instantaneous kinetic energy.  

2.3 Vibrational Hamiltonian in Internal Coordinates  

The vibrational Lagrangian in internal coordinates 𝐲 and 

velocities 𝐲̇ can be obtained from Eq. (19) using the 

transformations in Eqs. (5) and (6): 

𝐿y,vib(𝐲, 𝐲̇) =
1

2
(𝐂(𝐲)𝐲̇)T𝐌vib(𝐱(𝐲)) 𝐂(𝐲)𝐲̇ − 𝑉(𝐱(𝐲)) =  

=
1

2
𝐲̇T𝐌y,vib(𝐲)𝐲̇ − 𝑉𝑦(𝐲). 

(21) 

Here we introduced the potential energy 𝑉𝑦(𝐲) = 𝑉(𝐱(𝐲)) as 

well as the 𝑛𝑛 vibrational mass matrix  as functions 

of internal coordinates 𝐲: 

𝐌y,vib(𝐲) = 𝐂
T(𝐲)𝐌1/2𝐏vib(𝐱(𝐲))𝐌

1/2 𝐂(𝐲).  (22) 

At this point, it becomes obvious that by projecting onto the 

vibrational subspace, we cancel the spurious translation and 

rotation in the body-fixed frame and the masses corresponding 

to them will not contaminate the mass matrix assigned to the 

internal coordinates, which would unphysically increase the 

matrix elements. Without the projection, for example, 

harmonic vibrational analysis would give incorrect, reduced 

frequencies for some of the normal modes.  

Eq. (22) applies as it is when 𝑛 = 𝑓. Its form implies that in 

reduced-dimensional models the reduced-dimensional 

𝐌y,vib(𝐲) matrix can be obtained from the full-dimensional 

𝐌y,vib by simply deleting the rows and columns corresponding 

to the constrained internal coordinates. 

Momenta canonically conjugate to the internal coordinates 

are obtained as:  

𝐩𝑦 =
∂𝐿y,vib(𝐲,𝐲̇)

∂𝐲̇
= 𝐌y,vib(𝐲)𝐲̇, (23) 

and the velocity 𝐲̇ as a function of 𝐲 and 𝐩𝑦  will be 

𝐲̇ = 𝐌y,vib
−1 (𝐲)𝐩𝑦 = 𝐆y,vib(𝐲)𝐩𝑦. (24) 

Here, the 𝑛𝑛 dimensional 𝐆y,vib(𝐲) matrix is the inverse of the 

non-singular 𝐌y,vib(𝐲) matrix. Applying Legendre 

transformation to the Lagrangian, one can obtain the 

vibrational Hamiltonian in internal coordinates:  

𝐻y,vib(𝐲,𝐩𝑦) = 𝐩𝑦
T𝐲̇(𝐲,𝐩𝑦) − 𝐿y,vib (𝐲, 𝐲̇(𝐲,𝐩𝑦)) =  

=
1

2
𝐩𝑦
T𝐆y,vib(𝐲)𝐩𝑦 + 𝑉𝑦(𝐲). 

(25) 

This form is correct in any nonredundant set of internal 

coordinates, be it reduced (𝑛 < 𝑓) or complete (𝑛 = 𝑓).  

2.4 Connection with the t-vector and the s-vector Formalisms 

In the previous two sections we derived the vibrational 

kinetic energy in internal coordinates by introducing the body-

fixed frame 𝐱 and using the inverses of the arbitrarily defined 

𝐱(𝐗) and 𝐲(𝐱) transformations. In this section we show the 

relationship of our method to those that are generally used for 

this purpose in the literature, one those based on the 𝐗 → 𝐲 

transformation 1,33,39 (s-vector formalism) as well as on the 𝐲 →

𝐱 transformation 1,40 (t-vector formalism).  

The s-vector formalism provides the exact vibrational 

Hamiltonian for the full-dimensional vibrational problem. To 

derive the reduced-dimensional kinetic energy and the mass 

matrices using the 𝐗 → 𝐲 transformation, it is necessary to 

extend the set of variables to a full set of internal variables and 

first construct the full-dimensional 𝐆𝑦,vib (see Eq. (3)), then 

calculate the full-dimensional  𝐌𝑦,vib by inversion. Then 

columns and rows corresponding to the constrained variables 

are omitted from it as it is done in the case of the method 

proposed in the present paper, and finally the reduced-

dimensional 𝐆𝑦,vib matrix is calculated by inversion. 

x

)(viby, yM
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The t-vector formalism requires the definition of a body-

fixed frame (e.g., Eckart frame41), which is rarely the absolute 

co-rotating frame. To compensate for the arising spurious 

rotation during the change of internal coordinates of the 

molecule, rotational coordinates need to be introduced and a 

rovibrational Hamiltonian has to be constructed to make 

possible the exact description of the vibrational problem. The 

reduced-dimensional Hamiltonian is directly obtained by using 

only those vibrational t-vectors which belong to non-

constrained internal variables.  

The method presented in this work is analogous to the t-

vector formalism also in the sense that both are based on 

the d𝐱/d𝐲 derivatives and allow the direct construction of a 

reduced-dimensional Hamiltonian. However, instead of 

introducing rotational variables, our method exploits the 

orthogonality of the mass-scaled translational and 

(instantaneous) rotational basis vectors (3𝑁-component) to 

vibrational ones so that rotation and translation are exactly 

removed. This approach provides a pure vibrational kinetic 

energy expression equivalent with the one provided with the s-

vector formalism.  

It can be shown that the inverse mass matrix 𝐆𝑦,vib in the s-

vector formalism (Eq. (3)) is the inverse of the 𝐌𝑦,vib mass 

matrix in Eq. (22).and that this does not hold for the reduced-

dimensional case as the pure-vibrational infinitesimal mass-

scaled Cartesian displacement vectors corresponding to the 

various internal coordinates are not orthogonal to each other in 

general. This also implies that the s-vector formalism in full 

internal dimensionality is in fact a reduced-dimensional 

approximation, because it considers only vibrations and 

translational and rotational coordinates are simply omitted. 

This raises the question how it can be exact for vibrations. The 

reason for this is the inherent orthogonality of vibrations to 

rotations and translations in mass-scaled infinitesimal 

displacement space.  

2.5 Normal Mode Analysis in Internal Coordinates  

During normal mode analysis the vibration of the molecule is 

approximately decomposed into independent harmonic 

oscillators using the harmonic approximation to the kinetic and 

potential energy expressions. The harmonic approximation to 

the Lagrangian in internal coordinates in the neighborhood of a 

stationary point 𝐲0 can be obtained by replacing the 𝐌𝑦,vib(𝐲) 

matrix function with its value at 𝐲0 , 𝐌y,vib,0 = 𝐌y,vib(𝐲0), 

approximating the potential energy to second order around 𝐲0 , 

and setting its zero level to that at geometry 𝐲0: 

𝐿y,vib
harm(𝐲, 𝐲̇) =

1

2
𝐲̇T𝐌y,vib,0𝐲̇ −

1

2
(𝐲 − 𝐲0)

T𝐅y,0(𝐲− 𝐲0). (26) 

Here 𝐅y,0 = 𝑉y
″(𝐲0) is the force constant matrix. This generally 

proves to be a good approximation to the Lagrangian at low 

energies in semi-rigid molecules, where no internal rotations or 

other large amplitude motion can take place. 

From here on one can follow the standard procedure of 

normal mode analysis. After introducing mass-scaled vectors of 

deformation 𝐲̃ = 𝐌y,vib,0
1/2

(𝐲 − 𝐲0) and velocity 𝐲̇̃ = 𝐌y,vib,0
1/2

𝐲̇ 

and the 𝐅̃y,0 = 𝐆y,vib,0
1/2

𝐅y,0𝐆y,vib,0
1/2

 mass-scaled force constant 

matrix (where 𝐆y,vib,0 = 𝐌y,vib,0
−1 ) one solves its 𝐅̃y,0𝐔=𝐔 

eigenproblem. Matrix 𝐅̃y,0 is symmetric, thus all 𝑛 eigenvalues 

𝑖  (in matrix  = diag(1 , . . ,𝑛)) are real and the eigenvectors 

(i.e. columns of 𝐔) can be chosen to be orthonormal. If 𝐲0  is a 

potential minimum, all eigenvalues are positive, whereas for a 

𝑘th-order saddle point 𝑘 of them are negative. The vector of 

normal-mode deformation coordinates 𝐐 = (𝑄1 , . . , 𝑄𝑛)
T and 

the canonically conjugate momentum vector 𝐏 = (𝑃1 , . . , 𝑃𝑛)
T 

(in fact, the normal-mode velocity vector 𝐐̇) are defined as: 

𝐐 = 𝐔T𝐲̃ = 𝐔T𝐌y,vib,0
1/2

 (𝐲 − 𝐲0), (27) 

𝐏 = 𝐐̇ = 𝐔T 𝐲̇̃ = 𝐔T𝐌y,vib,0
1/2

 𝐲̇. (28) 

In normal coordinates both the Lagrangian and the Hamiltonian 

(i.e. energy) decompose into sums of 𝑛 harmonic oscillator (HO) 

terms: 

𝐻harm,𝑖
1D (𝑄𝑖 , 𝑃𝑖) = 𝐸harm,𝑖

1D =
1

2
𝑃𝑖
2 +

1

2
ω𝑖
2 𝑄𝑖

2 =  

=
1

2
𝑄̇𝑖
2 +

1

2
ω𝑖
2 𝑄𝑖

2. 

(29) 

The normal mode frequencies can be obtained as 𝜔𝑖 = 𝜆𝑖
1/2

.  

2.6 Normal Mode Sampling 

The purpose of normal mode sampling is the generation of a set 

of classical states corresponding to a preselected vibrational 

state of a reactant molecule that will serve as initial conditions 

for collision or intramolecular trajectories. In QCT calculations, 

the initial states of molecules are usually generated by assuming 

that vibration and rotation are separable and the vibrations are 

well described by the normal mode approximation. The 

procedure for normal mode sampling is well known for full-

dimensional models, but without the proper RD normal mode 

analysis, it cannot be used in reduced dimensionality. In normal 

mode sampling it is assumed that the vibrating molecule can be 

well approximated as a set of independent normal oscillators 

with 𝑛 distinct quantum numbers 𝑣1 , … , 𝑣𝑛  (𝑛 constants of 

motion). In quasiclassical quantization, normal coordinate and 

momentum amplitudes (𝑄𝑖,max
 , 𝑃𝑖,max = 𝑄̇𝑖,max

 ) of each 

normal mode oscillator are set so that the energy of the 

oscillator (𝐸harm,𝑖
1D ) matches that of the corresponding quantum 

harmonic oscillator in a given 𝑣𝑖  quantum state: 

𝐸harm,𝑖
1D =

1

2
ω𝑖
2 𝑄 𝑖,max

2 =
1

2
𝑃𝑖,max
2 =

1

2
𝑄̇𝑖,max
2 =  

= ℏω 𝑖 (𝑣𝑖 +
1

2
). 

(30) 

For the generation of classical states (𝐐, 𝐏), a random initial 

phase 
𝑖,0

 is selected from a uniform distribution in the [0,2) 

interval for each vibrational mode, and then the normal mode 

coordinate and velocity of normal oscillator 𝑖 can be calculated 

according to:  

𝑄𝑖 = 𝑄𝑖,maxcosφ𝑖,0, (31) 

𝑃𝑖 = 𝑄̇𝑖 = −𝑄̇𝑖,maxsinφ𝑖,0. (32) 
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The corresponding classical state (𝐲, 𝐲̇) in internal coordinates 

can be obtained by inverting Eqs. (27) and (28): 

𝐲 = 𝐲0 + 𝐆y,vib,0
1/2

𝐔𝐐, (33) 

𝐲̇ = 𝐆y,vib,0
1/2

𝐔𝐏 = 𝐆y,vib,0
1/2

𝐔𝐐̇. (34) 

The resulting classical state (𝐲, 𝐲̇) is the appropriate initial state 

if one intends to follow the time evolution of the system using 

the Euler-Lagrange or Newton equations of motion. If one 

would like to describe the same dynamics in the more 

convenient Hamiltonian formalism (see Section 2.7.1), then the 

initial state should be expressed in internal coordinates and the 

conjugate momenta (𝐲, 𝐩y), where the momenta are obtained 

from Eq. (23) with the mass matrix 𝐌y,vib(𝐲) calculated at the 

instantaneous geometry 𝐲.  

When the trajectory integration is to be performed in 

Cartesian coordinates, the state (𝐲, 𝐲̇) needs to be transformed 

to the body-fixed Cartesian frame and one should ensure that 

the unphysical translation and rotation generated during 

transformations in Eqs. (5) and (6) are removed. To obtain the 

pure vibrational classical state (𝐱, 𝐩𝑥,vib), the body-fixed 

Cartesian coordinates 𝐱 are calculated from 𝐲 using Eq. (5); the 

corresponding Cartesian momenta describing vibration only are 

found by transforming 𝐲̇ to 𝐱̇ with matrix 𝐂(𝐲) and finally to 

𝐩𝑥,vib with matrix 𝐌vib(𝐱) using Eqs. (6) and (20), respectively: 

𝐩𝑥,vib = 𝐌vib(𝐱)𝐱̇ = 𝐌vib(𝐱(𝐲))𝐂(𝐲)𝐲̇. (35) 

The point here is that the geometry-dependent mass 

matrix 𝐌vib(𝐱), which assigns mass only to vibrations, 

guarantees that the resulting classical states (𝐱, 𝐩𝑥,vib) will have 

zero center-of-mass momentum and angular momentum. The 

coordinate and velocity conversion equations also ensure that 

Cartesian coordinates 𝐱, velocities 𝐱̇ and momenta 𝐩𝑥,vib fulfill 

the equations of geometrical constraints (𝑦𝑛+1(𝐱) =

𝑦𝑛+1,0 , … , 𝑦𝑓(𝐱) = 𝑦𝑓,0) and their time derivatives (see Section 

2.7.2).  

The ensemble of classical states (𝐱, 𝐩𝑥,vib) in Cartesian 

coordinates, which corresponds to the pre-selected vibrational 

quantum state of the reduced-dimensional model of the 

reactant molecule is generated by carrying out the sampling 

procedure many times with different random phases in Eqs. 

(31) and (32). It should be noted that the ensemble obtained 

this way is not monoenergetic. In QCT calculations the 

nonrotating molecules are randomly oriented before collision. 

If a rovibrational state is to be generated, then the molecule’s 

angular momentum is also set to that of the desired quantum 

state. The obtained classical states are in laboratory Cartesian 

frame and thereby they can be used in the definition of initial 

conditions of the molecule (𝐗, 𝐏𝑋), for QCT calculations  

 The standard method to prepare monoenergetic ro-

vibrating ensembles by iterative rescaling of deformations and 

momenta and angular momentum vector adjustment after 

normal mode sampling has been proposed by Hase and 

coworkers 42. That method can be generalized to reduced-

dimensional models. What remains the same is that the scaling 

factor is determined in the lab frame. The important difference 

is that in the full-dimensional model the scaling factor can be 

applied to scale the lab-frame deformations and momenta. In 

RD models the rescaling step needs to be performed in internal 

coordinates, because otherwise it would violate the constraints. 

It should be noted that the ensembles generated this way are 

not stationary when allowed to evolve on the real, anharmonic 

PES21. Monoenergetic, stationary and accurately quantized 

ensembles of classical states representing a rovibrational 

quantum state can be generated by applying the adiabatic 

principle of classical mechanics. A generalized version of the 

adiabatic switching method, which accurately includes 

anharmonicity and coupling of vibrations, has recently been 

shown to perform well for polyatomic molecules. 43 The method 

has also been extended to generate ensembles corresponding 

to rovibrational quantum states. 

2.7 Dynamics in Reduced Dimensionality.  

In reduced-dimensional classical trajectory calculations the 

equations of motion for the intramolecular motion of molecules 

have to guarantee the fulfillment of the constraints prescribed 

by the model. In the following, we discuss two choices: the 

application of equations of motion in internal coordinates and 

the integration of the equations of motion in lab Cartesian 

frame, supplemented by constraint forces. Integration in 

internal coordinates is more appropriate for the description of 

a vibrating molecule, whereas the equations presented for 

integration in 3𝑁 Cartesians are equally applicable both to pure 

bound motion and to scattering problems. 

2.7.1 Equations of Motion in Internal Coordinates. Hamiltonian 

equations of the pure vibrational motion in internal coordinates 

can be derived from the Hamiltonian in Eq. (25). 

𝐩̇y = −
𝜕𝐻y,vib(𝐲,𝐩y)

𝜕𝐲
= −

1

2
𝐩y
T𝐆′y,vib(𝐲)𝐩y −𝑉y′(𝐲) , (36) 

𝐲̇ = −
𝜕𝐻y,vib(𝐲,𝐩y)

𝜕𝐩y
= 𝐆y,vib(𝐲)𝐩y.  (37) 

Rank-3 tensor 𝐆′y,vib(𝐲) and vector 𝑉y′(𝐲) are the coordinate 

derivatives of the inverse mass matrix 𝐆y,vib(𝐲) and the 

potential energy 𝑉𝑦(𝐲). The initial conditions of the motion can 

be obtained via Eqs. (33) and (34) and formula 𝐩y = 𝐌y,vib(𝐲)𝐲̇. 

When vibrational dynamics are simulated, internal to body-

fixed frame transformation and projection onto the vibrational 

subspace have to be performed several times at every 

integration step for the evaluation of 𝐆y,vib(𝐲), 𝐆′y,vib(𝐲) and 

𝑉y′(𝐲) (see Eqs. (5), (6), (22) and (24)). The generally involved 

calculation of the rank-3 𝐆′y,vib(𝐲) derivative tensor can be 

sped up by using some analytical transformations (see ESI). A 

more serious drawback of using internal coordinates is that they 

may become indeterminate and in that neighborhood they 

change very steeply. At these points the coordinate 

transformation in Eq. (5) or its inverse has singularities, which 

can cause significant numerical errors during the solution of the 

equations of motion. For example, such a singularity arises for 

3D polar coordinates (𝑟, ,) at small (  0) and large 

(  180) polar angles where  may change very quickly during 
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dynamics. With careful selection of the body-fixed frame and 

the set of internal coordinates one can achieve that the 

singularities of the transformation equations (Eqs. (5) and (6)) 

will be at highly deformed geometries which are not sampled 

by normal mode state preparation and not visited during the 

vibration of the molecule. It is important to emphasize that Eqs. 

(36) and (37) describe the vibration of non-rotating molecules 

only.  

2.7.2 Equations of Motion with Constraints in Space-Fixed 

Cartesian Coordinates. During the internal motion of floppy 

molecules, as well as in loose clusters and chemical reactions, 

where bonds get broken and formed, highly-deformed 

geometries are visited and the moieties of reactant molecules 

can have arbitrary orientation with respect to each other. For 

such systems, it is preferable to simulate the reduced-

dimensional dynamics by integrating the equations of motion in 

the full set of 3𝑁 lab Cartesian coordinates (𝐗) and enforcing 

the restrictions in the internal degrees of freedom by constraint 

forces. To derive constraint forces, we introduce functions 

𝑔𝑖(𝐗) (𝑖 = 1,… , 𝑓–𝑛) as the deviations of functions 𝑦𝑛+𝑖(𝐗) 

from their corresponding frozen values 𝑦𝑛+𝑖,0. The equations of 

constraints are obtained by equating the 𝑔𝑖(𝐗) functions to 

zero. 

𝑔𝑖(𝐗) ≔ 𝑦𝑛+𝑖(𝐗) − 𝑦𝑛+𝑖,0 = 0 𝑖 = 1,… , 𝑓– 𝑛 (38) 

These constraints are holonomic as they depend only on the 

position coordinates (but not on their time derivatives) and are 

scleronomic as they do not depend on time explicitly. They are 

expected to be fulfilled all along a trajectory, implying that their 

time derivatives must also be zero:  

𝑔̇𝑖(𝐗, 𝐗̇) = ∇
T𝑔𝑖𝐗̇ = ∇

T𝑔𝑖𝐌
−1𝐏X = 0  𝑖 = 1,… , 𝑓– 𝑛, (39) 

which serve as constraint equations for the velocities 𝐗̇ and 

momenta 𝐏X. Consequently, a mechanical state, which is fully 

characterized either by (𝐗, 𝐗̇) or (𝐗, 𝐏X), should fulfill Eqs. (27) 

and (28) simultaneously. The 3𝑁-component constraint force 

arising from constraint 𝑖 in Eq. (39) is necessarily parallel to 

gradient ∇𝑔𝑖, because it confines the allowed motion 

(velocity 𝐗̇) to a (3𝑁 − 1)-dimensional surface orthogonal 

to ∇𝑔𝑖. Consequently, each constraint force 𝐅𝑖
constr is expressed 

as being proportional to ∇𝑔𝑖 which, multiplied by Lagrange 

multipliers 𝜆𝑖  (𝑖 = 1, . . , 𝑓– 𝑛) are added to Hamilton’s equations 

for momenta, supplementing there the potential forces: 

𝐏̇X = −∇𝑉 +∑𝐅𝑖
constr

𝑓−𝑛

𝑖=1

= −∇𝑉 +∑𝜆𝑖∇𝑔𝑖

𝑓−𝑛

𝑖=1

. (40) 

The Hamiltonian equations of motion for the coordinates 

remain the same (𝐗̇ = 𝐌−1𝐏X) since the constraints in Eq. (38) 

are holonomic. The Lagrange multipliers need to be calculated 

at every time step of trajectory integration via a set of linear 

equations. An excellent description of how the Lagrange 

multipliers are determined in practice can be found in Refs. 3, 4 

and 20. For completeness, the equations with the present 

notations are summarized in the ESI. 

2.7.3 Comparison of the Computational Aspects of the Two 

Descriptions. Usually the most expensive part of trajectory 

simulations is the evaluation of potential gradients. If no 

analytical gradients of the potential energy are available, then 

they need to be evaluated numerically with finite difference 

formulae, whose computational cost scales linearly with the 

number of gradient components. When nonredundant internal 

coordinates are used, some computational savings come from 

the reduced number (𝑓 <  3𝑁 − 6) of gradient components in 

the 𝑉y′(𝐲) potential gradient compared to the full-dimensional 

Cartesian problem (3𝑁). On the other hand, simulation of the 

dynamics in irredundant internal coordinates requires repeated 

evaluation of rank-3 tensor 𝐆′y,vib(𝐲), which can be expensive 

unless analytical first and second derivatives (matrices  𝐂(𝐲) 

and  𝐂′(𝐲)) of the coordinate transformation 𝐱(𝐲) are available. 

Analytical derivation of matrix 𝐂 can be complicated and 

requires non-negligible human effort even when computer 

algebra packages are employed, and even when the derivatives 

are available, their evaluation may require numerous algebraic 

operations. 

In the alternative method, integration of the equations of 

motion in Cartesian coordinates under the control of 

constraints, at least 6 more potential gradient components 

need to be evaluated; in addition, the constraint forces need to 

be determined. Yet, the application of Cartesian coordinates 

together with constraints can be overall cheaper than using 

internal coordinates, especially when analytic first derivatives of 

the PES, and first and second analytic derivatives of the 

constraints are available. 

An additional aspect is the accuracy to which the constraints 

prescribed by the reduced-dimensional model are fulfilled. 

Integrating in internal coordinates automatically satisfies these 

constraints. On the other hand, when full-dimensional Cartesian 

coordinates are used, the constraints are enforced numerically, 

so that their fulfillment (Eqs. (38) and (39)) depends on the 

accuracy of the numerical procedure. Accordingly, in long 

simulations it is desirable to check regularly how well the 

constraints are met. If any of them is violated significantly, 

fulfillment of them can be reestablished by minimizing to zero 

the sum of the properly scaled squares of the left hand sides of 

Eqs. (38) and (39).  

2.8 Assignment of Normal Mode Quantum Numbers to Reduced-

Dimensional Classical States. 

Solution of the inverse problem, determination of normal 

mode quantum numbers corresponding to a reduced-

dimensional classical state of the molecule is needed when 

product-state resolved properties are calculated for 

bimolecular reactions or when the classical evolution of 

vibrationally excited states of molecules is of interest. 

Depending on which of the two sets of Hamiltonian equations 

of motion (Section 2.7) were used for trajectory integration, the 

classical state of the system is provided either in nonredundant 

internal coordinates and momenta (𝐲, 𝐩𝑦) or in space-fixed 

Cartesian coordinates and momenta (𝐗, 𝐏𝑋) fulfilling 

constraints in Eqs. (38) and (39). 
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In the former case, since the normal mode analysis of the 

reduced-dimensional model is done in internal coordinates (see 

Section 2.5), the state expressed as (𝐲,𝐲̇ = 𝐆y,vib(𝐲)𝐩y) can be 

directly used for quantum number assignment as described 

below. However, when the state is given in Cartesians, 𝐗 and 𝐏𝑋  

need to be converted to internal coordinates and velocities. 

Coordinates 𝐲 can be computed directly from the 𝐗 

coordinates, which fulfill the 𝑓 − 𝑛 constraints given in Eq. (38), 

using the definition of the internal coordinates 𝐲(𝐗). Velocities 

of internal coordinates can be obtained by either numerical 

derivation along the trajectory or analytical differentiation 

utilizing the reduced-dimensional variant of Wilson’s 𝐁 matrix 

(see. Eq. (2)) and the Cartesian velocities 𝐗̇ = 𝐌−1𝐏𝑋 :  

𝐲̇(𝑡) = lim
∆𝑡→0

𝐲(𝐗(𝑡)+𝐗̇(𝑡)∆𝑡)−𝐲(𝐗(𝑡))

∆𝑡
=  

=
d𝐲

d𝐗 |𝐗(𝑡)
𝐗̇(𝑡) =  𝐁(𝐗(𝑡))𝐌−1𝐏𝑋(𝑡)  

(41) 

It is important to point out that, while the reduced-dimensional 

𝐁 matrix cannot be used for the construction of 𝐆𝑦,vib due to 

the non-orthogonality of internal coordinates (see Section 2.4), 

it can be applied to transform Cartesian velocities to internal 

coordinate velocities if and only if they fulfill the constraints.  

Once the state is given as (𝐲, 𝐲̇), the normal mode 

coordinates and momenta can be calculated by inverting Eqs. 

(33) and (34): 

𝐐 = 𝐔T𝐌y,vib,0
1/2

(𝐲− 𝐲0), (42) 

𝐏 = 𝐐̇ = 𝐔T𝐌y,vib,0
1/2

𝐲̇. (43) 

The 𝐸harm,𝑖
1D  mode energies can be calculated from the 

instantaneous normal coordinates and momenta via Eq. (29). 

The quantum numbers 𝑣𝑖  are obtained from the energy 

corresponding to each vibrational mode using the inverse of the 

harmonic oscillator quantization rule (Eq. (31)). 

𝜈𝑖 =
𝐸harm,𝑖
1D

ℏ𝜔𝑖
−
1

2
  (44) 

Note that the vibrational quantum numbers i obtained this 

way are in general not integer numbers and because of this, the 

assignment of a quantum state to the given classical one is not 

unequivocal, and various tricks are generally used to do it (see, 

e.g. Refs.44,45). 

3. Results 

3.1 Three Reduced-Dimensional Models of Methane.  

In this section we apply the methods described above to normal 

mode analysis and sampling in various reduced-dimensional 

models of methane used in Ref. 31 to study RD QCT reaction 

dynamics calculations of the  

CZ3Y+XCZ3+YX. 

reaction, which is the most complicated type of reaction for 

which exact RD quantum mechanical scattering calculations are  

Figure 3. The reduced-dimensional a) Palma-Clary 5D (PC-5D) and (b) 4D (PC-4D) as well 

as (c) the rotating bond umbrella (RBU-3D) models of CZ3Y molecule (composed of C, Y 

and identical Z1, Z2, Z3 atoms) with their respective rectilinear internal variables printed 

in blue. Point Z3 denotes the geometrical center of the three Z atoms. In all the three 

models the CZ3 moiety is constrained to C3v symmetry. Internal variables in orange show 

the additional constraints in the PC-4D and RBU-3D models compared to the PC-5D 

model. 

available 13,46,47. The RD model with the fewest restrictions is the 

one proposed by Palma and Clary (in the following, PC)9,10: the 

only constraint is that the CZ3 group keeps C3v symmetry. The 

model and a series of its versions with additional constraints 

have been used in numerous quantum scattering simulations. 

In order to assess the performance of the RD models, Vikár et 

al. 31 compared the results of (quasi)classical trajectory 

simulations obtained with the Palma-Clary and the full-

dimensional models of the CH4+HCH3+H2 reaction with 

various CH4 isotopologs. We just mention in passing that the PC 

model was found to give good results in many cases, but its 

performance proved to depend on the quality of the potential 

energy surface and the mass combination.31  

Starting from the PC model, one can design a hierarchy of 

reduced-dimensional models for methane, in each of which the 

geometry of the CZ3 moiety is constrained to maintain C3v point 

group symmetry and by freezing additional types of motion, its 

internal degrees of freedom are reduced from 𝑓 = 9 to 5, 4 or 

3. Since the three Z atoms are treated as equivalent, such 

models are suitable for the description of methane isotopologs 

CHnD4-n with 𝑛 = 0, 1, 3, 4 but not for CH2D2. In Fig. 3 the models 

with their reduced sets of internal variables and the attached 

body-fixed Cartesian frame are shown. 

The latter was defined for all models in the same way: the origin 

was placed at the carbon atom and the axes were determined 

by the constrained CZ3 moiety: 𝑧 axis is along the C3v axis, 𝑥 axis 

within the YCZ1 plane, forming an acute angle with the CZ1 

vector, and the 𝑦 axis is chosen to ensure that the coordinate 

system is right-handed. 

In the “full” Palma-Clary model 9 (Fig. 3a) the only constraint 

is that the CZ3 group is restricted to C3v symmetry, resulting in 5 

degrees of freedom for CZ3Y; we abbreviate this model as PC-

5D. In the 4D model (called PC-4D, Fig. 3b) considered here, the 

additional constraint is that the C–Z bond length is frozen at the 

equilibrium value (req) in CZ3Y as in a frequently applied 

restricted variant of the Palma-Clary model, 9,11,16. In the 3D 

model (Fig. 3c) we study, the motion of the Y atom is also 

constrained to one of the symmetry planes (for example in this 

case to the 𝑦 plane) of the CZ3 group. This is identical to the 

three-dimensional methane model in the rotating bond 

umbrella (RBU) method 14,48,49 and will be referred to as RBU-

3D. The coordinates as well as the constraint equations used in 

the internal coordinate and Cartesian representations of the  
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Table 1. Properties of three reduced-dimensional models (PC-5D, PC-4D, RBU-3D) of 

CZ3Y and the lists of internal coordinates and Cartesian constraints used for simulating 

vibrational dynamics. For PC-4D and RBU-3D models simpler alternatives of the 3rd and 

4th constraints are shown in the brackets. Vector RAB denotes difference vector RB– RA, 

which points from atom A to B. 

models are shown in Table 1. The common in the applied 

constraints is that all are defined by sums of dot products, which 

are very practical because their first and second derivatives 

have simple analytical forms as shown in the ESI.  

In the following we report on normal mode analysis and the 

time evolution of ensembles of classical states of methane 

isotopologs CHnD4-n (𝑛 = 0,1,3,4) generated by RD NMS using 

the three models, performed on the ZBB3 PES 50. At the Td 

equilibrium geometry the C–H bond length is 2.0579 a0.  

3.2 Reduced-dimensional normal mode analysis for methane 

isotopologs.  

The frequencies and the nature of normal modes obtained from 

harmonic vibrational analysis using the procedure described in 

Section 2.5 are shown in Table 2; the corresponding 

displacement vectors can be seen in Fig. 4. Vibrations of full-

dimensional CH4 and CD4 are characterized by four frequencies, 

corresponding to one nondegenerate fully symmetric stretch 

mode (A1 irreducible representation), a pair of doubly 

degenerate deformation (E) modes, a triply degenerate stretch 

(T2) and a triply degenerate deformation (T2). Symmetry 

reduction from Td to C3v by distinguishing one of the ligand 

atoms in CZ4 from the other three, but not changing its mass 

and the forces it feels, decomposes each of the T2 modes into a 

totally symmetric A1 and a doubly degenerate E symmetry 

mode (according to ) while leaves their frequencies 

unchanged. The arising A1 stretching mode will be an 

antisymmetric combination of the C-Y and the symmetric C-Z3 

stretching modes, while the new A1 deformation will be the 

umbrella mode, which is the symmetric deformational mode of 

the CZ3 moiety. The original totally symmetric A1 stretching 

mode will preserve its character and frequency.  

When symmetry reduction in CZ4 methane isotopologs (i.e. 

Z=Y, top and bottom rows of Table 2) is caused by constraining 

the symmetry of the CZ3 group to C3v (leading to the PC-5D 

model), the fully symmetric stretch mode (involving all four C–

Z bonds) remains again intact, whereas the A1 modes resulting 

from symmetry reduction (the antisymmetric stretch and the 

umbrella bend) together with their frequencies remain 

essentially unchanged while the asymmetric CZ3 stretch modes 

of E symmetry disappear. The original and the resulting doubly-

degenerate E-symmetry deformational modes will mix to 

conform to the constrained C3v symmetry and result in a doubly-

degenerate E-symmetry rocking mode with an intermediate 

frequency. The two combinations violating the C3v symmetry 

disappear. In CZ3Y methane isotopologs (i.e. Z≠Y), whose 

symmetry is reduced to C3v due to the difference of isotopes Z 

and Y, the decomposition of the triply-degenerate modes is 

accompanied by frequency changes and mode mixing. The 

resulting antisymmetric combination of the local C-Y and 

symmetric C-Z3 stretching modes of A1 symmetry will mix with 

the totally symmetric stretching mode (present in CZ4) and gives 

essentially local A1-symmetry C-Z3 and C-Y stretching modes 

with significantly different frequencies. Furthermore, a pair of 

doubly-degenerate rocking modes appears due to mode mixing. 

When the symmetry of the CZ3 group is constrained to C3v in 

mixed methane isotopologs according to the PC-5D model, the 

doubly-degenerate bending and stretching modes which violate 

the C3v symmetry disappear. The A1-symmetry modes (umbrella 

and two local stretches) remain essentially intact, while the 

frequency of the doubly-degenerate rocking mode changes 

slightly.  

Further reduction of dimensionality to four by freezing the C–

Z bond lengths of the CZ3 moiety (in the PC-4D model) in CZ4 

isotopologs causes the mixing of the symmetric and 

antisymmetric stretches and results in a local C-Z stretch, 

whereas in CZ3Y isotopologs removes the C-Z3 stretch, and the 

frequency of the remaining modes changes slightly. Confining 

the motion of the Y atom into one of the symmetry planes of 

CZ3 (in the RBU-3D model) freezes one of the rocking vibrations, 

without causing any additional frequency change. 

3.3 Evolution of Reduced Dimensional Ensembles of Classical 

States of Methane Isotopologs.  

The reduced-dimensional vibrational Hamiltonian in internal 

coordinates and the equations of motion derived in Section 2.7 

allow us to monitor the time evolution of two parameters that 

proved to be important in the QCT simulations of the 

abstraction reaction between methane isotopologs (CZ3Y) and 

H atoms 21,31, namely, the C–Z and C–Y bond lengths.  

A single classical state corresponding to the ground state of 

the PC-5D model of the CH4 molecule (Z, Y=H) has been 

prepared by normal mode sampling (Section 2.6) and 

propagated in time. Figure 5 shows the two bond lengths as a 

function of time up to 104 𝜏0  (1 𝜏0  = atomic time unit 0.0242 

fs). The equations of motion for the PC-5D model have been 

integrated in two sets of coordinates, internal (continuous lines) 

and space-fixed Cartesian (dotted lines, with the constraints 

being taken into account with the Lagrange multipliers 

method), yielding identical trajectories (see Fig. 5). One can see 

that the evolution of the two bond lengths is coupled. At the 

beginning of this specific trajectory, the amplitude of the bond 

length oscillation decreases for the C–Y bond and increases for 

the C–Z bond, indicating energy transfer between them. Later,  

EAT  12

Coordinate system 
Reduced-dimensional models 

PC-5D PC-4D RBU-3D 

internal 

dimensions 5 4 3 

coordinates 

   

  

 

space-fixed 

Cartesian 

dimensions 15 

constraints 

𝑔1(𝐗) = 𝐑Z1Z2
2 − 𝐑Z2Z3

2 = 0 

𝑔2(𝐗) = 𝐑Z2Z3
2 − 𝐑Z3Z1

2 = 0 

𝑔3(𝐗) = 𝐑CZ1
2 − 𝐑CZ2

2 = 0 

𝑔4(𝐗) = 𝐑CZ2
2 − 𝐑CZ3

2 = 0 

 

[𝑔3(𝐗) = 𝐑CZ1
2 − 𝑟eq

2 = 0] 

[𝑔4(𝐗) = 𝐑CZ2
2 − 𝑟eq

2 = 0] 

𝑔5(𝐗) = 𝐑CZ3
2 − 𝑟eq

2 = 0 

  𝑔6(𝐗) = 𝐑CY𝐑Z2Z3 = 0 

l

Yy

YY z , , xs
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Table 2. The irreducible representation (irrep), degeneracy, type and frequency of vibrational normal modes of four methane isotopologs determined for the full -dimensional (FD) 

and the PC-5D, PC-4D and RBU-3D reduced-dimensional (RD) models on the ZBB3 PES.  

Isotopolog, 
sym.group 

Irrep: degeneracy Type Harmonic frequency /cm-1 

FD 5D 4D 3D FD 5D 4D 3D FD 5D 4D 3D 

H3CH 
FD:Td 

RD:C3v 

T2:3 A1:1 1 1 deg. def. umbrella umbrella umbrella 1335.6 1335.6 1336.7 1336.7 
E:2 E:2 2 1 deg. def. rocking rocking rocking 1547.8 1436.4 1436.3 1436.3 
A1:1 A1:1 - - sym. stre. sym. stre. - - 3026.1 3026.2 - - 
T2:3 A1:1 1 1 deg. stre. antisym.stre. CH stre. CH stre. 3166.7 3166.8 3129.4 3129.4 

D3CH 
FD:C3v 

RD:C3v 

A1:1 A1:1 1 1 CD3 sym. def. umbrella umbrella umbrella 1018.1 1018.1 1018.1 1018.1 

E:2 - - - CD3 deg. def. - - - 1045.7 - - - 

E:2 E:2 2 1 CD3 rock. rocking rocking rocking 1305.7 1298.4 1298.3 1298.3 

A1:1 A1:1 - - CD3 sym. stre. CD3 stre. - - 2186.5 2186.5 - - 

E:2 - - - CD3 deg. stre. - - - 2343.2 - - - 

A1:1 A1:1 1 1 CH stre. CH stre. CH stre. CH stre. 3136.1 3136.2 3125.9 3125.9 

H3CD 
FD:C3v 

RD:C3v 

E:2 E:2 2 1 CH3 rock. rocking rocking rocking 1178.3 1218.1 1218.0 1218.0 

A1:1 A1:1 1 1 CH3 sym. def. umbrella umbrella umbrella 1330.5 1330.5 1331.8 1331.8 

E:2 - - - CH3 deg. def. - - - 1487.9 - - - 
A1:1 A1:1 1 1 CD stre. CD stre. CD stre. CD stre. 2286.7 2286.7 2290.5 2290.5 

A1:1 A1:1 - - CH3 sym. stre. CH3 stre. - - 3067.6 3067.7 - - 

E:2 - - - CH3 deg. stre. - - - 3166.4 - - - 

D3CD 

FD:Td 

RD:C3v 

T2:3 A1:1 1 1 deg. def. umbrella umbrella umbrella 1010.3 1010.3 1010.4 1010.4 
E:2 E:2 2 1 deg. def. rocking rocking rocking 1094.9 1051.8 1051.8 1051.8 
A1:1 A1:1 - - sym. stre. sym. stre. - - 2140.6 2140.6 - - 
T2:3 A1:1 1 1 deg. stre. antisym.stre. CD stre. CD stre. 2343.1 2343.1 2286.3 2286.3 

 

PC-
5D 

umbrella 
1335.6 cm-1 

rocking 
1436.4 cm-1 

sym. stretch 
3026.2 cm-1 

asym. stretch 
3166.8 cm-1 

 

     
PC-
4D 

umbrella 
1336.7 cm-1 

rocking 
1436.3 cm-1 

local C-H stretch 
3129.4 cm-1 

 

    
RBU-
3D 

umbrella 
1336.7 cm-1 

rocking 
1436.3 cm-1 

- 
local C-H stretch 

3129.4 cm-1 

 

  

- 

 
Figure 4. Atomic displacements in vibrational normal modes of the CZ3Y molecule with Z=Y=H, determined using the PC-5D, PC-4D and 

RBU-3D reduced-dimensional models. The Y atom points upward. The types and the harmonic frequencies of the vibrational modes are 

also shown. 
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Figure 5. Evolution of the C–Z3 (upper panel) and C–Y (lower panel) bond lengths for a 

reduced-dimensional model of a single ground-state CH4 molecule obtained by normal-

mode sampling. The equations of motion corresponding to the PC-5D model were 

integrated using i) the reduced set of internal coordinates (continuous grey lines) and ii) 

Cartesian coordinates with constraints (dotted lines). 

the coherence of the energy exchange between the two 

oscillations is reduced, which indicates that other modes are 

also coupled to these key reaction dynamical parameters. 

More important is the behavior of an ensemble of classical 

states that represents a quantum state. Ensembles of 104 

classical states corresponding to the ground state of CH4 

molecules were prepared by normal mode sampling as 

described in Section 2.6 for all four methane isotopologs and all 

three models. No deformation and momentum scaling was 

applied to make the ensembles monoenergetic. The evolution 

of the ensemble was simulated using the space-fixed Cartesian 

frame description with constraints, which were always fulfilled 

precisely, and the obtained ensemble average C–Y and C–Z 

bond lengths and normal mode quantum numbers are plotted 

in Figs. 6 and 7. The oscillations of the average bond length plots 

indicate the same kind of coherence in the evolution of the 

members of the ensemble as was reported in Ref 21 for the FD 

evolution of methane isotopologs. The phenomenon is caused 

in both cases by the failure of the normal mode approximation. 

In QCT simulations of the CH4+HCH3+H2 reaction and its 

isotopologs,21 the temporal oscillation of the average C–Y bond  

Figure 6. Evolution of the ensemble average C–Y (black line) and C–Z3 (red line) bond lengths (equilibrium value: 2.0579 a0) for ground-state methane isotopologs CHnD4-n (n=0,1,3,4) 

within the PC-5D, PC-4D and RBU-3D models. The initial states of the 104-member ensembles were generated by normal mode sampling. 
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length of the ensemble of methane molecules prepared with 

normal mode sampling was shown to give rise to “spatial” 

oscillation of the calculated reaction probabilities and cross 

sections as a function of initial separation of the reactants. The 

conversion of the temporal oscillation to spatial can be 

understood by considering that the ensemble evolves during 

the initial “free” flight of the reactants as it adapts to the 

anharmonic PES. 

The relaxation dynamics of the methane ensembles 

generated by normal-mode sampling on the anharmonic PES 

provides information on the couplings and energy flow between 

vibrational modes. The coarse-grained pattern of the evolution 

of the two mean bond lengths in the CZ4 isotopologs indicate 

initially periodic energy exchange between the two stretching 

modes of the PC-5D model. The other two models also show 

beating in their ensemble average bond length oscillation, 

which suggest significant energy exchange with the bending 

modes. Eventually, the amplitude of the oscillations decreases 

as the ensemble adapts to the anharmonic PES and the phases 

of stretching vibration of the individual trajectories decohere. 

The lower the dimensionality of the model, the slower is the 

decay of coherence in the stretching oscillations, which is 

consistent with the lower-dimensional, simpler structure of the  

phase space and suggests that the chaotic character of the 

vibration is reduced. This is also reflected in the coarse-grained 

structure of oscillations, which shows regularity and is 

symmetric with respect to a mean value in the case of all 

investigated models and isotopologs, except for the evolution 

of CH4 and CD4 in the PC-5D model. 

More informative on the intramolecular energy transfer is 

the evolution of the ensemble average normal mode quantum 

numbers (see Fig. 7), which also represents a stringent test of 

the applicability of our method to assigning a vibrational 

quantum state to the molecule in motion. For the doubly 

degenerate rocking mode present in the PC-5D and PC-4D 

models, the sum of the two ensemble averaged quantum 

numbers was taken, as the degenerate modes are kinematically 

strongly coupled, thus their individual values are not 

meaningful. Similarly to the full-dimensional case 21, long-term 

oscillations can be observed and the patterns hint at significant 

mode-to-mode energy transfer. The initial value of each 

quantum number is zero at the NMS preparation, which 

immediately changes when the atoms are allowed to move. 

The pattern of oscillation is in agreement with that of the C–

Z and C–Y bond lengths. In the PC-5D model, the CZ4 isotopologs 

show strong coupling between the symmetric stretch and the 

Figure 7. Evolution of the ensemble average normal mode quantum numbers for four ground-state methane isotopologs within the PC-5D, PC-4D and RBU-3D reduced-dimensional 

models. The initial states of the 104-member ensembles were generated by normal mode sampling. 



PCCP   ARTICLE 

This journal is © The Royal Society of Chemistry 20xx J. Name .,  2013, 00 , 1-3 | 15   

Please do not adjust margins 

Please do not adjust margins 

Please do not adjust margins 

rocking modes. In the CZ3Y isotopologs stronger coupling 

emerges between the “internal” modes of the CZ3 group, i.e. the 

bond stretching and the umbrella mode. It is obvious, however, 

that in all cases every mode participates in the energy exchange. 

In the PC-4D and RBU-3D models where the stretching of C-Z 

bonds is frozen, intense energy exchange can be observed 

between the rocking mode(s) and the C-Y stretch modes for CZ4 

isotopologs, which is a consequence of Coriolis coupling. 

Furthermore, these two models in the case of isotopolog CH3D 

show a very long-period (80-1601030) beating-like energy 

exchange between the C-Y stretch and the umbrella mode. The 

quantum numbers obtained with our formalism show the 

expected pattern, confirming the applicability of the formulas. 

4. Conclusions 

We have presented a formal derivation of the pure 

vibrational classical Hamiltonian in a nonredundant, but not 

necessarily full set of internal coordinates, which allowed the 

extension of the quasiclassical trajectory method to 

constrained, reduced-dimensional systems. The formalism 

allows one to carry out harmonic vibrational analysis in any 

reduced set of coordinates, and generate classical states 

corresponding to a given quantum state of the molecule using 

normal mode sampling (the “direct problem”), to simulate 

dynamics and to find normal mode quantum numbers when a 

classical state is given, for example, at the end of a QCT 

simulation (the “inverse problem”). For the implementation of 

the method, the only system specific formulae need to be 

provided are the definition of the internal coordinates of the 

chosen model and their connection to a suitable body-fixed 

Cartesian frame. Once these are provided, the method works as 

a black box, because, instead of deriving analytical formulae, 

the inverse mass matrix and the kinetic energy expression of the 

vibrational Hamiltonian is constructed numerically. The 

formalism is universal in the sense that it can be applied to both 

full- and reduced-dimensional models and that the internal and 

body-fixed Cartesian coordinate systems can be selected 

arbitrarily, so it can take into account any geometric constraint. 

The applicability of the method has been demonstrated in a 

previous study addressing the comparison of RD and FD models 

in classical simulations 31. 

Semiclassical methods, such as adiabatic switching 43,51,52 (AS) 

and semiclassical initial value representation 53–55 (SC-IVR), 

based on classically propagated trajectories can also employ the 

equations derived here, thus the method can be used for the 

quantization of rovibrational levels of constrained systems with 

a better computational scaling than quantum mechanical 

methods.  

Finally, we mention that the RD method can enable one to 

perform QCT calculations when computational complications 

arise. One such difficulty is that the high computational cost of 

electronic structure calculations often does not allow the 

development of a full-dimensional analytic PES, which is 

required when long and/or a large number of trajectories need 

to be simulated in a QCT study . Development of a reduced-

dimensional analytic PES combined with the theory presented 

here can provide a means for the dynamical investigation of 

such systems. Another computational issue is the undesirable 

leakage of zero-point energy deposited in each vibrational 

mode to other modes.  

5. Appendix 

5.1 Orthogonality of translational and rotational basis vectors 

Translational basis vectors 𝐮 
trans,𝛼(𝐱) defined in Eq. (1) are 

orthogonal to each other as their dot products (i.e. 

𝐮trans,𝛼,T𝐮trans,𝛽 , where  = 𝑥, 𝑦, 𝑧 and  = 𝑥, 𝑦, 𝑧) give the 

corresponding  ( ) elements of the unit matrix times the total 

mass (𝑀). 

𝐮trans,𝛼,T𝐮trans,𝛽 =∑𝑚𝑖 ∑ 𝛿𝛼𝛾𝛿𝛽𝛾
𝛾=𝑥,𝑦,𝑧

𝑁

𝑖=1

= 𝑀𝛿𝛼𝛽 (A1) 

The 𝑚𝑖  is the mass of atom 𝑖, where 𝑖 = 1, … ,𝑁. 𝛿𝛼𝛾  is the 

Kronecker symbol. 

Rotational basis vectors 𝐮 
rot,𝛼(𝐱) (see Eq. (15)) are 

orthogonal to each other as their dot products give the 

corresponding elements of the moment of inertia tensor (Θαα) 

defined in the principal axis (PA) frame, which is by definition a 

diagonal matrix: 

 

(A2) 

In Eq. (A2) vectors 𝐞𝛼
PA  are the orthonormal unit vectors along 

the principal axis   ( =  1, 2, 3) expressed in the body-fixed 

Cartesian frame and 𝛒𝑖 ≔ 𝐫𝑖 − 𝐫CM  are the instantaneous 

position vector of atom 𝑖 (𝑖 = 1,… , 𝑁) relative to the center of 

mass of the molecule, 𝐫CM. Vector component  denotes the 

 component of the coordinate vector of atom 𝑖 from the center 

of mass in PA Cartesian frame. 𝜀𝛾𝜎𝜏  is the Levi-Civita symbol. It 

is assumed that the three orthogonal  ( = 1, 2, 3) vectors 

form a right-handed system (𝐞𝑖
PA × 𝐞𝑗

PA = ∑ 𝜀𝑖𝑗𝑘
3
𝑘=1 𝐞𝑘

PA). In the 

transformations, it was exploited that: 

∑ 𝜀𝛾𝜎𝜏
 𝜀𝛾𝜎′𝜏′

 

𝛾=𝑥,𝑦,𝑧

= 𝛿𝜎𝜎′𝛿𝜏𝜏′− 𝛿𝜎𝜏′𝛿𝜏𝜎′ . (A3) 

Rotational basis vectors are orthogonal to translational basis 

vectors regardless of the definition of vectors  𝐞𝛼
PA , because 

their product is a sum of terms that are proportional to the 

components of the center of mass position vector. 

 

   2
PA2

1

frame   
PA   todue

PAPA2

1

,, ,,

PAPA

,, ,,

2PAPA

1

,, ,, ,, ,,

PAPA

1

,, ,, ,, ,, ,,

PAPA

1

1 ,,

,rot,rot,rotT,,rot



 



 



   



    





















ii

N

i

iiii

N

i

i

zyx zyx

ii

zyx zyx

i

N

i

i

zyx zyx zyx zyx

ii

N

i

i

zyx zyx zyx zyx zyx

ii

N

i

i

N

i zyx

ii

mm

eeeem

eem

eem

uu



























  

   

    

 






  

   





    





 

ρρ

uu

PA
i

PA

αe



ARTICLE PCCP 

16  |  J. Name. , 2012, 00,  1-3  This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

𝐮rot,𝛼,T𝐮trans,𝛽 = 

=∑𝑚𝑖 ∑ ∑ 𝑒𝛼𝜎
PA𝜌𝑖𝜏 ∑ 𝜀𝛾𝜎𝜏

 𝛿𝛽𝛾
𝛾=𝑥,𝑦,𝑧𝜏=𝑥,𝑦,𝑧𝜎=𝑥,𝑦,𝑧

𝑁

𝑖=1

= 

= ∑ ∑ 𝑒𝛼𝜎
PA𝜀𝛽𝜎𝜏

 ∑𝑚𝑖𝜌𝑖𝜏

𝑁

𝑖=1⏟      
0

= 0

𝜏=𝑥,𝑦,𝑧𝜎=𝑥,𝑦,𝑧

 

(A4) 
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