Supporting Information

One-pot Synthesis of 1,3-Butadiene and 1,6-Hexandiol Derivatives from Cyclopentadiene (CPD) via Tandem Olefin Metathesis Reactions

Gábor Turczel, Ervin Kovács, Eszter Csizmadia, Tibor Nagy, Imre Tóth, Robert Tuba*

Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences Magyar tudósok körútja 2., H-1519 Budapest, P.O. Box 286.

*Email: <u>tuba.robert@ttk.mta.hu</u>,

Contents

1.	In-situ ¹ H NMR investigation of the Diels Alder reaction of CPD with 3 in toluene	. 4
2.	Ring Opening Cross Metathesis (ROCM) of CPD with <i>cis</i> -stilbene (3)	. 4
3.	Ring Opening Cross Metathesis (ROCM) of CPD with 8 equiv. of <i>cis</i> -butene diol diacetate (2).	. 8
4.	Ethenolysis of CPD	10
5.	ROCM of 1,3-cyclohexadiene (13) with 12 equiv. of 2	12
6.	Solubility of ethylene	14
7.	Theoretical calculations	15
7.1.	Tools	15
7.2.	Finding lowest energy geometric conformers	15
7.3.	Calculating energies of lowest energy conformers	15
7.4.	Statistical thermodynamics calculation	16
7.5.	Calculation of equilibrium constants	16
8.	Results of the theoretical calculations	17
8.1.	Results for the reactions with ethylene cross-coupling agent	17
8.2.	Results for the reactions with <i>cis</i> -butene diol diacetate $(2^{\mathbb{Z}})$ cross-coupling agent	18
8.3.	Results for the reactions with cis -stilbene (3 ^Z) cross-coupling agent	18
9.	Geometries, vibrational and rotational data	19

9.1. CPD (C ₅ H ₆) – M06-2X/cc-pVTZ	
9.2. CPD (C ₅ H ₆) – G3	
9.3. CPD (C ₅ H ₆) – G4	
9.4. CPD (C ₅ H ₆) – CBS-APNO	
9.5. Ethylene (C ₂ H ₄) – M06-2X/cc-pVTZ	
9.6. Ethylene (C ₂ H ₄) – G3	
9.7. Ethylene (C ₂ H ₄) – G4	
9.8. Ethylene $(C_2H_4) - CBS-APNO$	
9.9. 4^{E} (C ₇ H ₁₀) – M06-2X/cc-pVTZ	
9.10. $4^{E} (C_{7}H_{10}) - G3$	
9.11. $4^{E}(C_{7}H_{10}) - G4$	
9.12. 4^{E} (C ₇ H ₁₀) – CBS-APNO	
9.13. 7 (C ₅ H ₈) – M06-2X/cc-pVTZ	
9.14. 7 (C ₅ H ₈) – G3	
9.15. 7 (C ₅ H ₈) – G4	
9.16. 7 (C ₅ H ₈) – CBS-APNO	
9.17. 12 (cyc C ₆ H ₈) – M06-2X/cc-pVTZ	
9.18. 12 (cyc C ₆ H ₈) – G3	
9.19. 12 (cyc C ₆ H ₈) – G4	
9.20. 12 (cyc C ₆ H ₈) – CBS-APNO	
9.21. 15 ^{EEE} (lin C ₆ H ₈) – M06-2X/cc-pVTZ	
9.22. 15 ^{EEE} (lin C ₆ H ₈) – G3	
9.23. 15 ^{EEE} (lin C ₆ H ₈) – G4	
9.24. 15 ^{EEE} (lin C ₆ H ₈) – CBS-APNO	
9.25. 2^{Z} (C ₈ H ₁₂ O ₄) – M06-2X/cc-pVTZ	
9.26. $2^{E} (C_{8}H_{12}O_{4}) - M06-2X/cc-pVTZ$	
9.27. 5^{EEE} (C ₁₃ H ₁₈ O ₄) – M06-2X/cc-pVTZ	
9.28. $8^{\text{EE}} (C_{10}H_{14}O_4) - M06-2X/cc-pVTZ$	
9.29. $9^{\text{EE}} (C_{11}H_{16}O_4) - M06-2X/cc-pVTZ$	
9.30. 3 ^Z (C ₁₄ H ₁₂) – M06-2X/cc-pVTZ	

9.31. $3^{E} (C_{14}H_{12}) - M06-2X/cc-pVTZ$	
9.32. 6 ^{EEE} (C ₁₉ H ₁₈) – M06-2X/cc-pVTZ	
9.33. $10^{\text{EE}} (C_{16}H_{14}) - M06-2X/\text{cc-pVTZ}$	
9.34. $11^{\text{EE}} (C_{17}H_{16}) - M06-2X/\text{cc-pVTZ}$	
10. References	40

1. In-situ ¹H NMR investigation of the Diels Alder reaction of CPD with 3 in toluene

Figure S1. ¹H NMR spectrum of the mixture of 3 and CPD in toluene- d_8 after 6 hours using EB as internal standard.

2. Ring Opening Cross Metathesis (ROCM) of CPD with *cis*-stilbene (3)

Reaction of **CPD** with 1 equiv. of **3**:

Figure S2. In situ stacked ¹H NMR spectrum of the reaction mixture of the metathesis of **CPD** and 1 equivalent of *cis*-stilbene (**3**) in toluene- d_8 , formation of **12**.

Figure S3. Total ion chromatogram of the reaction mixture of CPD and 1 equivalent of *cis*-stilbene (3) after 24 hours.

Table S1. Composition of the reaction mixture of the cross metathesis of **CPD** and 1 equivalent of **3** using **1-G3**.

T_{R} (min)	Area%	Name
1.58	2.07	CPD
2.47	9.27	1,4-Cyclohexadiene (12)
5.67	28.53	EB ^a
16.72	4.32	<i>cis</i> -Stilbene (3)
18.74	19.86	trans-Stilbene
20.59	1.87	Isomer of 10
21.09	1.02	Isomer of 11
21.70	16.25	Isomer of 10
21.78	8.95	Isomer of 11
24.32	7.86	Homologues of 10 and 11

^aInternal standard

Figure S4. Total ion chromatogram of the hydrogenated reaction mixture of **CPD** and 1 equivalent of *cis*-stilbene (**3**) after 24 hours.

Table S2. Composition of the hydrogenated reaction mixture of the cross metathesis of **CPD** and 1 equivalent of **3** using **1-G3**.

T _R (min)	Area%	Name
5.63	10.08	EB ^a
16.70	30.79	1,2-Diphenylethane (n=2) ^b
19.14	19.74	1,4-Diphenylbutane (n=4)
20.18	9.00	1,5-Diphenylpentane (n=5)
21.18	5.96	1,6-Diphenylhexane (n=6)
22.10	2.84	1,7-Diphenylheptane (n=7)
22.99	4.04	1,8-Diphenyloctane (n=8)
23.84	0.96	1,9-Diphenylnonane (n=9)
24.62	7.20	1,10-Diphenyldecane (n=10)
26.11	7.25	1,11-Diphenyldodecane (n=12)
27.50	2.13	1,11-Diphenytetradecane (n=14)

^aInternal standard, ^bHydrogenated **3**

Reaction of CPD with 8 equiv. of 3:

Figure S5. *In situ* ¹H NMR spectrum of the reaction mixture of **CPD** and 8 equivalents of *cis*-stilbene (3) after 6 hours in toluene- d_8 .

Figure S6. Total ion chromatogram of the reaction mixture of CPD and 8 equivalent of *cis*-stilbene (3) after 6 hours.

Table S3. Composition of the reaction mixture of the cross metathesis of **CPD** and 8 equivalent of **3** using **1-G3**.

T_{R} (min)	Area%	Name
5.77	8.14	EB ^a
18.82	5.91	<i>cis</i> -Stilbene (3)
19.02	60.55	trans-Stilbene
20.69	0.35	Isomer of 10
21.18	0.46	Isomer of 11
21.61	0.21	Isomer of 11
21.86	14.97	Isomer of 10
21.92	7.30	Isomer of 11
24.36	1.79	Homologues of 10 and 11

^aInternal standard

Figure S7. Total ion chromatogram of the hydrogenated reaction mixture of CPD and 8 equivalent of 3.

Table S4. Composition of the hydrogenated reaction mixture of the cross metathesis of **CPD** and 8 equivalent of **3** using **1-G3**.

T _R (min)	Area%	Name
5.77	4.87	EB ^a
16.86	64.46	1,2-Diphenylethane (n=2) ^b
19.26	17.59	1,4-Diphenylbutane (n=4)
20.28	9.68	1,5-Diphenylpentane (n=5)
21.30	0.47	1,6-Diphenylhexane (n=6)
22.20	0.80	1,7-Diphenylheptane (n=7)
23.09	1.73	1,8-Diphenyloctane (n=8)
23.99	0.03	1,9-Diphenylnonane (n=9)
24.76	0.14	1,10-Diphenyldecane (n=10)
25.52	0.24	1,11-Diphenylundecane (n=11)

^aInternal standard, ^bHydrogenated 3

3. Ring Opening Cross Metathesis (ROCM) of CPD with 8 equiv. of *cis*-butene diol diacetate (2)

Figure S8. ¹H NMR spectrum of a typical metathesis reaction mixture of CPD and 8 equivalents of 2 in toluene- d_8 .

Figure S9. Total ion chromatogram of a reaction mixture of the metathesis of CPD and 8 equivalents of 2.

Table S5. Composition of the reaction mixture of the metathesis of CPD and 8 equivalents of 2.

T_R (min)	Area%	Name
1.57	0.30	CPD
5.63	24.51	EB ^a
16.02	28.69	Hexa-2,4-diene-1,6-diyl diacetate (8)
16.49	37.77	Hepta-2,5-diene-1,7-diyl diacetate (9)
18.95	8.72	Homologues of 8 and 9

^aInternal standard

Figure S10. Total ion chromatogram of the hydrogenated reaction mixture of the metathesis of **CPD** and 8 equivalents of **2**.

Table S6. Composition of the typical hydrogenated reaction mixture of the ROCM of **CPD** and 8 equivalent of **2**.

T_R (min)	Area%	Name
5.63	22.85	EB ^a
15.27	25.58	1,6-Hexanediol diacetate (n=6)
16.43	37.76	1,7-Heptanediol diacetate (n=7)
17.55	5.09	1,8-Octanediol diacetate (n=8)
18.57	4.18	1,9-Nonanediol diacetate (n=9)
19.57	3.09	1,10-Decanediol diacetate (n=10)
20.56	0.95	1,11-Undecanediol diacetate (n=11)
21.45	0.50	1,12-Dodecanediol diacetate (n=12)

^aInternal standard

4. Ethenolysis of CPD

Figure S11. ¹H NMR spectrum of a typical ethenolysis reaction mixture in CDCl₃. A representative example for the determination of **CPD** conversion. (t_0 **CPD** (CH₂, 2.78 ppm)/**EB** (CH₂, 2.52 ppm) integral ratio is 1.53)

Figure S12. Total ion chromatogram of the liquid phase of the reaction mixture of the ethenolysis of CPD.

T_{R} (min)	Area%	Name
1.38	2.25	1,3-Butadiene (BD)
1.46	4.43	1,4-Pentadiene (7)
1.57	25.46	CPD
2.02	0.26	1,3,5-Hexatriene
2.48	0.21	1,4-Cyclohexadiene (12)
2.57	3.79	1,3,6-Heptatriene (4)
5.56	63.61	EB ^a

Table S7. Composition of the liquid reaction mixture of the cross metathesis of CPD and ethylene.

^aInternal standard

Figure S13. The gas chromatogram (FID) of the gas phase of the ethenolysis of CPD.

Table S8. BD quantity in the gas phase of the reaction mixture of the cross metathesis of CPD and ethylene.

T _R (min)	Area	Name
7.84	34268	1,3-Butadiene (BD)

5. ROCM of 1,3-cyclohexadiene (13) with 12 equiv. of 2

Figure S14. ¹H NMR spectrum of a typical metathesis reaction mixture of **13** and 8 equivalents of **2** in toluene d_8 .

Figure S15. Total ion chromatogram of the reaction mixture of cross metathesis of **13** and 12 equivalents of **2**.

Table S9. Composition of the reaction mixture of the cross metathesis of 13 and 12 equivalents of 2.

T_{R} (min)	Area%	Name
5.63	24.04	EB ^a
16.02	25.95	Hexa-2,4-diene-1,6-diyl diacetate (8)
17.42	43.98	Octa-2,6-diene-1,8-diyl diacetate (14)
18.95	2.67	Deca-2,6-diene-1,10-diyl diacetate
20.07	3.35	Other homologues of 8 and 14

^aInternal standard

Figure S16. Total ion chromatogram of the hydrogenated reaction mixture of cross metathesis of **13** and 12 equivalents of **2**.

Table S10. Composition of the hydrogenated reaction mixture of the cross metathesis of 13 and 2.

T_R (m	in)	Area%	Name
5.	63	19.18	EB ^a
15.	28	28.01	1,6-Hexanediol diacetate (n=6)
17.	53	45.53	1,8-Octanediol diacetate (n=8)
19.	53	5.25	1,10-Decanediol diacetate (n=10)
21.	36	2.03	1,12-Dodecanediol diacetate (n=12)

^aInternal standard

6. Solubility of ethylene

Solubility of ethylene in toluene- d_8 was estimated based on the literature data for toluene (non-perdeuterated).^[1] At 298K temperature and under 10 bar pressure, the solubility of **ethylene** expressed in mole fraction is: $x_{10bar} = 0.147$, respectively, which can be converted to approximate molar concentrations using the molar masses and the density of toluene- d_8 (943g/dm³).

$$c_{\text{solute}} = \frac{n_{\text{solute}}}{V_{\text{solution}}} = \frac{\frac{M_{\text{solute}}}{M_{\text{solute}}}}{\frac{m_{\text{solute}}}{P_{\text{solution}}}} = \frac{\rho_{\text{solution}} x_{\text{solute}}}{(1 - x_{\text{solute}})M_{\text{solvent}} + x_{\text{solute}}M_{\text{solute}}}}$$
(2)
$$\approx \frac{\rho_{\text{solvent}} x_{\text{solute}}}{(1 - x_{\text{solute}})M_{\text{solvent}} + x_{\text{solute}}M_{\text{solute}}}} = 1.55M$$

7. Theoretical calculations

7.1. Tools

Electronic structure calculations were carried out using programs Gaussian 09 revC and Orca 4.0.1 (only for DLPNO-CCSD(T)).^[2,3] Statistical thermodynamics calculations were done in Excel spreadsheets using standard formulae.

7.2. Finding lowest energy geometric conformers

All electronic structure calculations were done in the presence of an implicit toluene solvent. Multidimensional relaxed geometry scan calculations were carried out using PM6 semiempirical method^[4] to found locate all local minima for the compounds with internal hindered rotors. Geometry of all local minima in the scans dataset were reoptimized at PM6 level, and the ones within 2kcal/mol of the lowest were reoptimized using density functional theory (DFT) with M06-2X hybrid meta functional^[5], which was shown to provide reliable results for π -system thermochemistry (including π -system isomerization energies) and hydrocarbon thermochemistry^[5]. All electron, restricted calculations were carried out using the correlation consistent cc-pVDZ basis set proposed by Dunning^[6]. Ultrafine grid was used and very tight SCF and geometry optimization ground state of the (neutral) convergence criteria were set. Singlet multiplicity was assumed for the elosed shell, neutral molecules. Toluene as solvent was taken into account implicitly via the Polarizable Continuum Model (PCM) using the integral equation formalism variant (IEFPCM).^[7,8]

7.3. Calculating energies of lowest energy conformers

The lowest energy conformer found at M06-2X/cc-pVDZ level was reoptimized at M06-2X/cc-pVTZ level for all compounds^[5], and also with the G3, G4, CBS-APNO composite theories^[9–11] for the species in synthesis path using **Ethylene** (**CPD**, **Ethylene**, **4**, **BD**, **7**, **12**, **15**). These composite methods were employed as P. Somers and J.M. Simmie^[12] showed that the average of the G3, G4 and CBS-APNO results can predict formation enthalpies within chemical accuracy of the results of Active Thermochemical Tables (ATcT)^[13].

Harmonic vibrational analysis was carried out and hindered rotor correction ^[14–16] were determined at the geometry optimization level of the corresponding methods. Single point energy of all minimum-energy conformer obtained at M06-2X/cc-pVTZ level was also calculated with the linear-scaling domain-based local pair-natural orbital coupled cluster with perturbative triple excitation (DLPNO-CCSD(T)) method^[17] with cc-pVTZ basis set (and cc-pVTZ for correlation fitting in the RI approximation) using frozen-core approximation, tight DLPNO threshold and SCF convergence criterion. These latter calculations were carried out with program ORCA

7.4. Statistical thermodynamics calculation

Translational partition functions (per unit volume) were calculated using the standard formula^[18]. Rotational partition functions were calculated based on the rigid rotor approximation^[18] using the rotational constants of the minimum energy conformer. Vibrational partition functions were calculated using the harmonic oscillator approximation^[18] at the minimum energy conformer with hindered rotor corrections proposed by McClurg and Flagan^[14–16].

The calculated harmonic vibrational frequencies were scaled to correct for the systematic errors of the M06-2X/cc-pVTZ calculations to improve the accuracy of the vibrational zero-point energies and partition functions. Separate frequency scaling factors were used for vibrational zero-point energy (0.9735 for ZPE) Actually, they and for the thermal contributions (determined at 298.15K) as proposed by Laury et al.^[19]. They have proposed to the free energy separate scaling factors to correct entropy (1.0583) and enthalpy (1.0566) contributions of formation at 298K, however, these factors were differing only in the third significant digit, therefore their mean (1.0575) was used for direct calculation of the Helmholtz free energies of formation (*i.e.* $F = -RT \ln Q$). For the composite methods the default scaling factors were applied. **Ethylene** and **butadiene** are considered in a solvated form in the reactions, thus all considered reactions take place in solution. For such reactions the standard molar volume change of all reactions is negligible and the Helmholtz and Gibbs free energies of reactions ($\Delta_r F$, $\Delta_r G$) are equal.

7.5. Calculation of equilibrium constants

Ez a mondat szerepel később is.

Knowing the initial concentration of reactants and the equilibrium constants of all steps, one can predict equilibrium product compositions by solving Eq. (1) simultaneously for all steps. From the standard free energy of reaction (at 298.15K and assuming $c^{\bullet} = 1M$ reference state), one can calculate the equilibrium constant expressed in molar concentrations (K_c) using the following formulae.

$$K_{c} = \exp\left(-\frac{\Delta_{r}G^{\Theta}(T;c^{\Theta}=1\mathrm{M})}{RT}\right) = \prod_{i=1}^{n} \left(\frac{c_{i,eq}}{c^{\Theta}}\right)^{\nu_{i}}$$
(1)

Here, *n* is the number species involved in the reactions, and v_i is their corresponding stoichiometric number. Knowing the initial concentration of reactants and the equilibrium constants of all steps one can predict equilibrium product compositions by solving Eq. (1) simultaneously for all steps.

8. Results of the theoretical calculations

8.1. Results for the reactions with ethylene cross-coupling agent

Table S11. Theoretically calculated electronic energy (hartree) of the lowest energy conformers and reactions (kcal/mol) in toluene for the reactions (at 0K without zero-point energy) when ethylene used as a cross-coupling agent. See further details in the theory section.

geometry + vibrations	M062X	M062X	G3	G4	CBS-APNO	-	
single-point energy		DLPNO-CCSD(T)				_	
CPD (C₅H ₆)	-194.079774	-193.735644	-194.023775	-194.061281	-194.094215		
Ethylene (C ₂ H ₄)	-78.572682	-78.439531	-78.556876	-78.572654	-78.582733		
4 ^E (C ₇ H ₁₀)	-272.665430	-272.186500	-272.592792	-272.645850	-272.688208		
7 (C₅H8)	-195.269524	-194.929625	-195.220392	-195.258774	-195.288076		
BD (C4H6)	-155.968663	-155.696461	-155.928714	-155.959238	-155.982438		
12 (cyc C ₆ H ₈)	-233.390471	-232.977690	-233.325037	-233.370087	-233.409205	G3, G4, G	BS-APNO
15 ^ℓ (lin C ₆ H ₈)	-233.365820	-232.954531	-233.301926	-233.347196	-233.383543	mean	std
CPD + Ethylene $\Rightarrow 4^{E}$	-8.14	-7.11	-7.62	-7.48	-7.07	-7.39	0.29
4 ^E + Ethylene ⇒ 7 + BD	-0.05	-0.03	0.35	0.31	0.27	+0.31	0.04
CPD + 2 Ethylene \Rightarrow 7 + BD	-8.19	-7.14	-7.27	-7.17	-6.80	-7.08	0.25
7 ⇒ ½ 12 + Ethylene	1.01	0.78	0.63	0.68	0.46	+0.59	0.11
7 + 7 ⇒ 12 + 2 Ethylene	2.02	1.57	1.25	1.35	0.93	+1.18	0.22
$BD \Rightarrow \frac{1}{2} 15^{E} + Ethylene$	-0.37	-0.36	-0.43	-0.43	-0.44	-0.433	0.005
2 BD \Rightarrow 15 ^E + Ethylene	-0.74	-0.72	-0.86	-0.86	-0.88	-0.87	0.01

of formation

Table S12. Theoretically calculated standard free energies (with separated electrons + nuclei reference; hartree) and standard free energies of reactions (at 298.15K for $c^{\bullet} = 1$ M reference state; kcal/mol) in toluene for reactions with **ethylene** as a cross-coupling agent. See further details in the theory section. The values printed in red are presented in the manuscript (after rounding them to 2 significant digits).

geometry + vibrations	MOCOV	M062X	63	<u> </u>		-	
single-point energy	IVIUOZA	DLPNO-CCSD(T)	63	64	CD3-APNU		
CPD (C₅H₀)	-194.011888	-193.667758	-193.957601	-193.991896	-194.025879	-	
Ethylene (C ₂ H ₄)	-78.540545	-78.407394	-78.525847	-78.539553	-78.550657		
4 ^E (C ₇ H ₁₀)	-272.552602	-272.073672	-272.483092	-272.530995	-272.575103		
7 (C₅H8)	-195.184986	-194.845087	-195.138271	-195.172544	-195.203360		
BD (C₄H ₆)	-155.907822	-155.635620	-155.869743	-155.896950	-155.921569		
12 (cyc C ₆ H ₈)	-233.294726	-232.881944	-233.231655	-233.272552	-233.312936	G3, G4, C	BS-APNO
15EEE (lin C ₆ H ₈)	-233.275806	-232.864517	-233.214318	-233.255109	-233.293225	mean	std
CPD + Ethylene $\Rightarrow 4^{E}$	-0.11	0.93	0.22	0.28	0.90	+0.47	0.37
4^{E} + Ethylene \Rightarrow 7 + BD	0.21	0.23	0.58	0.66	0.52	+0.59	0.07
CPD + 2 Ethylene \Rightarrow 7 + BD	0.11	1.15	0.80	0.95	1.42	+1.06	0.32
7 ⇒ ½ 12 + Ethylene	-1.83	-2.06	-2.14	-2.06	-2.36	-2.19	0.16
7 + 7 ⇒ 12 + 2 Ethylene	-3.67	-4.12	-4.27	-4.12	-4.73	-4.37	0.31
$BD \Rightarrow \frac{1}{2} 15^{E} + Ethylene$	-0.22	-0.21	-0.21	-0.24	-0.23	-0.23	0.01
2 BD \Rightarrow 15 ^E + Ethylene	-0.44	-0.42	-0.43	-0.48	-0.47	-0.46	0.03

Table S13. Theoretically calculated equilibrium constants at 298.15K for $c^{\bullet} = 1$ M reference state in toluene for reactions with **ethylene** as a cross-coupling agent. See further details in the theory section. The values printed in red are presented in the manuscript (after rounding them to 2 significant digits).

geometry + vibrations		M062X				G3, G2	, CBS-APNO
single-point energy	M062X	DLPNO- CCSD(T)	G3	G4	CBS-APNO	geom. mean	uncertainty factor 1 std
$CPD + Ethylene \Longrightarrow 4^E$	1.20	0.21	0.69	0.62	0.22	0.45	1.90
4^{E} + Ethylene ⇒ 7 + BD	0.70	0.68	0.38	0.33	0.41	0.37	1.12
$CPD + 2 \; Ethylene \Rightarrow 7 + BD$	0.83	0.14	0.26	0.20	0.091	0.17	1.73
7 ⇒ ½ 12 + Ethylene	22.1	32.2	36.8	32.4	54.0	40	1.30
7 + 7 ⇒ 12 + 2 Ethylene	488	1039	1351	1051	2913	1605	1.70
$BD \Rightarrow \frac{1}{2} 15^{E} + Ethylene$	1.45	1.43	1.43	1.50	1.48	1.47	1.023
2 BD \Rightarrow 15 ^E + Ethylene	2.11	2.04	2.05	2.24	2.20	2.16	1.047

8.2. Results for the reactions with *cis*-butene diol diacetate (2^Z) cross-coupling agent

Table S14. Theoretically calculated electronic energies (hartree) of the lowest energy conformers and reactions (at 0K without zero-point energy), standard free energies of species (hartree) and reactions (kcal/mol), and equilibrium constants of reactions at 298.15K with $c^{\circ} = 1$ M reference state in toluene solvent for reactions with *cis*-butene diol diacetate (2^{Z}) as a cross-coupling agent. See further details in the theory section. The values printed in red are presented in the manuscript (after rounding them to 2 significant digits). The values for CPD and 12 are the same as in Tables S11-12.

	Electro	onic energy	Standard free	energy ($c^{e} = 1M$)		
geometry + vibrations	MOGON	M062X	MOGOX	M062X		
single-point energy	IVIU62A	DLPNO-CCSD(T)	IVIU62X	DLPNO-CCSD(T)		
CPD (C₅H₀)	-194.079774	-193.735644	-194.011888	-193.667758		
2 ^Z (C ₈ H ₁₂ O ₄)	-612.961164	-612.014927	-612.813635	-611.867398		
2 ^E (C ₈ H ₁₂ O ₄)	-612.963576	-612.016677	-612.817496	-611.870597		
5 ^{EEE} (C13H18O4)	-807.056425	-805.765762	-806.827029	-805.536366		
8 ^{EE} (C10H14O4)	-690.359618	-689.274685	-690.184170	-689.099237	Equilibrium	constant $K_c(c^{\bullet} = 1M)$
9 ^{EE} (C11H16O4)	-729.659811	-728.507158	-729.457851	-728.305198	M062X	M062X
12 (cyc C ₆ H ₈)	-233.390471	-232.977690	-233.294726	-232.881944	WIOOZA	DLPNO-CCSD(T)
$CPD + 2^{z} \Rightarrow 5^{EEE}$	-9.72	-9.53	-0.94	-0.76	4.9	3.6
5^{EEE} + 2^{Z} \Rightarrow 8^{EE} + 9^{EE}	-1.15	-0.72	-0.85	-0.42	4.2	2.0
$CPD + 2^{z} + 2^{z} \Rightarrow 8^{EE} + 9^{EE}$	-10.87	-10.26	-1.80	-1.18	21	7.3
9 ^{EE} ⇒ ½ 12 + 2 ^z	2.14	2.12	-1.97	-1.99	28	29
$9^{\text{EE}} + 9^{\text{EE}} \Rightarrow 12 + 2^2 + 2^2$	4.28	4.25	-3.95	-3.98	786	829
9 ^{EE} ⇒ ½ 12 + 2 ^E	0.63	1.03	-4.40	-4.00	1673	853
$9^{\text{EE}} + 9^{\text{EE}} \Rightarrow 12 + 2^{\text{E}} + 2^{\text{E}}$	1.25	2.05	-8.80	-8.00	3347	1705

8.3. Results for the reactions with *cis*-stilbene (3^Z) cross-coupling agent

Table S15. Theoretically calculated electronic energies of the lowest energy conformers (hartree) and reactions (at 0K without zero-point energy), standard free energies of species (hartree) and reactions (kcal/mol), and equilibrium constants of reactions at 298.15K with $c^{\circ} = 1$ M reference state in toluene solvent for reactions with *cis*-stilbene (3^{Z}) as a cross-coupling agent. See further details in the theory section. The values printed in red are presented in the manuscript (after rounding them to 2 significant digits). The values for CPD and 12 are the same as in Tables S11-12.

	Electro	onic energy	Standard free	energy ($c^{e} = 1M$)		
geometry + vibrations	MOCOV	M062X	MOCOX	M062X		
single-point energy	IVIUOZA	DLPNO-CCSD(T)	IVIU62X	DLPNO-CCSD(T)		
CPD (C₅H₀)	-194.079774	-193.735644	-194.011888	-193.667758		
3 ^z (C ₁₄ H ₁₂)	-540.653902	-539.675210	-540.477380	-539.498688		
3 ^E (C ₁₄ H ₁₂)	-540.659216	-539.680424	-540.483402	-539.504610		
6 ^{EEE} (C ₁₉ H ₁₈)	-734.752076	-733.428017	-734.495484	-733.171425		
10 ^{EE} (C ₁₆ H ₁₄)	-618.057141	-616.938973	-617.851892	-616.733723	Equilibrium	constant $K_c(c^{\Theta} = 1M)$
11 ^{EE} (C17H16)	-657.354832	-656.169772	-657.126524	-655.941464	MOG2Y	M062X
12 (cyc C ₆ H ₈)	-233.390471	-232.977690	-233.294726	-232.881944	IVIUOZA	DLPNO-CCSD(T)
$CPD + 3^{z} \Rightarrow 6^{EEE}$	-11.55	-10.77	-3.90	-3.12	723	195
6^{EEE} + 3^{Z} \Rightarrow 10^{EE} + 11^{EE}	-3.76	-3.46	-3.48	-3.18	358	216
$CPD + 3^{Z} + 3^{Z} \Longrightarrow 10^{\text{EE}} + 11^{\text{EE}}$	-15.31	-14.23	-7.38	-6.31	258419	42063
11 ^{EE} ⇒ ½ 12 + 3 ^Z	3.57	3.59	1.12	+1.13	0.15	0.15
$11^{\text{EE}} + 11^{\text{EE}} \Longrightarrow 12 + 3^{\text{Z}} + 3^{\text{Z}}$	7.15	7.17	2.23	+2.26	0.023	0.022
$11^{\text{EE}} \Rightarrow \frac{1}{2} 12 + 3^{\text{E}}$	0.24	0.32	-2.66	-2.58	89	78
$11^{\text{EE}} + 11^{\text{EE}} \Longrightarrow 12 + 3^{\text{E}} + 3^{\text{E}}$	0.48	0.63	-5.32	-5.17	7975	6145

9.1. CPD (C5H6) - M06-2X/cc-pVTZ

*xyz 0 1
C 0.000000 1.173455 0.280263
C 0.000000 0.733920-0.985265
C 0.000000 -0.733920-0.985265
C 0.000000 -1.173455 0.280263
H 0.000000 2.202162 0.606278
H 0.000000 1.347309-1.874172
H 0.000000 -1.347309-1.874172
H 0.000000 -2.202162 0.606278
C 0.000000 0.000000 1.211814
H -0.875149 0.000000 1.869256
H 0.875149 0.000000 1.869256
*

Rotational symmetry number 2.

Rotational constants in GHz: 8.537960e+00 8.291310e+00 4.317360e+00

No hindered rotor corrections are necessary.

frequencie	s (cm-1)					
344.7023	530.3732	685.2708	734.8416	815.5523	816.5912	921.9516
937.4717	978.2487	983.0768	987.2907	1020.3604	1109.8209	1129.8729
1130.9132	1272.2737	1325.5348	1399.6561	1416.4294	1587.4949	1669.7502
3054.7981	3084.2347	3224.8881	3234.2978	3252.6555	3258.9295	

9.2. CPD (C5H6) - G3

*2	kyz 0 1 RHF	\GTBas1	
С	0.000000	1.174893	0.274754
С	-0.000000	0.738600	-0.980700
С	0.000000	-0.738600	-0.980700
С	0.000000	-1.174893	0.274754
Η	0.000000	2.198539	0.598571
Η	-0.000000	1.345165	-1.867308
Η	0.000000	-1.345165	-1.867308
Η	-0.000000	-2.198539	0.598571
С	0.000000	0.00000	1.217708
Η	-0.873275	0.00000	1.868097
Η	0.873275	-0.000000	1.868097
*			

No hindered rotor corrections are necessary.

frequencies	s (cm-1)					
380.0587	559.2828	750.7132	809.7231	865.2864	866.3984	983.2798
1033.5893	1037.8505	1066.7966	1074.9869	1083.0075	1214.2755	1229.9408
1252.5063	1411.9580	1453.3497	1532.2245	1578.7661	1738.2500	1814.8152
3195.2177	3222.1999	3380.7896	3389.9820	3408.0637	3416.4347	

*xyz 0 1 RMP2-Full\GTBas1

С	0.000000	1.176393	0.285493
С	-0.000000	0.731710	-0.992461
С	0.000000	-0.731710	-0.992461
С	0.00000	-1.176393	0.285493
Η	0.00000	2.210096	0.613099
Η	-0.000000	1.348598	-1.885377
Η	-0.000000	-1.348598	-1.885377
Η	-0.000000	-2.210096	0.613099
С	-0.000000	0.00000	1.214424
Η	-0.878913	0.00000	1.874302
Η	0.878913	-0.00000	1.874302
*			

Rotational symmetry number 2.

Rotational constants in GHz: 8.446477e+00 8.267058e+00 4.288301e+00

9.3. CPD (C5H6) - G4

*xyz 0 1

С	0.00000	1.179350	0.279965
С	0.00000	0.734449	-0.990565
С	0.00000	-0.734449	-0.990565
С	0.00000	-1.179350	0.279965
Н	0.00000	2.209499	0.610041
Н	0.00000	1.344851	-1.885237
Н	0.00000	-1.344851	-1.885237
Н	0.00000	-2.209499	0.610041
С	0.00000	0.00000	1.214743
Н	-0.875178	0.00000	1.880692
Н	0.875178	0.00000	1.880692
*			

Rotational symmetry number 2.

Rotational constants in GHz: 8.465186e+00 8.236785e+00 4.283981e+00

No hindered rotor corrections are necessary.

frequencie	s (cm-1)					
348.6191	524.4236	689.0860	720.3425	810.5881	810.9352	922.1997
925.4099	955.3536	962.0498	969.8223	1014.2406	1114.2872	1116.5288
1129.8486	1262.9642	1314.7235	1395.1785	1409.1752	1556.9983	1642.3874
3017.1796	3040.8038	3199.0211	3209.3509	3229.0939	3235.8283	

9.4. CPD (C5H6) - CBS-APNO

*2	kyz 0 1 RHF	\6-311G(d,p)	
С	-0.000000	1.174368	0.275215
С	0.000000	0.738815	-0.979869
С	-0.000000	-0.738815	-0.979869
С	-0.000000	-1.174368	0.275215
Н	-0.000000	2.198866	0.596969
Η	0.000000	1.347098	-1.865411
Η	-0.000000	-1.347098	-1.865411
Η	0.000000	-2.198866	0.596969
С	-0.000000	-0.000000	1.217382
Η	-0.874472	-0.000000	1.866674
Η	0.874472	0.00000	1.866674
*			

No hindered rotor corrections are necessary.

frequencies (cm-1)										
379.0516	559.5787	742.9919	806.7166	865.3330	866.9090	975.2722				
1021.5991	1026.1000	1056.4589	1070.6852	1082.9833	1197.8256	1214.2772				
1239.6853	1392.0535	1436.7117	1512.5903	1547.7014	1713.7376	1789.2086				
3160.2858	3186.3857	3336.3322	3345.1574	3363.4862	3372.3654					

*>	xyz	0	1	RQ	CISD-FC\6-3110	G(d , p)
С	-0.	.00	00	000	1.183003	0.282908
С	0.	.00	00	000	0.740727	-0.994451
С	-0.	.00	00	000	-0.740727	-0.994451
С	-0.	.00	00	000	-1.183003	0.282908
Н	-0.	.00	00	000	2.216947	0.611004
Н	0.	.00	00	000	1.356412	-1.888303
Н	0.	.00	00	000	-1.356412	-1.888303
Η	-0.	.00	00	000	-2.216947	0.611004
С	0.	.00	00	000	0.00000	1.224512
Η	-0.	.88	37	702	-0.000000	1.878854
Н	0.	. 88	37	702	-0.000000	1.878854
*						

Rotational symmetry number 2.

Rotational constants in GHz: 8.387075e+00 8.158465e+00 4.244953e+00

9.5. Ethylene (C₂H₄) – M06-2X/cc-pVTZ

*xyz 0 1 C -0.660910 1.966902 0.01495600 H -1.227729 2.888861 0.02785500

```
C 0.660911 1.966901 -0.01495400
н 1.227731 2.888859 -0.02785500
н -1.227730 1.044945 0.02785400
н 1.227730 1.044943 -0.02785600
Rotational symmetry number
4.
Rotational constants in GHz:
1.474856e+02 3.050290e+01 2.527544e+01
No hindered rotor corrections are necessary.
frequencies (cm-1)
827.8550
990.2005
1005.4723
1071.9505
1240.4563
1383.0548
1471.4773
1714.3515
3157.5245
3173.6008
```

9.6. Ethylene (C₂H₄) – G3

3233.9762 3259.7418

```
*xyz 0 1 RHF\GTBas1
  -0.658596
-1.225584
                1.966902
                             0.014943
С
Н
                 2.881479
                            0.027796
С
   0.658596
                1.966901
                           -0.014943
Н
    1.225585
                2.881478
                            -0.027795
  -1.225585
                1.052326
                            0.027795
Н
Η
   1.225584
                1.052325
                           -0.027796
No hindered rotor corrections are necessary.
frequencies (cm-1)
896.0364
1094.8638
1101.9980
1156.1755
1349.9065
1492.4349
1607.8633
1852.1033
3318.9754
3342.5595
3393.6045
3418.6769
*xyz 0 1 RMP2-Full\GTBas1
c -0.667504
               1.966902
                            0.015146
н -1.237471
                2.890027
                            0.028065
С
    0.667504
                1.966901
                           -0.015146
Н
   1.237473
                2.890025
                           -0.028064
н -1.237473
                1.043779
                            0.028065
   1.237472
                1.043777
                            -0.028065
Н
Rotational symmetry number
4.
```

Rotational constants in GHz: 1.471133e+02 2.994761e+01 2.488235e+01

9.7. Ethylene (C₂H₄) – G4

*xyz	0 1		
С	-0.663799	1.966902	0.015070
Н	-1.237482	2.888627	0.028064
С	0.663800	1.966901	-0.015069
Н	1.237484	2.888626	-0.028062
Н	-1.237484	1.045178	0.028063
Н	1.237483	1.045177	-0.028063
*			

Rotational symmetry number 4. Rotational constants in GHz: 1.475604e+02 3.015906e+01 2.504105e+01 No hindered rotor corrections are necessary. frequencies (cm-1) 822.7260 970.1280 981.3813 1072.7949 1234.5690 1381.3389 1469.4805 1694.3943 3137.7459 3154.3413

3210.6099 3237.5628

9.8. Ethylene (C₂H₄) – CBS-APNO

*2	kyz	0	1	RHF	\6-	31	1G	(d,	,p)					
С	-0	.65	85	500		1.	96	69()2	0	.01	149	938	3
Η	-1	.22	36	553		2.	88	321	74	0	.02	277	753	3
С	0	.65	85	500		1.	96	690	01	-0	.01	149	938	3
Η	1	.22	36	555		2.	88	327	73	-0	.02	277	752	2
Η	-1	.22	36	554		1.	05	053	31	0	.02	277	752	2
Η	1	.22	36	554		1.	05	052	29	-0	.02	277	753	3

frequencies (cm-1) 888.4214 1079.8721 1097.9721 1144.8140 1334.4006 1468.6027 1581.2037 1817.6752 3268.2805 3291.3596 3344.9964 3372.1145 *xyz 0 1 RQCISD-FC\6-311G(d,p) 1.966902 0.015183 0.028088 C -0.669346 н -1.238427 2.893349 C 0.669346 1.966901 -0.015183 Н 1.238428 2.893348 -0.028087 н -1.238428 1.040456 0.028087 н 1.238427 1.040454 -0.028088 Rotational symmetry number 4. Rotational constants in GHz: 1.460599e+02 2.982625e+01 2.476840e+01

No hindered rotor corrections are necessary.

9.9. $4^{E} (C_{7}H_{10}) - M06-2X/cc-pVTZ$

*xyz 0 1
C 3.344417 -0.375672 -0.491504
H 3.471900 0.410889 -1.225493
C 2.197122 -0.522131 0.165081
H 2.093547 -1.318058 0.896240
C 1.033116 0.331624 -0.029960
H 1.130838 1.131183 -0.759691
C -0.113943 0.181520 0.629040
H -0.201944 -0.628248 1.349066
C -1.319647 1.046106 0.453808
C -2.538116 0.318849 -0.050995
H -3.459899 0.891303 -0.029940
C -2.560185 -0.923151 -0.509861
H -1.662747 -1.527472 -0.557148

H -1.576671 1 H -1.090475 1 H -3.478998 -1 H 4.185200 -1 *	508555 1.4120 872852 -0.2243 372774 -0.860 032143 -0.3174	524 157 715 422
Rotational sym 1.	metry number	
Rotational con 7.628310e+00 1	stants in GHz: 085650e+00 1.(007740e+00
Hindered rotor Q(hin.)/Q(har Total	correction fac m.osc.) McC 7.25	ctor for Qvib Lurg 51
frequencies (c	rm−1)	
56.6207	127.7155	152.6867
456.7592	564.8595	596.2255
963.2407	970.2818	982.8197
1127.2203	1178.1618	1234.2304
1365.3650	1447.6957	1456.3633
3038.6293	3075.2771	3151.8113

9.10. $4^{E} (C_7 H_{10}) - G3$

3038.6293 3172.9033

*xyz 0 1 RHF\0	GTBas1	
C 3.370105	-0.363765	-0.476079
Н 3.506506	0.408668	-1.213726
C 2.225879	-0.514783	0.171391
Н 2.131211	-1.301516	0.902797
C 1.042474	0.328429	-0.033997
H 1.136985	1.116676	-0.764651
C -0.099842	0.171563	0.617700
н -0.185022	-0.622789	1.343403
C -1.318089	1.034141	0.442585
C -2.553601	0.309448	-0.041960
н -3.463102	0.887192	0.013277
C -2.610724	-0.918896	-0.519311
н -1.739633	-1.543416	-0.608910
H -1.558681	1.503007	1.396074
H -1.099126	1.850975	-0.241402
н -3.542973	-1.344361	-0.846438
H 4.211149	-1.007337	-0.291779
*		

3251.6001

Hindered rotor correction factor for Qvib Q(hin.)/Q(harm. osc.) McClurg Tota 342

a.	1	•	2

frequencies	(cm-1)					
59.7628	127.0980	154.9657	170.3016	236.3194	332.2006	465.6018
483.2401	603.5408	640.9470	734.5763	924.0102	983.5280	1014.2242
1053.6584	1063.4578	1075.6479	1105.7572	1125.5901	1152.9009	1155.3594
1207.1139	1269.3854	1340.2998	1420.0038	1443.8944	1447.3233	1454.1396
1505.6047	1584.6435	1590.0781	1617.3190	1832.5167	1871.3195	1908.8056
3178.1263	3214.2326	3320.9868	3323.2062	3324.8854	3331.7846	3340.0472
3341.1124	3411.4899	3412.3448				

169.1391

686.6619

1005.9805

1298.1102

1467.2244

3155.4487

3254.1342

227.4099

863.7996

1039.6448

1325.2551

1700.5055

3161.4865

326.8693 923.9653 1057.8559

1330.5735

1731.9062 3162.3140

442.3936

939.7332

1060.0840

1332.2707

1759.8153

3170.1821

*2	kyz	0	1	R	MP2-Full\GTBas1	
С	3	. 32	275	63	-0.400300	-0.517203
Н	3	. 44	125	02	0.357107	-1.287581
С	2	.18	350	60	-0.523349	0.179075
Η	2	.10)50	93	-1.294882	0.944955
С	1	.01	90	80	0.322246	-0.023352
Н	1	. 0 9	971	.07	1.095816	-0.789226
С	-0	.12	243	56	0.201113	0.675605
Η	-0	.19	994	11	-0.578565	1.435259
С	-1	.33	818	841	1.061661	0.481925
С	-2	.53	346	525	0.318510	-0.043956
Η	-3	. 47	793	805	0.860260	-0.004240
С	-2	.51	49	90	-0.917252	-0.554952
Η	-1	.59	971	04	-1.491572	-0.626797
Η	-1	. 60)52	208	1.529256	1.438502
Η	-1	.09	923	37	1.891248	-0.197471
Η	-3	. 42	207	17	-1.387658	-0.923083
Η	4	.17	77C	06	-1.050404	-0.338488
*						

Rotational symmetry number

Rotational constants in GHz: 7.334874e+00 1.095614e+00 1.014535e+00

9.11. 4^E (C7H10) - G4

*>	xyz	0	1					
С	З.	3	88	41	4	-0.356	792	-0.476407
Η	З.	5	35	46	8	0.436	456	-1.203804
С	2.	2	23	13	5	-0.514	106	0.160532
Η	2.	1	15	89	5	-1.322	036	0.883426
С	1.	0	53	59	4	0.325	861	-0.035426
Η	1.	1	54	33	3	1.136	434	-0.757447
С	-0.	. 1	08	92	9	0.166	094	0.609860
Η	-0.	2	04	11	3	-0.649	472	1.326456
С	-1.	32	20	09	2	1.032	272	0.437954
С	-2.	5	61	23	2	0.317	994	-0.046308
Η	-3.	4	70	59	7	0.916	300	-0.008317
С	-2.	62	23	52	1	-0.929	564	-0.501605
Η	-1.	. 7	43	39	1	-1.561	814	-0.566191
Η	-1.	5	63	57	5	1.509	720	1.400327
Η	-1.	0	94	44	3	1.862	838	-0.245487
Η	-3.	5	59	86	3	-1.364	689	-0.834600
Η	4.	2	32	43	2	-1.012	260	-0.293988
*								

Rotational symmetry number 1.

Rotational constants in GHz: 7.751733e+00 1.058396e+00 9.849025e-01

Hindered ro Q(hin.)/Q(h Total	otor correctior narm. osc.)	n factor for Qvil McClurg 7.407	b		
frequencies	(cm-1)				
55.4187	123.0009	144.8910	173.2181	222.1855	312.8442
448.7018	559.0309	590.6637	680.5841	851.7699	914.0762
933.1310	948.1749	975.8099	1001.0729	1035.7571	1049.9141
1117.3371	1170.7684	1228.5427	1295.1547	1319.0067	1327.0366
1357.4366	1443.7061	1453.7914	1461.7695	1672.3846	1711.4409
2985.4369	3025.6371	3127.0881	3132.1242	3134.7106	3139.8768
3150.7814	3228.4274	3232.4881			

9.12. 4^E (C7H10) - CBS-APNO

*xyz 0 1 RHF'	\6-311G(d,p)	-0 476097		
U 2 502572	-0.300420	1 212427		
п 3.303372 с 2.226907	-0 513634	-1.213437		
е 2.2200 <i>01</i> н 2.133/70	-1 301167	0.902215		
C 1 042870	0 328266	-0.035208		
H 1 135385	1 116991	-0 766298		
C -0 097695	0 169276	0.616942		
H -0 179175	-0 626466	1 342613		
C -1.316028	1.030408	0.442760		
C -2.551565	0.310425	-0.046397		
H -3.458035	0.895217	-0.002253		
C -2.614968	-0.919822	-0.516191		
н -1.746856	-1.551048	-0.594465		
н -1.558520	1.493382	1.398897		
н -1.097239	1.849810	-0.237995		
н -3.550074	-1.337189	-0.847198		
н 4.211158	-1.004549	-0.289773		
*				
TT ' a da con di conte				
Alnaerea roto	or correction	1 Iactor Ior QV1D		
Q(IIIII.)/Q(IIC	aim. OSC.) Mo	7 200		
IUCAL		.250		
frequencies	(cm-1)			
60.6012	129.2014	155.0105	171.4480	237.4998
482.2074	603.6005	638.6941	732.8743	918.2353
1043.9430	1053.3206	1066.8993	1094.0157	1114.1920
1195.9157	1256.0187	1326.5686	1404.0741	1426.7870
1486.8352	1560.9071	1566.1570	1590.0053	1805.4232
3146.4406	3183.0407	3274.3904	3277.0709	3280.4766
3297.2881	3364.5186	3365.6017		

332.0328

974.1805

1143.0075

1429.3724

1841.6949

3287.8066

434.0439

922.6249

1060.7259 1331.9707

1721.9216 3147.5721

463.2573

1008.8577

1144.2824

1437.5460

1884.0726

3292.1497

*2	kyz	0	1	RQ	CIS	SD-	-FC	2/6	5 -	31	1G	(c	l,p)			
С	З.	35	59'	735		- C).3	388	32	72	2	-	0.	50	8 (10)4
Η	З.	47	75	968		C).3	382	25	81	-	-	1.	26	57	55	53
С	2.	21	0	496		- C).[525	53	96	5		0.	17	76	84	4
Η	2.	12	22	399		-1	(306	59	88	3		0.	93	32	41	8
С	1.	03	31:	195		C).3	326	59	86	5	-	0.	02	25	90	2
Η	1.	11	5	540		1	1	111	LΟ	66	5	-	0.	78	30	82	25
С	-0.	11	7	363		C).1	189	99	07	,		0.	66	50	67	7
Η	-0.	19	96	358		- C).(50()4	88	3		1.	4()9	93	37
С	-1.	33	33	634		1	()58	30	95	5		0.	47	71	75	52
С	-2.	55	53	312		C).3	320	00	71	-	-	0.	04	17	01	4
Η	-3.	48	37	911		C).8	381	L 6	50)	-	0.	01	. 3	30)5
С	-2.	55	58	971		- C). (924	18	33	3	-	0.	54	12	77	0
Η	-1.	65	51:	323		-1		519	98	75	5	-	0.	60)7	11	4
Η	-1.	59	96	948		1		523	35	94			1.	43	33	61	.2
Η	-1.	09	96	937		1		384	18	40)	-	0.	21	. 3	20)4
Η	-3.	47	78	584		-1	:	379	90	85	5	-	0.	90)2	36	51
Η	4.	20	9!	525		-1	()4()6	19)	-	0.	32	28	11	4
*																	

Rotational symmetry number 1.

Rotational constants in GHz: 7.386982e+00 1.074769e+00 9.970749e-01

9.13. 7 (C₅H₈) - M06-2X/cc-pVTZ

*2	kyz 0 1		
С	-1.795557	0.103437	0.239869
Н	-1.122113	0.003231	-0.602234
С	-1.394577	0.615751	1.393398
Η	-2.106973	0.705330	2.207260
С	-0.006153	1.111560	1.697318
С	1.010402	0.777394	0.651096
Η	1.176248	-0.280851	0.471452
С	1.693118	1.669845	-0.048962
Η	1.545003	2.733083	0.099858
Η	-0.037803	2.193645	1.852378
Η	0.305051	0.680521	2.654447
Η	-2.815951	-0.226160	0.099550
Η	2.422197	1.371738	-0.790277
*			

Rotational symmetry number 2.

```
Rotational constants in GHz:
1.122220e+01 3.176190e+00 2.703950e+00
```

```
Hindered rotor correction factor for Qvib
Q(hin.)/Q(harm. osc.) McClurg
Total 4.772
```

frequencies (cm-1) 154.8041 90.9708 264.7847 419.5925 502.7768 576.5476 688.3419 969.3062 1046.6785 898.0078 925.8920 974.9747 975.8838 1051.0670 1445.5985 1354.4386 1084.3738 1144.9029 1253.8275 1318.7248 1329.1909 1731.1047 3040.1537 1454.0912 1473.6531 1740.0620 3075.3532 3153.6402 3161.6817 3163.0398 3173.1261 3243.8790 3251.6076

9.14. 7 (C₅H₈) – G3

*2	kyz	0	1	R	HF\GTBas1	
С	-1.	82	263	351	0.103084	0.242398
Н	-1.	.18	39:	347	0.012149	-0.619450
С	-1.	. 39	99	935	0.601500	1.386893
Н	-2.	. 0 9	92	660	0.673728	2.210869
С	-0.	. 00	9!	587	1.113641	1.686440
С	1.	. 02	28	148	0.784941	0.647892
Н	1.	.20	8	800	-0.265526	0.481526
С	1.	71	7	950	1.672878	-0.041195
Η	1.	. 57	70	610	2.732033	0.087180
Η	-0.	. 05	55	154	2.190101	1.835570
Η	Ο.	. 30)3:	106	0.694395	2.641953
Н	-2.	. 84	12	630	-0.229807	0.126160
Н	2.	45	59	942	1.375406	-0.761082

Hindered rotor correction factor for Qvib Q(hin.)/Q(harm. osc.) McClurg 4.797 Total frequencies (cm-1) 95.8910 148.9858 268.7784 441.6909 536.1226 620.0213 732.5202 948.1822 1009.8157 1032.3647 1074.0232 1076.3550 1141.4376 1147.8631 1436.6735 1583.8908 1492.5584 1182.3808 1239.1849 1367.9612 1444.9615 1592.6050 1621.3964 1870.8670 1876.8739 3180.3071 3214.6895 3320.4417 3320.9463 3334.9439 3341.0442 3403.4677 3411.4237 *xyz 0 1 RMP2-Full\GTBas1 0.219886 C -1.790754 0.132732 н -1.119161 0.075013 -0.630342 1.404980 C -1.389084 0.604878 н -2.105600 0.653801 1.717138 0.678362 1.108174 C -0.002710 C 1.019063 0.760888

9.15.	7	(C5H8) -	- G4
J 1101	'		U-

Rotational constants in GHz:

Rotational symmetry number

*

Н 1.220300

н 1.494705

н -0.034013 Н 0.307290

H -2.810102

H 2.409438

1.673519

С

2.

+

*x	yz 0 1		
С	-1.825068	0.095462	0.239963
Н	-1.169529	0.002098	-0.620179
С	-1.402966	0.605456	1.393056
Н	-2.101364	0.686870	2.224942
С	-0.010782	1.112695	1.688266
С	1.021327	0.784915	0.647341
Н	1.188700	-0.277246	0.472563
С	1.720920	1.676899	-0.047053
Н	1.581263	2.745674	0.092460
Н	-0.049824	2.199507	1.847458
Н	0.304093	0.690243	2.655002
Н	-2.847932	-0.242139	0.110513
Η	2.464053	1.378091	-0.779177

-0.300643

1.657486 2.723740

2.197498

0.692735

1.357483

1.083565e+01 3.207914e+00 2.714948e+00

-0.205262

0.537358

-0.067626

0.039833 1.855635

2.686114

0.065767

-0.806386

Rotational symmetry number 2.

Rotational constants in GHz: 1.127895e+01 3.098534e+00 2.648355e+00

Hindered rotor correction factor for Qvib Q(hin.)/Q(harm. osc.) McClurg Total 4.808

frequencies	(cm-1)					
89.3238	151.6044	249.3298	408.5717	495.2849	571.9891	680.0527
884.0558	922.6913	949.1085	953.2801	960.8475	1043.8411	1048.0387
1078.5929	1136.3151	1245.3348	1317.1524	1325.2729	1348.0189	1441.7487
1452.0344	1468.8443	1711.8057	1716.7345	2991.6519	3026.5186	3133.9698
3134.9294	3143.7352	3151.4795	3221.5984	3229.2325		

9.16.7 (C5H8) - CBS-APNO

*2	kyz 0 1 RHF	∖6-311G(d,p)	
С	-1.828648	0.098456	0.244450
Η	-1.189712	-0.004165	-0.615430
С	-1.400499	0.604580	1.384118
Η	-2.095076	0.688368	2.206409
С	-0.009001	1.111920	1.682878
С	1.029199	0.786423	0.645063
Η	1.211638	-0.263779	0.473935

C 1.720071 H 1.570760 H -0.054319 H 0.302914 H -2.847996 H 2.463558	1.676587 2.735564 2.187748 0.686315 -0.228366 1.378873	-0.038747 0.094789 1.836123 2.636103 0.133305 -0.757843				
Hindered rotor Q(hin.)/Q(har Total	correction m. osc.)	factor for Qvib McClurg 4.762				
frequencies (c	m-1)					
98.0368	152.5332	268.3664	440.3144	535.4114	618.7808	729.5837
939.4257	1000.8406	1023.3285	1065.6880	1067.3386	1131.6710	1137.7879
1170.3578	1227.4006	1354.7312	1419.7910	1428.7959	1472.9761	1560.1252
1568.0736	1594.2097	1841.4333	1847.9383	3148.4104	3182.7129	3270.8467
3274.2720	3287.0965	3292.3220	3355.7764	3364.3682		
*xvz 0 1 ROCIS	D-FC\6-311G	(d.p)				
C -1.810337	0.115927	0.224585				
н -1.140259	0.037091	-0.627857				
C -1.400244	0.606326	1.402283				
н -2.113948	0.674801	2.224387				
C -0.003588	1.109695	1.711198				
C 1.027251	0.766130	0.665364				
Н 1.220535	-0.296603	0.512110				
C 1.696871	1.669822	-0.062307				
Н 1.524127	2.737444	0.061843				
н -0.038630	2.199358	1.852681				
Н 0.309573	0.685337	2.676951				
н -2.835341	-0.217108	0.084044				
H 2.436882	1.370305	-0.800129				
*						

Rotational symmetry number 2.

Rotational constants in GHz: 1.090724e+01 3.141327e+00 2.670684e+00

9.17. 12 (cyc C₆H₈) – M06-2X/cc-pVTZ

*2	kyz 0 1		
С	-1.55662600	0.36487200	0.04621100
С	-0.23105400	0.36473900	0.03181100
С	-0.23092000	2.86179800	0.02110600
С	-1.55649100	2.86193200	0.03550500
Η	-2.09001500	-0.57861500	0.05608100
Н	0.30223100	-0.57885700	0.03003500
Н	0.30246900	3.80528600	0.01123600
Η	-2.08977700	3.80552700	0.03728100
С	0.59968500	1.61318600	0.01748000
Н	1.25935600	1.60941500	-0.85698900
Н	1.27796600	1.61681900	0.87760300
С	-2.38723100	1.61348500	0.04983600
Η	-3.04690200	1.61725500	0.92430300
Η	-3.06551100	1.60985200	-0.81028800
+			

Rotational symmetry number 4.

Rotational constants in GHz: 5.197810e+00 4.941200e+00 2.612560e+00

frequencies	(cm-1)					
116.5114	388.6884	415.2863	541.0343	580.7061	634.4087	730.8251
872.9545	904.3035	960.2257	967.6437	973.6654	992.6965	1023.2166
1044.1560	1049.5355	1175.3129	1226.1093	1228.1020	1228.4281	1366.1665
1392.4577	1417.0896	1442.2015	1469.4119	1473.2342	1735.4824	1782.0028
3030.5076	3032.2133	3045.7288	3047.0650	3171.3949	3171.8333	3192.9131
3195.1786						

9.18. 12 (cyc C₆H₈) – G3

*>	xyz	0	1	RHF	\GTBas1	
С	-0.	65	97	14	1.252169	-0.000001
С	Ο.	65	97	14	1.252169	0.000001
С	Ο.	65	97	14	-1.252169	0.000001

С	-0.659714	-1.252169	-0.000001
Η	-1.193100	2.188648	-0.000002
Н	1.193100	2.188648	0.00003
Н	1.193100	-2.188648	0.000001
Н	-1.193100	-2.188648	-0.000004
С	1.495145	0.00000	0.00000
Н	2.157969	-0.000001	0.865205
Н	2.157963	0.00000	-0.865210
С	-1.495145	0.00000	0.000001
Н	-2.157970	0.00001	-0.865203
Η	-2.157962	0.00000	0.865211
*			

No hindered rotor corrections are necessary.

frequencies	(cm-1)					
140.7757	416.4100	438.5101	577.4501	617.3902	698.8869	798.6293
908.6309	950.8034	1011.8070	1051.5701	1060.8426	1100.0611	1116.5842
1120.7233	1145.5980	1280.2336	1328.4187	1335.6635	1338.7591	1494.8347
1526.7704	1548.5970	1568.8887	1623.8670	1625.4062	1872.2149	1920.5256
3169.6224	3169.6586	3182.6589	3182.9292	3326.9326	3327.4225	3351.0606
3354.7774						

*xyz 0 1 RMP2-Full\GTBas1

С	-0.669546	1.248675	0.00000
С	0.669546	1.248675	0.00000
С	0.669546	-1.248675	0.00000
С	-0.669546	-1.248675	0.00000
Η	-1.203706	2.197421	0.00000
Η	1.203706	2.197421	0.00000
Η	1.203706	-2.197421	0.00000
Η	-1.203706	-2.197421	0.00000
С	1.500704	0.00000	0.00000
Η	2.173237	0.00000	0.870857
Η	2.173238	0.00000	-0.870856
С	-1.500704	0.00000	0.00000
Η	-2.173237	0.00000	-0.870856
Н	-2.173237	0.00000	0.870856

Rotational symmetry number 4.

*

Rotational constants in GHz: 5.190606e+00 4.882575e+00 2.594931e+00

9.19. 12 (cyc C₆H₈) – G4

*2	kyz O l		
С	-1.559434	0.360246	0.046227
С	-0.228248	0.360111	0.031830
С	-0.228112	2.866425	0.021089
С	-1.559297	2.866559	0.035486
Н	-2.100420	-0.583085	0.056121
Η	0.312636	-0.583329	0.030023
Η	0.312875	3.809756	0.011195
Η	-2.100181	3.809999	0.037293
С	0.604317	1.613185	0.017456
Η	1.273275	1.609395	-0.858154
Н	1.292057	1.616837	0.878393
С	-2.391862	1.613486	0.049860
Н	-3.060821	1.617275	0.925469
Η	-3.079602	1.609834	-0.811078
*			

Rotational symmetry number 4.

Rotational constants in GHz: 5.163733e+00 4.899804e+00 2.592560e+00

No hindered rotor corrections are necessary.

frequencies	(cm-1)					
125.1698	384.8332	412.8969	537.9669	576.6230	635.7791	729.3474
859.4570	891.7568	946.8562	968.4039	970.5195	995.0700	1006.4550
1022.8955	1041.8016	1169.3599	1207.0740	1216.2227	1223.9847	1359.7902
1382.9422	1394.3200	1437.1908	1462.9750	1466.6603	1712.6945	1756.6149
2977.3156	2978.1659	2983.2473	2984.5073	3141.4264	3141.8262	3163.7387
3166.7198						

9.20. 12 (cyc C₆H₈) - CBS-APNO

*2	kyz 0 1 RHF	\6-311G(d,p)	
С	-0.659239	1.252079	0.00000
С	0.659239	1.252079	0.00000
С	0.659239	-1.252079	0.00000
С	-0.659239	-1.252079	0.00000
Η	-1.191630	2.189566	0.00000
Н	1.191630	2.189566	0.00000
Η	1.191630	-2.189566	0.00000
Η	-1.191630	-2.189566	-0.000001
С	1.493869	0.000000	0.00000
Η	2.155186	0.000000	0.866337
Η	2.155185	0.000000	-0.866337
С	-1.493869	0.00000	0.00000
Η	-2.155186	0.00000	-0.866336
Η	-2.155185	0.00000	0.866338
+			

No hindered rotor corrections are necessary.

frequencies	(cm-1)					
139.5110	417.2127	435.6174	576.6335	615.0152	693.5409	795.4995
900.6954	941.7395	1002.1114	1046.9813	1050.7181	1088.9766	1104.0138
1115.6299	1139.1626	1265.5173	1312.5159	1323.4977	1324.9037	1475.8815
1507.3722	1533.3018	1550.9069	1594.3264	1595.9278	1846.0778	1895.7129
3138.9466	3139.0580	3150.1343	3150.4956	3284.0193	3284.5396	3309.0137
3312.6170						

*>	xyz	0	1	RQ	CISE)-FC	2/6	5-3	311	1G	(d	,p)		
С	0.	00	00	00		0.6	570)25	56			1.	25	79	06
С	0.	00	00	00	-	0.0	570)25	56			1.	25	79	06
С	0.	00	00	00	-	0.0	570)25	56		-	1.	25	79	06
С	0.	00	00	00		0.6	570)25	56		-	1.	25	79	06
Н	0.	00	00	07		1.2	206	577	76			2.	20	60	99
Η	0.	00	00	07	-	1.2	206	577	75			2.	20	60	99
Н	0.	00	00	07	-	1.2	206	577	75		-	2.	20	60	99
Н	0.	00	00	07		1.2	206	577	76		-	2.	20	60	99
С	-0.	00	00	01	-	1.5	506	592	24			Ο.	00	00	00
Н	-0.	87	54	99	-	2.1	.74	134	11			Ο.	00	00	00
Н	0.	87	54	93	-	2.1	.74	134	16			Ο.	00	00	00
С	-0.	00	00	01		1.5	506	592	24			Ο.	00	00	00
Н	0.	87	54	93		2.1	.74	134	16			Ο.	00	00	00
Η	-0.	87	55	00		2.1	.74	134	10			Ο.	00	00	00

Rotational symmetry number 4.

Rotational constants in GHz: 5.122354e+00 4.855531e+00 2.571057e+00

9.21. 15^{EEE} (lin C₆H₈) – M06-2X/cc-pVTZ

```
*xyz 0 1
C -0.19686200 -3.05062500 0.00000000
н 0.36696900 -3.97262000 0.00000000
H -1.27731700 -3.12865400 0.00000000
C 0.40602100 -1.86367200 0.00000000
H 1.49026600 -1.81101200 0.0000000
C -0.30298700 -0.59663700 0.00000000
H -1.38868300 -0.64108100 0.00000000
C 0.30298700 0.59663700 0.00000000
H 1.38868300 0.64108100 0.00000000
C -0.40602100 1.86367200 0.00000000
H -1.49026600 1.81101200 0.00000000
C 0.19686200 3.05062500 0.00000000
H -0.36696900 3.97262000 0.00000000
н 1.27731700 3.12865400 0.00000000
Rotational symmetry number
2.
Rotational constants in GHz:
2.659680e+01 1.350390e+00 1.285140e+00
Hindered rotor correction factor for Qvib
 Q(hin.)/Q(harm. osc.) McClurg
                              1.038
 Total
```

frequencies	(cm-1)					
95.7816	146.6965	215.4760	258.0056	353.5803	448.0567	545.0039
625.1698	722.4716	925.5027	947.2344	959.4376	965.7922	979.5719
991.8469	1040.4076	1066.0287	1161.9663	1222.2951	1279.0580	1319.6479
1329.1529	1332.0053	1438.3124	1465.5380	1670.0306	1720.7111	1740.3556
3157.0897	3159.0314	3164.8321	3165.8252	3172.4738	3172.9542	3258.2227
3258.2364						

9.22. 15EEE (lin C6H8) - G3

*2	куz	0	1	RHF\	GTB	as1					
С	1.	20	909	8	2.	811	24	5	0.000	000	0
Η	2.	12	451	.0	З.	374	22	2.4	0.000	000	0
Η	Ο.	29	352	22	З.	377	72	21	0.000	000	0
С	1.	20	909	8	1.	487	14	6	0.000	000	0
Η	2.	14	794	13	Ο.	956	74	5	0.000	000	0
С	-0.	00	199	96	Ο.	664	74	9	0.000	000	0
Η	-0.	94	279	95	1.	192	81	.3	0.000	000	0
С	Ο.	00	199	96	-0.	664	74	9	0.000	000	0
Η	Ο.	94	279	95	-1.	192	81	.3	0.000	000	0
С	-1.	20	909	8	-1.	487	14	6	0.000	000	0
Η	-2.	14	794	13	-0.	956	74	5	0.000	000	0
С	-1.	20	909	8	-2.	811	24	5	0.000	000	0
Η	-2.	12	451	.0	-3.	374	22	2.4	0.000	000	0
Η	-0.	29	352	22	-3.	377	72	21	0.000	000	0
*											

Hindered rotor correction factor for Qvib Q(hin.)/Q(harm. osc.) McClurg Total 1.043

frequencies	(cm-1)					
96.7797	157.9431	210.5837	267.3838	375.7407	469.9703	580.6840
669.6373	777.2695	1001.6689	1018.7247	1044.2809	1063.0915	1067.0136
1092.5582	1137.4006	1161.9604	1229.0628	1311.9695	1398.4767	1434.9039
1446.6155	1455.9290	1568.1606	1600.8124	1802.0486	1862.5822	1899.8493
3323.6817	3326.8161	3330.7363	3334.6278	3341.4282	3341.5239	3415.6629
3415.6783						

*2	куz	0	1	RI	MP2-Full\GTBas1	
С	1.	20	60)79	2.826998	0.000000
Η	2.	12	289	955	3.396743	0.000000
Η	Ο.	27	88	330	3.393385	0.000000
С	1.	20	60)79	1.482158	0.000000
Η	2.	15	559	953	0.947282	0.000000
С	Ο.	00	006	580	0.676142	0.000000
Η	-0.	95	521	L98	1.208382	0.00000
С	-0.	00	006	580	-0.676142	0.000000
Η	Ο.	95	521	L98	-1.208382	0.000000
С	-1.	20	60)79	-1.482158	0.000000
Η	-2.	15	559	953	-0.947282	0.000000
С	-1.	20	60)79	-2.826998	0.000000
Η	-2.	12	289	955	-3.396743	0.000000
Η	-0.	27	88	330	-3.393385	0.000000
*						

Rotational symmetry number 2.

Rotational constants in GHz: 2.636018e+01 1.337481e+00 1.272896e+00

9.23. 15^{EEE} (lin C₆H₈) - G4

*2	kyz 0 1		
С	-0.199779	-3.068047	0.000000
Н	0.370197	-3.989995	0.00000
Η	-1.281840	-3.162639	0.00000
С	0.397412	-1.869235	0.00000
Η	1.485399	-1.816565	0.00000
С	-0.302365	-0.602522	0.00000
Н	-1.391337	-0.645986	0.00000
С	0.302365	0.602522	0.000000
Η	1.391337	0.645986	0.00000
С	-0.397412	1.869235	0.00000
Η	-1.485399	1.816565	0.00000
С	0.199779	3.068047	0.00000
Н	-0.370197	3.989995	0.00000
Н	1.281840	3.162639	0.00000
*			

Rotational symmetry number 2. Rotational constants in GHz: 2.679938e+01 1.336116e+00 1.272666e+00 Hindered rotor correction factor for Qvib Q(hin.)/Q(harm. osc.) McClurg Total 1.034 frequencies (cm-1) 145.4500 227.5879 257.5935 348.0942 444.6881 539.0953 99.8121 909.5522 934.7288 942.7894 624.5116 716.8391 930.1265 979.2298 984.0779 1037.4703 1068.7814 1157.0877 1218.9178 1281.8991 1312.9513 1327.9332 1331.7799 1437.2691 1467.0123 1641.6353 1690.7823 1695.5727 3148.9341 3149.0790 3235.2736 3130.7731 3139.1032 3143.7226

3130.6050 3235.2781

3368.9379

9.24. 15^{EEE} (lin C₆H₈) – CBS-APNO

*>	куz	0	1	RHF	\6-311G(d,	p)	
С	1.	20	98	13	2.80828	1 (0.000000
Η	2.	12	73	76	3.36878	3 (0.000000
Η	Ο.	29	25	54	3.37326	2 (0.000000
С	1.	20	98	13	1.48488	7 (0.000000
Η	2.	14	89	02	0.95408	2 (0.000000
С	-0.	00	21	42	0.66419	7 (0.000000
Η	-0.	94	33	74	1.19228	0 (0.000000
С	Ο.	00	21	42	-0.66419	7 (0.000000
Η	Ο.	94	33	74	-1.19228	0 (0.000000
С	-1.	20	98	13	-1.48488	7 (0.000000
Η	-2.	14	89	02	-0.95408	2 (0.000000
С	-1.	20	98	13	-2.80828	1 (0.000000
Η	-2.	12	73	76	-3.36878	3 (0.000000
Η	-0.	29	25	54	-3.37326	2 (0.000000

Hindered rotor correction factor for Qvib Q(hin.)/Q(harm. osc.) McClurg Total 1.042

frequencies (cm-1) 157.5943 212.0164 267.9300 375.3825 467.5605 579.3345 97.3991 1058.0504 669.2663 774.8116 998.6804 1008.7223 1034.2634 1052.2402 1082.2587 1127.0578 1150.3756 1215.5814 1297.5740 1382.5118 1417.0878 1427.5329 1439.3808 1544.4531 1576.7865 1775.2066 1835.0709 1875.5988 3278.4257 3279.4602 3289.6556 3289.7860 3297.7985 3300.1484 3368.9064

*xyz 0 1 RQCISD-FC\6-311G(d,p) 2.835033 0.00000 C 1.219520 2.145778 3.402592 0.000000 Н Н 0.289202 3.399842 0.000000 С 1.219520 1.489389 0.000000 0.000000 0.949542 Н 2.167083 0.000503 0.675418 0.000000 С 0.000000 н -0.950686 1.210700 C -0.000503 -0.675418 0.000000 Н 0.950686 -1.210700 0.00000 C -1.219520 -1.489389 0.000000 0.000000 H -2.167083 -0.949542

 R
 -2.167033
 -0.343542
 0.000000

 C
 -1.219520
 -2.835033
 0.000000

 H
 -2.145778
 -3.402592
 0.000000

 H
 -0.289202
 -3.399842
 0.000000

Rotational symmetry number 2.

Rotational constants in GHz: 2.616632e+01 1.325402e+00 1.261503e+00

9.25. 2^{Z} (C₈H₁₂O₄) – M06-2X/cc-pVTZ

*xyz	0 1		
С	-1.26570500	-0.49434500	3.19257900
С	0.65302600	1.46158400	0.85825300
Н	0.55586300	2.38300400	1.42101100
С	1.06408200	1.52248700	-0.40058900

Η	1.29078300	2.49185300	-0.82963900
С	0.95019500	-0.16495400	-3.57806300
0	0.76705600	0.73361800	-2.59826600
0	1.51345900	-1.21313900	-3.40706800
С	0.36840700	0.31442700	-4.87413200
Η	-0.69438500	0.51164400	-4.74487300
Η	0.84529100	1.24998700	-5.16182300
Н	0.52212100	-0.43713300	-5.64044900
С	1.29595200	0.36741600	-1.31544300
Н	0.81635700	-0.54996000	-0.97889300
Η	2.36200100	0.15954200	-1.42664100
С	-2.51489200	-0.11459700	3.92972900
Η	-2.32721200	0.77645800	4.52660300
Н	-3.30006500	0.12602400	3.21511200
Н	-2.82354600	-0.93571400	4.56704800
С	0.33460100	0.22509800	1.62928300
Н	1.13499200	-0.02014500	2.33019000
Н	0.17409900	-0.64625800	0.99693000
0	-0.86044200	0.49189500	2.37771900
0	-0.67998500	-1.53902200	3.29643700
*			

Rotational symmetry number 2.

Rotational constants in GHz: 2.104390e+00 2.879800e-01 2.778300e-01

Hindered rotor correction factor for Qvib Q(hin.)/Q(harm. osc.) McClurg Total 29.066

frequencies	(cm-1)					
19.9625	29.2566	37.7756	62.9684	65.1056	76.4629	133.1373
146.2863	174.1861	182.2710	240.2016	320.9800	321.7792	395.3537
454.7383	495.6935	613.1351	615.5982	617.1367	649.7009	668.3014
723.6152	927.0285	952.2971	986.4753	992.0214	1012.5270	1013.7993
1041.4816	1053.3312	1073.8104	1074.1453	1096.1960	1105.5874	1152.3754
1262.8290	1273.9639	1288.0990	1296.8952	1303.5959	1364.7114	1396.8332
1407.2398	1425.4952	1462.9555	1469.8059	1470.5616	1475.5926	1475.8368
1499.7724	1507.7896	1776.0291	1839.6722	1842.3451	3074.8392	3076.7128
3089.2644	3089.4192	3127.1776	3139.1598	3157.9970	3158.1445	3177.4149
3196.6720	3200.7226	3201.4946				

9.26. $2^{E} (C_{8}H_{12}O_{4}) - M06-2X/cc-pVTZ$

-2.87217700	1.38525400	2.67253400
-0.14431000	2.59379700	0.64944000
0.64963100	2.55085600	1.38868800
0.14862800	2.65864100	-0.63954200
-0.64558100	2.68682200	-1.37917500
2.88011500	1.65897300	-2.76863700
1.69366800	1.69495400	-2.14330100
3.76839600	2.43386100	-2.53187900
2.93518800	0.54633100	-3.77227600
2.75415600	-0.40355300	-3.27217000
2.14846500	0.68519800	-4.51198600
3.90698500	0.54004300	-4.25315000
1.54143900	2.73356600	-1.16355900
2.27702000	2.59870100	-0.37106300
1.73587700	3.69320800	-1.64555700
-2.92436700	0.18144200	3.56497500
-2.76415600	-0.71671000	2.97071200
-2.12386200	0.23769700	4.30058000
-3.88867900	0.13815200	4.05890200
-1.53757300	2.61191500	1.17735200
-2.27238800	2.54793700	0.37527000
-1.73716200	3.52118400	1.74697700
-1.68502400	1.48553900	2.05553800
-3.76372000	2.17503100	2.50815000
	-2.87217700 -0.14431000 0.64963100 0.14862800 -0.64558100 2.88011500 1.69366800 3.76839600 2.93518800 2.75415600 2.14846500 3.90698500 1.54143900 2.27702000 1.54143900 2.27702000 1.53757700 -2.92436700 -2.12386200 -3.88867900 -1.53757300 -2.27238800 -1.73716200 -1.68502400 -3.76372000	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Rotational symmetry number 2.

*

Rotational constants in GHz: 2.884730e+00 2.437700e-01 2.355100e-01

Hindered rotor correction factor for Qvib Q(hin.)/Q(harm. osc.) McClurg

frequencies	(cm-1)					
26.7672	35.6571	36.5640	62.4608	74.4931	91.0455	93.7250
163.9261	174.2037	179.9783	225.3921	278.0679	291.9953	393.6950
470.6275	479.6277	527.7916	615.5306	617.6048	653.6757	666.9465
825.0830	916.3699	953.1468	984.1216	994.7191	1005.2493	1021.8707
1029.0862	1073.6902	1074.9998	1083.2165	1096.4113	1138.2539	1172.9261
1251.2786	1278.6946	1286.9315	1300.4403	1320.8719	1330.7546	1393.7517
1398.8739	1420.8087	1437.0157	1469.5022	1470.3950	1476.3619	1476.5820
1505.7175	1507.2517	1784.4553	1839.4959	1841.3520	3075.1634	3076.0026
3089.4944	3089.5000	3125.4186	3126.6353	3158.0810	3158.1514	3170.3573
3174.5627	3201.7888	3201.8476				

9.27. 5^{EEE} (C₁₃H₁₈O₄) - M06-2X/cc-pVTZ

*xyz 0 1

Total

С	2.57487500	8.62323100	-0.84066400
С	2.90392100	5.23525900	0.35228800
Н	3.97856000	5.10724700	0.26871000
С	2.11026100	4.16935200	0.42482400
Н	1.03552100	4.31051100	0.50125100
С	2.58909200	2.79555700	0.41341400
Н	3.66299000	2.65148000	0.33207900
С	1.78885000	1.73443200	0.49806800
Н	0.71556100	1.88695700	0.57464900
С	2.25278800	0.30776700	0.46975400
С	1.69712100	-0.42177500	-0.72042500
Η	2.00041600	-0.04600400	-1.69404600
С	0.85774300	-1.44471300	-0.65418300
Н	0.54513100	-1.83213600	0.31082300
С	0.08094700	-4.27304000	-2.75507400
Н	3.34433800	0.28687200	0.43962400
Η	1.93525600	-0.20486100	1.38086600
С	0.46570200	-5.71265000	-2.58340100
Η	1.55073000	-5.80085100	-2.57630300
Н	0.09899800	-6.07452900	-1.62421200
Η	0.04501900	-6.29956400	-3.39232900
С	3.12521700	9.24335000	-2.09060000
Η	4.20803200	9.13100900	-2.10580100
Η	2.72727700	8.72258100	-2.95989100
Η	2.85502300	10.29294100	-2.12390000
0	0.59554500	-3.51003300	-1.78059900
0	2.88433600	7.32125900	-0.76411600
С	2.40521700	6.63628200	0.40690100
Н	2.77946000	7.16397700	1.28602700
Н	1.31636400	6.67513500	0.42835300
С	0.27530300	-2.10957400	-1.85360900
Н	0.67708200	-1.69469800	-2.77768500
Η	-0.81088200	-2.00988300	-1.88201700
0	1.93385100	9.19618400	0.00041000
0	-0.59954600	-3.83245300	-3.64356000
*			

Rotational symmetry number 1.

Rotational constants in GHz: 1.310240e+00 7.828000e-02 7.531000e-02

Hindered rotor correction factor for Qvib Q(hin.)/Q(harm. osc.) McClurg Total 143.900

frequencies	(cm-1)					
12.6460	19.6360	31.3962	40.7191	42.6427	64.7121	70.1446
74.7345	79.8595	103.7239	121.7008	158.8884	173.4269	176.9564
197.2348	225.0760	262.7737	285.0421	311.3009	335.6621	340.4457
419.8641	450.2991	495.0724	520.3778	546.1371	564.4130	616.7953
616.9835	658.9318	660.3543	811.7268	831.2160	898.3279	914.4843
936.6411	947.5607	991.8076	994.4005	995.2536	1011.3299	1015.5182
1018.1042	1039.6833	1066.9067	1073.7662	1074.0043	1082.0719	1085.5633
1119.0581	1137.9145	1145.7989	1185.9011	1216.3788	1249.4876	1267.6426
1282.0810	1294.0324	1294.9105	1307.4076	1328.0453	1331.9642	1339.0556
1345.7989	1367.2922	1397.1746	1398.4697	1429.0985	1429.8877	1470.0058
1470.6082	1473.2454	1476.2821	1476.3833	1506.0319	1507.3475	1722.1059
1763.6576	1772.3387	1837.4852	1837.7284	3054.6464	3072.1395	3076.6219
3088.2930	3089.3753	3100.0428	3123.9539	3125.8506	3156.0203	3156.6021
3157.2556	3157.9824	3157.9904	3164.6006	3168.2665	3175.0298	3199.5430
3201.2005						

*xyz	0 1		
С	3.28530300	0.77980800	4.73472600
Н	2.23079400	0.52253800	4.73205400
С	4.20498000	-0.18068100	4.69139900
Н	5.25780800	0.08688900	4.68798100
С	3.88886800	-1.60018800	4.64896000
Н	2.83599600	-1.86758300	4.64461300
С	4.80875500	-2.56094500	4.61785500
Н	5.86323100	-2.30351400	4.61588200
С	3.61324300	2.22931900	4.81667000
Н	3.26843100	2.66645100	5.75562600
Н	4.68577700	2.40472600	4.73670200
С	4.48170700	-4.01295400	4.61463100
Н	4.83271300	-4.50546600	5.52336700
Н	3.40867100	-4.18378700	4.53133100
С	5.75654500	-6.46562100	2.18537800
Н	5.38096900	-5.98225900	1.28510600
Н	6.81345600	-6.22018400	2.27520000
Н	5.62384700	-7.53979600	2.11982500
С	2.33056400	4.82117400	2.54069500
Н	2.70020900	4.39142700	1.61120300
Н	1.27408900	4.57124900	2.62248400
Н	2.46388600	5.89725300	2.53728400
0	2.93708000	2.89343100	3.73582800
0	5.15062200	-4.61094700	3.49160800
0	4.37949800	-6.60267300	4.15534600
0	3.72645800	4.84077400	4.50213700
С	5.01779700	-5.94089100	3.38035900
С	3.07688000	4.22674300	3.69777100
*			

Rotational symmetry number 2.

Rotational constants in GHz: 2.524030e+00 1.385900e-01 1.353900e-01

```
Hindered rotor correction factor for Qvib
Q(hin.)/Q(harm. osc.) McClurg
Total 167.871
```

frequencies (cm-1)

20.7982	30.2844	35.8831	57.1014	60.9947	74.8395	76.4844
111.8388	145.3816	159.5280	169.0431	207.1779	209.1469	272.5907
309.1491	330.8587	371.7667	461.8083	492.7789	529.7118	548.4444
616.6547	616.9897	659.5889	662.7646	815.1802	896.8768	933.0491
939.3845	990.3052	995.9548	996.6195	1008.7541	1023.4600	1038.4708
1074.0701	1074.1273	1084.9389	1086.4399	1126.7919	1151.4950	1196.8941
1238.1292	1267.9048	1286.0032	1295.8878	1296.1733	1327.5165	1336.6078
1351.3674	1391.9116	1400.8026	1422.1969	1436.0429	1470.2790	1470.5371
1476.4581	1476.7515	1505.3491	1505.9951	1731.5351	1773.2336	1838.6054
189.5319	3071.9271	3072.3970	3089.4413	3089.6047	3123.5919	3123.8886
3158.0547	3158.1754	3159.7712	3165.9546	3175.1634	3176.0788	3201.3748
3202.2452						

9.29. 9^{EE} (C₁₁H₁₆O₄) – M06-2X/cc-pVTZ

*xyz	0 1		
С	-2.01966400	0.31125500	5.95534300
С	-1.08570900	0.97944000	2.53450600
Н	-1.56511600	1.94122200	2.38048200
С	-0.09340800	0.59631800	1.74571100
Н	0.37377900	-0.37038700	1.91672000
С	0.43991200	1.39766800	0.59375700
С	0.31614500	0.65121300	-0.70302900
Н	0.79800800	-0.32247900	-0.74555600
С	-0.33197900	1.09510700	-1.76912200
Н	-0.82993000	2.05949300	-1.74304000
С	-2.04055900	-0.44547200	-4.54851300
Н	-0.07992500	2.35368100	0.52740700
Н	1.49843700	1.60991700	0.77652200
С	-1.87310200	1.18787000	7.16372600
Н	-0.82090100	1.42068100	7.31831100
Н	-2.39785700	2.12714200	6.99716900
Н	-2.27790000	0.67958200	8.03180800
С	-1.62393200	0.14151600	3.64272400
Н	-1.06540400	-0.78786200	3.75103700
Н	-2.67363100	-0.11066800	3.48444200

0.34725800 -0.40514400 -3.05571700 С -3.87000500 Н 0.07009800 0.89661100 0.07493600 -0.62813100 -2.98081600 Н С -3.51394300 -0.57365100 -4.79862700 -1.07066300 -3.67873400-5.74815700Η -3.97081600-1.14212400 -3.99026300Н Н -3.96939600 0.41516800 -4.80503700 -1.79435000 0.17116400 -3.38433500 0 -1.52362400 0.90245800 4.85968100 0 -0.78556500 5.94345100 Ο -2.513219000 -1.17047800 -0.83852700 -5.28016800 Rotational symmetry number 2. Rotational constants in GHz: 1.388720e+00 1.304100e-01 1.225000e-01 Hindered rotor correction factor for Qvib Q(hin.)/Q(harm. osc.) McClurg Total 23.528 frequencies (cm-1) 15.4876 22.9916 34.7610 46.1772 57.6915 90.4503 150.5261 168.1351 178.5470 205.1887 307.0609 282.0057 342,4071 421.4656 467.9958 555.1876 616.3029 616.4274 657.5784 662.6098 926.6807 935.6784 956.0540 993.7261 996.6071 1016.0006 1023.2749 1067.3819 1073.1890 1074.1560 1107.8997 1140.5787 1176.7514 1211.6333 1268.1952 1296.5278 1298.5318 1322.0256 1329.8919 1344.4862 1398.9764 1428.5662 1432.4319 1470.2956 1470.4295 1476.2725 1508.1326 1509.0317 1769.6185 1777.2295

3076.7715

3154.7356

3088.7297

3157.2812

9.30. 3^Z (C₁₄H₁₂) – M06-2X/cc-pVTZ

3075.2157

3150.4260

3200.9911

3040.2311

3126.0306 3200.7627

*xyz	0 1		
С	-3.68863400	-0.25800600	-0.53819600
С	-2.79246400	0.79888300	-0.60267300
С	-1.58516500	0.75838200	0.09517200
С	-1.31421000	-0.35450700	0.89400200
С	-2.21246800	-1.40649800	0.96659700
С	-3.39958200	-1.36637900	0.24492300
Н	-4.61527500	-0.21237800	-1.09419500
Н	-3.02390000	1.66725400	-1.20704200
Н	-0.39617900	-0.38680600	1.46523300
Н	-1.98914200	-2.25903500	1.59374700
Н	-4.09895500	-2.18920500	0.30267300
С	-0.66739600	1.90987900	0.01574700
Н	-1.15796200	2.87753200	-0.00771200
С	0.66739700	1.90987900	-0.01574800
Н	1.15796300	2.87753200	0.00771100
С	1.58516500	0.75838200	-0.09517200
С	1.31420900	-0.35450900	-0.89400000
С	2.79246500	0.79888300	0.60267000
С	2.21246700	-1.40650000	-0.96659400
Н	0.39617700	-0.38680900	-1.46523000
С	3.68863500	-0.25800500	0.53819400
Η	3.02390200	1.66725500	1.20703700
С	3.39958200	-1.36638000	-0.24492200
Н	1.98914000	-2.25903800	-1.59374300
Н	4.61527700	-0.21237700	1.09419200
Н	4.09895500	-2.18920600	-0.30267200
*			

Rotational symmetry number 2.

Rotational constants in GHz: 1.531220e+00 4.207500e-01 3.653000e-01

Hindered rotor correction factor for Qvib Q(hin.)/Q(harm. osc.) McClurg Total 1.045

frequencies (cm-1) 33.2424 36.9236 78.3302

155.5044 167.7918

73.0230 81.1726

256.0532

523.9362

828.3689

1015.2041

1084.2912

1288.8609

1396.5707

1475.7418

1837.7984

3125.2145

3171.5398

63.4247

236.3297

481.4836

796.9270

1002.4127

1078.8839

1269.7194

1364.1376

1472.5124

3110.7554

3171.2102

1837.2992

3089.1737

3157.7245

414.7856	419.6120	424.0719	455.4857	511.9580	529.1633	584.9496
631.9136	633.4571	701.2533	722.8513	723.3455	757.0689	777.6922
800.8300	812.2797	879.2370	879.6538	887.4095	957.8911	969.6614
1014.5490	1015.6734	1021.2842	1021.6172	1024.9973	1034.3943	1034.7932
1062.6476	1063.6300	1111.7557	1114.5493	1175.6700	1176.2525	1186.7401
1205.0751	1206.0598	1236.3427	1261.9839	1313.0558	1332.6107	1355.2825
1358.2901	1439.3743	1489.1234	1493.7061	1538.8568	1545.1134	1646.2659
1648.9350	1673.9774	1676.8278	1727.9036	3158.6765	3178.8812	3192.9339
3192.9492	3200.7379	3200.9275	3210.1799	3210.1971	3217.4812	3217.4966
3226.2261	3226.3637					

9.31. 3^{E} (C₁₄H₁₂) – M06-2X/cc-pVTZ

*xyz	0 1		
С	2.56772600	3.46873000	-0.13437600
С	1.38070100	2.75192400	-0.11639400
С	1.37499400	1.36607000	0.05533000
С	2.60311000	0.71799600	0.22294700
С	3.78836100	1.43166000	0.20512200
С	3.77801500	2.81059800	0.02443900
Н	2.54619700	4.54136500	-0.27151400
Н	0.43757200	3.26948100	-0.24096600
Н	2.63411200	-0.35161200	0.37900400
Н	4.72762300	0.91185800	0.33783200
Н	4.70643900	3.36475200	0.01285000
С	0.08878800	0.66155800	0.05344700
Н	-0.77977700	1.31122000	0.03552700
С	-0.08882900	-0.66171000	0.04776200
Н	0.77976300	-1.31121400	0.02596500
С	-1.37502800	-1.36620200	0.04137600
С	-1.38043000	-2.75048000	-0.14264400
С	-2.60341500	-0.71964600	0.21278200
С	-2.56741800	-3.46708600	-0.16903200
Н	-0.43708400	-3.26690100	-0.27023500
С	-3.78863400	-1.43311900	0.18660300
Н	-2.63467900	0.34851100	0.37840500
С	-3.77797200	-2.81038200	-0.00639300
Н	-2.54564400	-4.53845000	-0.31571200
Н	-4.72811700	-0.91452300	0.32242600
Н	-4.70637500	-3.36439700	-0.02454900
*			

Rotational symmetry number 2.

Rotational constants in GHz: 2.739690e+00 2.647800e-01 2.423100e-01

Hindered	rotor	correct	ion	factor	for	Qvib
Q(hin.)/	/Q(harm	n. osc.)	Μ	lcClurg		
Total				1.144		

frequencies (cm-1)

23.6125	58.3957	62.7054	96.0292	206.4855	224.4000	277.9878
308.6693	414.4925	415.3632	463.0943	487.1234	548.0152	551.4692
631.0266	634.4771	652.9726	715.4340	717.7761	767.3699	798.1812
842.5960	872.2994	872.6607	888.9589	905.0458	952.7808	963.3301
1011.9487	1013.2759	1013.7845	1019.6595	1020.2751	1032.8452	1035.2458
1063.7755	1065.8910	1113.1770	1117.0124	1176.3332	1176.6814	1206.4404
1210.4397	1228.4477	1255.0468	1298.6840	1323.6727	1347.9432	1351.9670
1370.0918	1371.6830	1491.1740	1497.7769	1539.9326	1549.1388	1646.7292
1651.5101	1672.2247	1677.9604	1732.2728	3173.3283	3180.2531	3193.2929
3193.4262	3202.2337	3202.4056	3211.6515	3211.8615	3220.2459	3220.3271
3227.8977	3228.0764					

9.32. 6^{EEE} (C₁₉H₁₈) - M06-2X/cc-pVTZ

*xvz	0 1		
C	-6.90786200	-1.33176300	0.39680100
С	-5.73226000	-0.87798700	0.97579600
С	-4.48707400	-1.19296600	0.42736800
С	-4.45679200	-1.98119200	-0.72797100
С	-5.62877400	-2.43452600	-1.30692900
С	-6.86114700	-2.11293400	-0.74811000
Н	-7.86004900	-1.07456100	0.84070500
Н	-5.77292100	-0.26803400	1.86976400
Н	-3.50982600	-2.24190600	-1.18043400
Н	-5.58355100	-3.04255200	-2.20043000
Н	-7.77478500	-2.46907300	-1.20379800
С	-3.27872600	-0.68628300	1.08260400

Н	-3.45412400	-0.07310500	1.96206600
С	-2.01143400	-0.90140500	0.71316900
Н	-1.78740000	-1.50949700	-0.15715500
С	-0.87050800	-0.35687900	1.42504100
Η	-1.08440600	0.25608000	2.29680200
С	0.39790100	-0.57028900	1.07266600
Η	0.60827900	-1.17805100	0.19671500
С	1.59082800	-0.00228000	1.78421800
С	2.36783300	0.92158600	0.88992200
Η	1.83300700	1.80317500	0.55108600
С	3.61994900	0.70386000	0.49757700
Η	4.12805800	-0.18134700	0.87083500
С	4.42613800	1.55809200	-0.38722300
С	5.79352400	1.30638500	-0.50493000
С	3.88386300	2.61543700	-1.12303100
С	6.60033300	2.09067900	-1.31650600
Η	6.22689100	0.48542100	0.05292000
С	4.68695900	3.39921100	-1.93343800
Н	2.82303900	2.81996700	-1.07155900
С	6.05001700	3.14279800	-2.03284000
Н	7.65834600	1.87807500	-1.38951200
Η	4.24804800	4.21173000	-2.49673000
Η	6.67403900	3.75579400	-2.66857400
Η	1.25256500	0.53612400	2.67279500
Н	2.24647000	-0.81085900	2.11659800
*			

Rotational symmetry number 1.

Rotational constants in GHz: 1.138970e+00 8.320000e-02 8.041000e-02

Hindered	rotor	СС	prrectior	l	factor	for	Qvib
Q(hin.)/	/Q(harm		osc.)	ľ	4cClurg		
Total					6.112		

frequencies	(cm-1)					
10.3898	16.3399	22.2992	50.5521	62.8889	81.4853	100.4585
145.1483	164.1433	200.9615	210.2859	265.6030	289.9203	329.9349
351.3216	375.7870	414.8239	415.7729	421.0853	480.5800	521.1186
529.9336	566.0757	623.5817	629.7442	632.9602	633.5793	716.8701
719.0957	775.9804	780.5680	828.6717	854.8475	860.0710	872.7367
874.3853	885.5285	921.9903	940.4742	958.6430	958.9894	986.7932
1012.5956	1013.1313	1013.2544	1019.7860	1020.4123	1031.3143	1035.1321
1040.3227	1059.7399	1064.1558	1067.6150	1109.2100	1113.3560	1120.1868
1166.5710	1176.7112	1178.0164	1201.0749	1206.1008	1208.5883	1242.4349
1250.9876	1264.0285	1296.7803	1315.4948	1323.2974	1332.6812	1337.0763
1345.8874	1354.8166	1362.6835	1372.7359	1382.9281	1471.3396	1494.1582
1494.2832	1542.9633	1543.4353	1648.5478	1650.7955	1674.0610	1675.1943
1709.5542	1737.8879	1748.2869	3049.7494	3094.4120	3152.8048	3153.1709
3158.6772	3159.9729	3171.8100	3177.7660	3192.5212	3194.3894	3200.7556
3202.9082	3210.4383	3212.2954	3219.1821	3220.9808	3226.2536	3228.4786

9.33. 10^{EE} (C₁₆H₁₄) – M06-2X/cc-pVTZ

*xyz	0 1		
С	3.386622	4.394078	0.113247
С	2.188794	3.695859	0.097530
С	2.164703	2.303109	-0.007771
С	3.386622	1.628385	-0.105199
С	4.582413	2.323902	-0.090286
С	4.589784	3.710370	0.020183
Н	3.379542	5.472339	0.197525
Н	1.251243	4.232924	0.170775
Η	3.403722	0.551218	-0.199004
Н	5.516403	1.783848	-0.167951
Н	5.526642	4.250152	0.030900
С	0.871199	1.618507	-0.011951
Н	0.003137	2.271508	-0.001044
С	0.659440	0.295932	-0.018022
Н	1.496602	-0.394421	-0.017603
С	-0.659440	-0.295932	-0.018022
Н	-1.496602	0.394421	-0.017603
С	-0.871199	-1.618507	-0.011951
Н	-0.003137	-2.271508	-0.001044
С	-2.164703	-2.303109	-0.007771
С	-2.188794	-3.695859	0.097530
С	-3.386622	-1.628385	-0.105199
С	-3.386622	-4.394078	0.113247
Н	-1.251243	-4.232924	0.170775

H -3.379542 -5.472339 0.197525 H -5.516403 -1.783848 -0.167951 H -5.526642 -4.250152 0.030900	С Н С Н Н	-4.582413 -3.403722 -4.589784 -3.379542 -5.516403 -5.526642	-2.323902 -0.551218 -3.710370 -5.472339 -1.783848 -4.250152	-0.090286 -0.199004 0.020183 0.197525 -0.167951 0.030900
*	*			

Rotational symmetry number 2.

Rotational constants in GHz: 2.601700e+00 1.461000e-01 1.384300e-01

Hindered rotor correction factor for Qvib Q(hin.)/Q(harm. osc.) McClurg Total 1.176

frequencies	(cm-1)					
21.9286	37.5861	44.7510	53.8908	139.8896	161.4871	169.7032
229.1172	304.7063	305.2280	332.5462	414.0999	414.4050	463.0831
477.0860	508.2425	539.5255	619.6549	631.6670	633.4450	647.6485
715.0955	716.7665	773.4703	789.8564	845.4868	869.5571	873.1227
879.1769	882.2088	931.2460	956.9548	959.8080	986.2008	1013.3063
1013.4456	1019.3523	1019.5073	1030.0844	1033.5908	1041.8822	1064.1806
1064.8005	1113.6581	1114.1085	1171.0797	1176.7385	1182.4989	1206.6101
1208.0495	1235.9773	1259.9353	1262.1973	1317.0341	1325.5180	1337.0591
1348.9287	1358.8073	1369.0094	1386.3581	1492.2627	1497.1103	1542.5217
1545.3170	1646.3393	1649.2484	1672.3305	1674.7143	1708.7746	1725.5720
3158.9402	3160.0023	3172.8547	3180.9130	3192.9376	3192.9389	3201.5486
3201.6244	3211.7431	3211.7635	3220.5455	3220.6418	3227.8325	3227.9188

9.34. 11^{EE} (C₁₇H₁₆) – M06-2X/cc-pVTZ

*xyz	0 1		
С	-5.74653000	-1.06268600	0.27860200
С	-4.66238100	-0.32377500	0.72968500
С	-3.35397200	-0.76618400	0.53151400
С	-3.16150000	-1.97373900	-0.14563400
С	-4.24153400	-2.71265100	-0.59638400
С	-5.54020600	-2.26227800	-0.38544100
Н	-6.75164900	-0.69973200	0.44574400
Н	-4.82761200	0.61275600	1.24793600
Н	-2.15917800	-2.33554500	-0.33047100
Н	-4.07159600	-3.64399200	-1.11969500
Н	-6.38137400	-2.84156500	-0.74064500
С	-2.24385800	0.05393800	1.03895200
Н	-2.53408000	1.02271900	1.43689800
С	-0.95586400	-0.27654500	1.07171500
Н	-0.62585900	-1.23841300	0.69244400
С	0.13175700	0.61994500	1.59113900
С	1.09593700	0.99145300	0.50083800
Н	0.67380900	1.56006500	-0.32164500
С	2.38151400	0.65025100	0.49230300
Н	2.76883900	0.09100200	1.33986200
С	3.37195700	0.96813600	-0.54711000
С	4.71799200	0.69609300	-0.29988300
С	3.02831700	1.53170000	-1.77917400
С	5.69411500	0.98687800	-1.24185300
Н	4.99928400	0.25328800	0.64763100
С	4.00044300	1.82266300	-2.72043000
Н	1.99136100	1.73589000	-2.00893700
С	5.33902500	1.55378000	-2.45645200
Н	6.73144300	0.76912700	-1.02625800
Н	3.71393700	2.25735800	-3.66863200
Н	6.09555200	1.78102100	-3.19491900
Н	-0.31990100	1.52152900	2.01179800
Н	0.67731100	0.11697500	2.39309800

*

Rotational symmetry number 2.

Rotational constants in GHz: 1.389860e+00 1.310000e-01 1.261900e-01

Hindered rotor correction factor for Qvib Q(hin.)/Q(harm. osc.) McClurg Total 4.541

frequencies (cm-1)

15.9564	20.0509	23.5864	74.1987	78.4960	109.6133	137.8758
171.2839	230.4752	266.5893	301.0983	349.4235	394.7761	415.6062
415.7218	416.4003	473.2164	517.3830	551.8947	612.1436	632.4790
632.9350	635.9515	718.3950	719.4762	773.7621	781.5739	822.1371
852.1450	870.3914	873.3989	881.7155	890.4558	949.9948	958.1534
960.4064	1012.0026	1012.9172	1013.4281	1014.9073	1020.4845	1020.5433
1034.4626	1035.2013	1059.2260	1065.4400	1068.9276	1107.9818	1113.5110
1125.1340	1175.6280	1176.2704	1199.1150	1206.8816	1209.8646	1243.2764
1244.9976	1285.0759	1315.0853	1316.7546	1331.7369	1340.3007	1355.1101
1358.0596	1373.4335	1375.4319	1472.2471	1493.6883	1494.3150	1543.8185
1544.0332	1650.3723	1650.8689	1676.0210	1676.4141	1737.1187	1750.7891
3050.8020	3095.7723	3152.9235	3153.8968	3171.2346	3171.6540	3192.9138
3193.4526	3201.6378	3202.0618	3210.6590	3210.8484	3218.9163	3218.9843
3226.9498	3227.3653					

10. References

- [1] J. Wu, Q. Pan, C. L. Rempel, J. Appl. Polym. Sci. 2005, 96, 645–649.
- [2] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, et al., *Gaussian Inc Wallingford CT* 2009.
- [3] F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, DOI 10.1002/wcms.1327.
- [4] J. J. P. Stewart, J. Mol. Model. 2007, DOI 10.1007/s00894-007-0233-4.
- [5] Y. Zhao, D. G. Truhlar, *Theor. Chem. Acc.* 2008, 120, 215–241.
- [6] T. H. Dunning, J. Chem. Phys. 1989, 90, 1007–1023.
- [7] S. Miertuš, E. Scrocco, J. Tomasi, *Chem. Phys.* **1981**, *55*, 117–129.
- [8] J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, DOI 10.1021/cr9904009.
- [9] L. A. Curtiss, K. Raghavach Ari, P. C. Redfern, V. Rassolov, J. A. Pople, J. Chem. Phys. 1998, DOI 10.1063/1.477422.
- [10] L. A. Curtiss, P. C. Redfern, K. Raghavachari, J. Chem. Phys. 2007, DOI 10.1063/1.2436888.
- [11] J. W. Ochterski, G. A. Petersson, J. A. Montgomery, J. Chem. Phys. 1996, DOI 10.1063/1.470985.
- [12] K. P. Somers, J. M. Simmie, J. Phys. Chem. A 2015, DOI 10.1021/acs.jpca.5b05448.
- [13] B. Ruscic, R. E. Pinzon, G. Von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoy, A. F. Wagner, in *J. Phys. Conf. Ser.*, **2005**.
- [14] R. B. McClurg, R. C. Flagan, W. A. G. III, J. Chem. Phys. 1998, 106, 6675.
- [15] R. B. McClurg, J. Chem. Phys. 1998, 108, 1748.
- [16] R. B. McClurg, J. Chem. Phys. 1999, 111, 7163.
- [17] C. Riplinger, B. Sandhoefer, A. Hansen, F. Neese, J. Chem. Phys. 2013, 139, 134101.
- [18] J. W. Ochterski, D. Ph, Gaussian Inc Pittsburgh PA 2000, DOI 10.1016/j.ijms.2007.04.005.
- [19] M. L. Laury, S. E. Boesch, I. Haken, P. Sinha, R. A. Wheeler, A. K. Wilson, J. Comput. Chem. 2011, 32, 2339–2347.