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Abstract: Developing mathematical models for describing the temperature of solar storage 

tanks is of great importance for the practice, since the storage tank stores and provides the 

solar heat directly, in the form of hot water, for the consumer. In this study, a new, general 

and easy-to-apply multiple linear regression based model, called LR model, is proposed to 

predict the temperature at the upper, undisturbed part of solar storages. This model is 

likely one of the simplest linear black-box type models, which can still describe the 

transient changes of the upper temperature with a satisfactory precision. Comparing 

measured and simulated data on a real solar storage, the validation and the efficiency of 

the LR model is presented. The generality and the simple applicability of the model are 

also mentioned along with future research proposals. 
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INTRODUCTION 

Developing mathematical models for describing temperatures of solar storage tanks is of great importance for the 

practice, since these elements are unavoidable in any solar heating systems, where some heat should be stored in 

the form of hot fluid. There are two main categories of mathematical models for solar storages: physically-based 

models (or white-box models), which describe exact physical laws (on the basis of theory) and black-box 

models, which represent empirical correlations (based on experiences or measurements). 

The difficulties of the exact physically-based modelling caused by the complex/complicated physical 

phenomena, like the effect of the inlet fluid flow on the thermal stratification (Meyer et al., 2000), can be often 

overcome by means of the empirical black-box models. The most frequent black-box model type may be the 

artificial neural network (ANN) in thermal engineering applications. Kalogirou et al. (1999) predict the useful 

heat extracted from a solar heating system and the temperature increase of the stored water with an ANN with a 

modelling error of 7-10%. This can be stated appropriate accuracy for such systems (Kalogirou, 2000). An ANN 

is worked out in (Géczy-Víg and Farkas, 2010) to model the temperatures of the layers in a storage tank for 

domestic hot water. In general, ANNs are rather arduous to apply because of the so-called training (or learning) 

process used for identification. For example, 30 943 data sets were used in (Géczy-Víg and Farkas, 2010) in a 

version of the trainings (identification) while only 2997 in the validation. Furthermore, many different back-

propagation algorithms needed for training processes are available. The selection of the right one along with the 

proper number of layers and neurons, forming the ANN model itself, requires high experience and expertise of 

the user. The convergence of the training algorithm indicating the end of a training session may be also time-

consuming. 

Because of the above problems on arduousness, complexity and time consumption, the present work aims at 

establishing a simple and general but still precise black-box model, which can be used fast and easily for a wide 

range of storage tanks. The model is based on a well-known method of mathematical statistics, namely, the 

multiple linear regression (MLR). Based on studies in the literature, MLR is a missing black-box modelling 

technique in the field of storage tanks despite of its linear algebraic simplicity. MLR-based models have been 

worked out in recent works for other working components of solar heating systems, namely, for solar collectors 

(Kicsiny, 2016) and for pipes (Kicsiny, 2017). As proposing a new MLR-based model to predict the temperature 

of the upper part of a solar storage, called LR model in short, the present study can be considered as the 

continuation of these works. 



 

The reason for the upper part is modelled in this work is that this part is less disturbed by the inlet flows to the 

storage (caused by the consumption load and the pump of the heating loop), and, accordingly, easier to model. 

Basically, a simple model, like the LR model, can be expected to describe relatively simple, undisturbed cases 

more efficiently. 

LR MODEL 

Fig. 1 shows the general scheme of the studied solar storage. 
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Fig. 1. Scheme of the solar storage 

The storage tank can be heated up through a heating loop, within which the fluid enters the storage with 

temperature 
inT  and leaves it with 

outT . A pump circulates the fluid in the heating loop with 0 or a prefixed 

constant flow rate value v  according to on/off pump operation. Sometimes a consumer discharges some fluid 

from the storage with the flow rate 
loadv . 

All time dependent variables 
inT , 

upsT ,
, v  and 

loadv  are measured periodically according to a time period t . 

Because of the bounded propagation speed of physical effects and the bounded speed of measurements, the 

inputs of the LR model are  tTin
,  tvload

 and  tT ups,
 with respect to the output (which is the 

modelled value of  tT ups,
) at the current time t. Here   is the time delay with respect to the effects of the inlets 

(more particularly 
inT  and 

loadv ) to the interior of the storage tank. Clearly, the previously detected value of the 

temperature in the upper part of the storage (called simply storage temperature below), as some initial value of 

the model, has also essential effect on its current value  tT ups,
. For simplicity,  tT ups,

 is taken as this 

previous temperature to be considered in the model. 

Considering the storage tank as a black-box, it can be admitted that distinct sub-models as parts of the LR model 

(as a black-box model) should be identified for significantly different operating conditions. More particularly, 

the storage tank behaves absolutely different if the pump is on (v>0) or off (v=0) permanently. Namely, under 

the same initial storage temperature, 
upsT ,

 basically increases if the pump is on and decreases if the pump is off. 

Even, the effect of 
inT  can be neglected in case of permanently switched off pump, since there is no fluid flow 

into the storage from the heating loop. Considering a typical day, when the temperature increase of 
upsT ,

 is 

significant (and the consumption load is not extremely high), four different operating cases should be 

distinguished according to Fig. 2. 
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Fig. 2. Upper storage temperature and pump operation on a typical day 

Cases A and B correspond to permanently switched off and switched on pump, respectively, while Case C1 and 

C2 correspond to frequent switch-offs and -ons. Since the storage temperature basically increases before the 

solar noon and decreases after it, it seems practical to divide Case C into two parts accordingly. The detailed 

specification of each Case can be found below (see also Fig. 2). 

Case A: The pump is switched off permanently. This Case consists of the time period from the beginning of the 

day to the first switch-on of the pump and all such periods, which start at a time when the pump has been 

(permanently) switched off for exactly A  time and stops either at the time of the next switch-on or at the end of 

the day. 

Case B: The pump is switched on permanently. This Case consists of all such periods, which start at a time when 

the pump has been (permanently) switched on for exactly B  time and stops at the next switch-off. 

Case C1: Time periods besides Cases A and B before the solar noon. 

Case C2: Time periods besides Cases A and B after the solar noon. 

Remark: A  is the time which should be passed after a switch-off to go on with Case A. More particularly, A  is 

the time which is generally enough for the pump to become permanently off (and not alternating), and, this 

behaviour is considered as the characteristic feature of Case A. Similarly, B  is the time which should be passed 

after a switch-on to go on with Case B. More particularly, B  is the time which is generally enough for the 

pump to become permanently on (and not alternating), and, this behaviour is considered as the characteristic 

feature of Case B. 

For the best possible modelling precision, distinct sub-models based on MLR are worked out for each operating 

case. In the sub-models of Cases B, C1 and C2, 
inT  is among the inputs, since there is some fluid flow into the 

storage tank from the heating loop in accordance with the permanently or intermittently switched on pump. In 

the sub-model of Case A, 
inT  is neglected according to the permanently switched off pump. 

The LR model is composed of Eqs. (1A), (1B), (1C1) and (1C2), which are simple linear algebraic relations 

representing the corresponding sub-models of the separate operating cases. 
 

Case A:                                                 tTctvctT upsAupsloadAloadups ,,,,mod,,
                                        (1A) 

 

Case B:                                     tTctvctTctT upsBupsloadBloadinBinups ,,,,,mod,,
                          (1B) 

 

Case C1:                                 tTctvctTctT upsCupsloadCloadinCinups ,1,,1,1,mod,,
                      (1C1) 

 

Case C2:                                tTctvctTctT upsCupsloadCloadinCinups ,2,,2,2,mod,,
                      (1C2) 

 



 

Aloadc ,
, 

Aupsc ,,
, 

Binc ,
, 

Bloadc ,
, 

Bupsc ,,
, 

1,Cinc , 
1,Cloadc , 

1,, Cupsc , 
2,Cinc , 

2,Cloadc , 
2,, Cupsc , are constant parameters to 

be identified. 

IDENTIFICATION AND VALIDATION 

In this section, the LR model (Eqs. (1A), (1B), (1C1) and (1C2)) is applied to a real storage tank for 

identification and validation. The calculations needed have been done in the Matlab software (Etter et al., 2004). 

In the identification,  tT measups ,,
 is used as  tT ups,

. During the validation of the already identified LR 

model, the previously modelled value  tT ups mod,,
 is used as  tT ups,

 when modelling  tT ups,
. Measured 

 tTin
 and  tvload

 values are available both during the identification and the validation. According to the 

specification of t , the measurements happen at times ,...3,2,,0 tttt   Practically, the modelled value of 

upsT ,
 (that is 

mod,,upsT ) is determined in the LR model also at times ,...3,2,,0 tttt   Furthermore, for 

simplicity, t  is assumed in the LR model. Case A holds and    0,,, measupsups TtT   is used as measured 

initial condition in Eq. (1A) at t=  (at the beginning of the day). 

The real storage tank, which is to be modelled, is the solar storage of a measured solar heating system (Farkas et 

al., 2000) installed at the Szent István University (SZIU) in Gödöllő, Hungary. This storage will be called below 

SZIU storage in short. The SZIU storage contains preheated domestic water for a kindergarten at the campus of 

the university. The heat is transferred from a solar collector field into the SZIU storage by means of a heating 

loop equipped with a pump working in on/off operation. The measurements are carried out once a minute, that is, 

t =1 min. The volume of the SZIU storage is 2 m
3
. Based on observations, A  and B  can be set 10 min. These 

and other important parameter values can be found in Table 1. 

Table 1. Parameter values of the LR model and the SZIU storage 

t , s 60 

 , s 60 

A , s 600 

B , s 600 

Binc ,
, - 0.0049 

1,Cinc , - -0.000096 

2,Cinc , - 0.0011 

Aloadc ,
, Ksm

-3
 37.7445 

Bloadc ,
, Ksm

-3
 31.0834 

1,Cloadc , Ksm
-3

 13.3407 

2,Cloadc , Ksm
-3

 29.4138 

Aupsc ,,
, - 0.9999 

Bupsc ,,
, - 0.9952 

1,, Cupsc , - 1.0000 

2,, Cupsc , - 0.9989 

The following indices (corresponding to the currently investigated day) are used in this paper for the evaluation. 

The average of error is the time average of  measupsups TT ,,mod,,  , the average of absolute error is the time average 



 

of the absolute value 
measupsups TT ,,mod,,  . The average of absolute error is determined also in % dividing it by 

the (positive) difference between the maximal and minimal value of 
measupsT ,,

. 

Identification 

The measured data of four days have been selected for the identification in such a way that they cover a wide 

range of possible operating conditions of a selected season (summer). Two days (8
th

 June, 2012; 28
th

 June, 2012) 

are with relatively high consumption load (more than 1000 litres) and two ones (24
th

 June, 2012; 2
nd

 July, 2012) 

are with relatively low consumption load (less than 200 litres). Based on many computer experiments (not 

detailed here), such four days proved to be enough for the identified model to have a rather good accuracy. For 

the sake of practice, these four days have been selected from the first third of the summer. In this way, the 

already identified model can be conveniently used in the remained two summer months. (To apply the model for 

the whole year, the identification could be carried out easily for each season separately for maximal yearly 

precision). 

Four independent standard MLR routines have been applied based on the measured data of each separate 

operating case (Cases A, B, C1 and C2) of the LR model to identify parameters 
Aloadc ,

, 
Aupsc ,,

, 
Binc ,

, 
Bloadc ,

, 

Bupsc ,,
, 

1,Cinc , 
1,Cloadc , 

1,, Cupsc , 
2,Cinc , 

2,Cloadc , 
2,, Cupsc  in Eqs. (1A), (1B), (1C1) and (1C2) in the LR model. The 

standard MLR routine (based on least squares method) is well-known and available in most statistical and 

spreadsheet programs (SPSS, Excel, etc.), so it is not detailed here. The identified parameters of the LR model 

can be seen in Table 1. 

Table 2 contains the average of error and the average of absolute error values for a selected day (2
nd

 July, 2012) 

of the identification (with the already identified LR model). The average of absolute error value is presented in 

proportion to the positive difference between the daily maximal and minimal measured storage temperature 

values as well (in %). The mean of these % values relating to all of the four days of the identification can be also 

seen in Table 2 (2.6 %). 

Table 2. Average of error and average of absolute error values with the LR model 

Identification 

2
nd

 July 

Average of 

error 
0.08 °C 

Average of 

absolute error 

0.11 °C; 

1.5% 

Mean % value for 

the whole 

identification 

(four days) 

Average of 

absolute error 
2.6% 

Validation 

3
rd

 August 

Average of 

error 
0.15 °C 

Average of 

absolute error 

0.15 °C; 

2.6% 

Mean % value for 

the whole validation 

(3
rd

 July – 31
st
 

August) 

Average of 

absolute error 
7.7% 

Fig. 3 compares the modelled and measured storage temperatures of the LR model for a selected day (2
nd

 July, 

2012) of the identification. The operating state of the pump is also shown in the figure. 
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Fig. 3. Modelled 
mod,,upsT  and measured 

measupsT ,,
 upper storage temperatures on 2

nd
 July 2012 

Validation 

In the validation, the LR model is applied with the corresponding measured inputs of the remaining two summer 

months. More precisely, one input of the model is changed in comparison with the inputs of the identification, 

namely, the modelled value  tT ups mod,,
 is used as  tT ups,

 in the LR model (1A), (1B), (1C1) and (1C2) 

(not  tT measups ,,
). The modelled days are from 3

rd
 July, 2012 to 31

st
 August, 2012, which means 56 days for 

the validation according to minor technical interruptions in the operation. 

The modelled and measured storage temperatures are compared and evaluated. Table 2 contains the average of 

error and the average of absolute error values for a selected day (3
rd

 August, 2012) of the validation. The average 

of absolute error value is presented in proportion to the positive difference between the daily maximal and 

minimal measured storage temperature values as well (in %). The mean of these % values relating to the whole 

modelled time period 3
rd

 July – 31
st
 August is also presented in Table 2 (7.7%). 

Fig. 4 compares the modelled and measured storage temperatures of the LR model for a selected day 3
rd

 August, 

2012) of the validation. The operating state of the pump is also shown in the figure. 
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Fig. 4. Modelled 
mod,,upsT  and measured 

measupsT ,,
 upper storage temperatures on 3

rd
 August 2012 

CONCLUSION 

Based on the validation, it can be stated that the temperature in the upper (undisturbed) part of a solar storage can 

be modelled rather precisely with the LR model (with an error of 7.7%) in view of the general solar engineering 

aims (studying the thermal processes and developing solar storage tanks). 



 

Because of the simple linear algebraic relations of the LR model, the computational demand is low, which may 

make it ideal for model-based controls. Even, this model is likely one of the simplest black-box models still 

describing the transient changes of the upper storage temperature with a satisfactory precision. The advantages 

of the simple usability and low computational demand can be seen especially in comparison with other black-

box models, e.g. the often used ANN models, which have essentially the same precision. 

Future research may deal with modelling the lower part of a solar storage, which is more disturbed by the inlet 

flows to the storage (caused by the consumption load and the pump of the heating loop), and, accordingly, more 

difficult to model. Also, the already existing MLR-based models of separate working components (worked out in 

(Kicsiny, 2016; 2017) and the present study) may be connected in the future to form an easy-to-use and, 

hopefully, precise MLR-based model for complete solar heating systems. 

NOMENCLATURE 

t: time, s; 

inT : inlet temperature of the solar storage from the heating loop, °C; 

outT : outlet temperature of the solar storage to the heating loop, °C; 

upsT ,
: temperature of the upper part of the solar storage, °C; 

measupsT ,,
: measured temperature of the upper part of the solar storage, °C; 

mod,,upsT : modelled temperature of the upper part of the solar storage, °C; 

v : volumetric flow rate of the heating loop, m
3
/s; 

loadv : volumetric flow rate of the heating loop, m
3
/s; 

t : time period between successive measurements, s; 

 : time delay with respect to the effects of the inlets to (the upper part of) the storage tank, s; 

A : time lag before Case A in the LR model, s; 

B : time lag before Case B in the LR model, s 
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