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Automation of surgical processes (SPs) is an utterly complex, yet highly demanded feature by medical experts. Currently, surgical
tools with advanced sensory and diagnostic capabilities are only available. A major criticism towards the newly developed
instruments that they are not fitting into the existing medical workflow often creating more annoyance than benefit for the
surgeon. The first step in achieving streamlined integration of computer technologies is gaining a better understanding of the SP.
Surgical ontologies provide a generic platform for describing elements of the surgical procedures. Surgical Process Models
(SPMs) built on top of these ontologies have the potential to accurately represent the surgical workflow. SPMs provide the
opportunity to use ontological terms as the basis of automation, allowing the developed algorithm to easily integrate into the
surgical workflow, and to apply the automated SPMs wherever the linked ontological term appears in the workflow. In this work,
as an example to this concept, the subtask level ontological term \blunt dissection" was targeted for automation. We imple-
mented a computer vision-driven approach to demonstrate that automation on this task level is feasible. The algorithm was
tested on an experimental silicone phantom as well as in several ex vivo environments. The implementation used the da Vinci
surgical robot, controlled via the Da Vinci Research Kit (DVRK), relying on a shared code-base among the DVRK institutions. It is
believed that developing and linking further building blocks of lower level surgical subtasks could lead to the introduction of
automated soft tissue surgery. In the future, the building blocks could be individually unit tested, leading to incremental
automation of the domain. This framework could potentially standardize surgical performance, eventually improving patient
outcomes.

Keywords: Blunt dissection; Da Vinci Research Kit (DVRK); subtask automation; 3D surgical field reconstruction.

1. Introduction

Automation in the field of medicine is already present in
many forms, such as programmable insulin pumps,
respirators and chest compression devices [1–3]. Most

medical domains also apply specific guidelines, such as
diagnostic and treatment plans, making medical diag-
nostics and practice (where these guidelines exist) a
standardized process [4]. Particularly in the surgical
domain, the emergence of robots allows for new func-
tionalities to be implemented [5]. With predefined
treatment plans for common diseases, then with tools for
execution, automation could become part of the surgical
field as well. Computer-Assisted Surgery is penetrating
into the fundamental layers of surgical practice, in the
case of some research applications, even replacing the
surgeon's hand [6–11]. Moreover, commercial robot
systems, such as the MAKO (Stryker Inc., Kalamazoo, MI)
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and CyberKnife (Accuray Inc., Sunnyvale, CA) already
offer autonomous treatment delivery and safety func-
tions [12]. The systematic assessment of autonomous
capabilities of surgical robots was proposed recently [13].

Novel research is hindered by the fact that the com-
plexity of surgical procedures requires a high level un-
derstanding of the surgical process (SP). Standards and
generic plans are only valid until the actual soft-tissue
surgery begins: while the surgeon has one initial plan,
they later modify that on-the-fly to suit the patient's in-
dividual characteristics. Based on this, the first proposals
to describe surgical operations as a sequence of tasks
were published in 2001 [14]. The term SP has been
defined as \a set of one or more linked procedures or
activities that collectively realize a surgical objective
within the context of an organizational structure", along
with the term Surgical Process Model (SPM), \a simpli-
fied pattern of an SP that reflects a predefined subset
of interest of the SP in a formal or semi-formal
representation" [15]. The development of SPMs requires
the accurate description of agents in surgery, and
therefore results in the creation of complex data/
knowledge representation systems. These were named
ontologies, and have the potential to accurately represent
SPs in a way that they can be analyzed in an automated
manner. With the surgical ontologies, some functions of
surgery (previously known to be very subjective, such
as skill assessment) can be objectively measured [14].
Besides skill assessment, ontologies have a good use in a
wide spectrum, including [16]

. evaluation of surgical approaches,

. surgical education and assessment,

. optimization of OR management,

. context-aware systems and

. robotic assistance.

SPMs are able to describe surgery on several granularity
levels, starting from task level (at high) to the finest
levels (e.g. recording the surgeon's motion primi-
tives) [17]. On the higher abstraction levels, critical and
time consuming steps can be identified, then lower level
analysis can evaluate the surgeons' economy of move-
ment, providing information on the surgeons' manual
skills [18, 19].

Within the work presented here, ontologies have been
used to break down surgical procedures into the subtask
granularity level. This was chosen because it mostly uses
nonprocedure-specific surgical actions (such as
\ligating", \clipping", \dissecting", etc.). If such terms
can be successfully automated, then they can later serve
as building blocks for a multitude of surgical procedures.
Fine granularity levels (surgical motion primitives) were
also considered as possible building blocks, yet they did
not prove to be the ideal soution for numerous reasons.
While previous works have demonstrated that automa-
tion is possible on these levels, where surgical robots

perform reaching, pulling, cutting and other primitive
motions to achieve a well-defined goal [7], we found that
these fine granularity level applications are hard to be
used as surgical building blocks, mainly because inter-
patient variability makes their target goals — in real
world scenarios — difficult to exactly define. Further-
more, as Reiley [18] showed, expert surgeons use fewer
movements compared to novices and residents, there-
fore, instead of focusing on the reproduction of surgical
motions, subtask automation should also aim for mini-
mizing tool motion. Finally, working with motion primi-
tives would require a more technical understanding from
the surgeon's side, while subtask level terms are abstract
enough for surgeons to build up complex procedures.
Automating subtask level building blocks enables unit
testing of the elements, which would enable the develop-
ment of safety standards for these procedures, eventually
standardizing surgical performance [20].

This paper presents the automated execution of the
\blunt dissection" ontological term, as a demonstration
that subtask level automation is feasible in surgery. The
structure of the paper is as follows: in Sec. 2, a short
description of the blunt dissection procedure is given.
After presenting the medical background, the computer
vision approach is introduced. Next, the surgical robot's
control structure is discussed. Section 3 discusses the
accuracy of the automation during various scenarios,
followed by the conclusion.

2. Materials and Methods

For this work, we choose Laparoscopic Cholecystectomy
(LC) as the targeted procedure. Our choice was based on
the fact that this procedure is an often studied and well-
understood intervention [21]. Based on the surgical lit-
erature [22] and video recordings of the procedure, we
built a subtask level SPM, and from this description, we
selected the \blunt dissection" ontological term for fur-
ther examination. In our application, this term is handled
as an atomic executable task, where the algorithm filling
this block defines the set of required sensory inputs to
successfully control and monitor the execution of the
process. Our process execution consists of requesting a
start and an end point from the surgeon (selected on the
endoscopic image). After these boundary parameters are
set, the program's computer vision element reconstructs
the three-dimensional (3D) field and identifies the dis-
section line between the boundary points. From this line,
the computer vision algorithm selects one point with the
least depth, on which the robot control executes blunt
dissection. After the dissection is complete, the program
checks if the target anatomy is exposed. If further dis-
section is needed, the algorithm reinitiates the dissection
line and starts the process again.
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2.1. Blunt dissection

Blunt dissection is defined as an SP, where the surgeon
intends to separate two layers of loosely connected tis-
sue without damaging either. A dissector is gently
inserted between the two layers, then the opening of the
dissector forces the two layers apart, while braking only
the more fragile connective tissue between the layers.
It should be noted that surgeons use the name \blunt
dissection" for other maneuvers as well, such as peeling
a thin layer of connective tissue bluntly. While these also
resemble the SP described above, we do not intend to
cover all of these cases in our application.

During LC, one prominent use of blunt dissection is
for opening up Calot's triangle. This step is one of the key
moments, as the Calot's triangle incorporates several
vessels and bile ducts, and damaging these structures
may lead to serious complications. Besides LC, several
other procedures employ blunt dissection as well. Tumor
removals (e.g. of thyroid cancer) use blunt dissection to
peel away the tumor tissue from the healthy structures.

To test our automated blunt dissection algorithms, a
special phantom was created. It consists of two outer
layers of hard silicone, and between them a layer of
softer, foamy, dissectible layer of silicone. This internal
layer can be penetrated easily with the laparoscopic tool
and dissection can be carried out. Our experimental
setup is shown in Fig. 1.

2.2. Computer vision

During robotic minimally invasive (da Vinci-type) lapa-
roscopic surgery, the most common — in some cases the
only — sensory input is the stereo endoscopic camera
image feed. Due to this fact, we decided to base our

algorithm only on the video feed, and not to rely on any
additional sensors. In the future, this makes the platform
easily integratable into the surgical workflow.

During the experiments, we obtained the stereo
camera feed using two low-cost web cameras (Logitech
C525 — Logitech, Romanel-sur-Morges, Switzerland). The
cameras were placed in a stable frame with 50mm base
distance from each other. The blunt dissection phantom
was fixed on a stiff surface, approximately 350mm from
the stereo camera. While the distance between an
endoscope's two channels is significantly smaller than
the one we used in this setup, we compensate for this
deviation by placing the camera farther away from the
target than it is usual for endoscopes.

The web cameras each provided a 640� 480 pixel
resolution video feed with fixed focal length. This video
stream was then sent to a nearby PC where the computer
vision method was implemented in MATLAB 2016b.

Prior to executing the blunt dissection, to achieve
accurate 3D representation of the dissection profile, we
performed the stereo camera calibration and stereo
image rectification. This calibration process was carried
out with 19 pairs of images of a checkerboard pattern
(grid size: 25� 25mm) fixed on a flat surface. After the
capturing of each stereo image, the checkerboard was

Fig. 1. Automatized blunt dissection test setup, consisting of
the da Vinci Surgical System with the DVRK, a dissection
phantom and a stereo camera.

Fig. 2. Computer vision-based automated blunt dissection: (a)
stereo camera image of the blunt dissection phantom; (b) dis-
parity map of the surgical field; (c) plot of disparity changes in
the vertical direction and (d) blunt dissection profile from the
local minimas of the disparity.
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moved to a new position (and orientation) within the
expected target area. The camera calibration and the
calculation of the reprojection errors were performed
using the MATLAB Stereo Camera Calibrator App. The
app projects the checkerboard grid points from the world
coordinate system back onto the image coordinates, then
compares the resulted point to the original, and accepts
it if the error is within one pixel [23].

We validated the camera calibration with the mean
pixel error from 10 calibrations. Each calibration used 19
image pairs of whom averagely 2.2 pairs were rejected
because of outlier or checkerboard detection errors.
During the calibration tests, an average of 0.104 mean
pixel error from the 10 cases was achieved, with a
standard deviation of 0.0165.

The 3D field reconstruction algorithm was tested on a
planar white and a checkerboard pattern placed at dif-
ferent distances (Fig. 3). The mean error was 4.1mm
with 0.7mm standard deviation. The accuracy of the
robot was also tested on 10 cases, where we reached
2.2mm accuracy with 0.5mm standard deviation when
moving on the image plane and 1mm accuracy with
standard deviation of 0.6mm on the depth axis.

Following this initialization, the dissection algorithm
starts with the user initializing the start and stop points
of the blunt dissection line on the initial (two-dimen-
sional (2D)) view. This step serves to define the region of
interest (ROI) for the program because the observed
surgical field (most of the times) contains more than one
candidates where the dissection could be carried out.

From the stereo rectified grayscale images, the pro-
gram calculates the disparity map, where each disparity
value represents the distance between the corresponding
pixels on the stereo images. The disparity map is gen-
erated using the Semi-Global Block Matching (SGBM)
algorithm. SGBM is a highly robust pixelwise matching
algorithm based on mutual information and the approx-
imation of a global smoothness constraint [10].

Between the initialized start and stop points, the
program defines the precise dissection target points.

These target points are identified by searching for the
local minima on the disparity map (the surface is
smoothed using a moving average filter) around the line
connecting the initialized boundary points. If the method
failed to find peaks, or the disparity values were invalid,
the algorithm uses the initial start point and the nearest
valid disparity value. After the detection of the dissection
line, the program's preciseness is further enhanced by
removing the outliers using a Hampel filter. Finally, on
the final dissection line, the algorithm chooses the
smallest depth point as the next target, resulting in an
evenly deepening dissection line.

Besides selecting the 3D points of the intended dis-
section line, the algorithm also determines the required
entry orientation of the dissector tool, by calculating the
local direction of the dissection profile (e.g. the orienta-
tion points in the direction of the avg. depth gradient).

One of the most challenging issues during the dis-
section process is the constantly changing environ-
mental factors such as changing external and internal
lighting, noise, etc. The laparoscopic environment for-
tunately reduces these external light sources and the
laparoscope's light stays relatively stable. To reduce
errors from small shifts in the target's position, we
developed a segmentation method which is responsible
to accurately define the ROI. This method uses the
depth parameters of the dissection line's start and end
points.

2.3. Robot control

In this work, we used the da Vinci surgical system
alongside with the da Vinci Research Kit (DVRK), which
provides an open source ROS interface to the robot
[24–26]. We choose the da Vinci surgical system because
it is widely used in the everyday clinical practice
worldwide, with yearly more than 500,000 procedures
performed only in the US.

To achieve accurate tool movements based only on
the visual information, first, the transformation between
the coordinate system of the robot and the camera is
determined. For this goal, we use a checkerboard meth-
od, where a small, easily detectable checkerboard pattern
is attached to the tooltip [27]. Images were captured by
both cameras simultaneously in different tool positions,
and tool coordinates were calculated from the detected
checkerboard positions on the stereo images. Simulta-
neously, the Cartesian positions were also logged from
the DVRK in the robot's coordinate system, after which
the transformation between the two coordinate frames is
calculated by rigid frame registration.

To separate the tissue layers, the top layer is placed
under a constant retraction force. We consider retraction
to be a separate subtask from blunt dissection, therefore
during the initial tests, it has been executed manually
(this is a realistic assumption since retraction is often

Fig. 3. Depth error of the checkerboard pattern and plain
white paper from different distances.
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assigned to the assistant). The workflow of the automatic
blunt dissection starts by the computer vision algorithm
finding the target on the phantom. The dissector arm then
approaches the target, and the tool is moved into the
penetrable tissue between the two hard silicone layers.
When the tool finishes the penetration of the dissectible
tissue, the grippers are opened and the tool is pulled out
(remaining open until it left the phantom). The process
separates the two tissue layers in the tool's small local
region. After this series of movements, the grippers are
closed and the tool is moved out of the scene, so it is not
obstructing the camera view, and allows a new stereo
image to be captured about the surgical field. If the blunt
dissection is not finished (e.g. the target anatomical
structure is not exposed), a new dissection target is
acquired, otherwise, the agent stops. This process is shown
in Fig. 5 and the tool movements are shown in Fig. 4.

3. Results

The method was tested on the above-described phantom.
The dissection progressed on the intended dissection line
in all the test cases. For dissection, an endowrist \large
needle driver" instrument was used, and the procedure
progressed on a 10 cm dissection line with an average of
0.5 cm/min speed. The tool placement achieved an ap-
proximated 1mm accuracy during these tests. To test
accuracy in a predefined environment, an additional test
was performed in the following setup: (1) After calibra-
tion, the tool was moved in front of the camera and the
tool position was recorded on the camera 3D frame and
on the robot's coordinate system as well, then (2) the
tool was moved away, and (3) the robot was asked to
reach the point on the 3D image record. (4) When the
robot finished the approach the tool position was com-
pared to the initial tool position. During this test sce-
nario, from 10 test cases, an average of 2.2mm accuracy
was achieved with a standard deviation of 0.5mm on the
camera view's plane. On the depth axis, the algorithm
achieved 1mm accuracy with standard deviation of
0.6mm. It is worth to note however that the tests are
highly dependent on the vision system, and these results
could be improved by using industry standard cameras
instead of the current low-cost web cameras. With these
low-cost cameras, accuracy problems were often attrib-
uted to the focusing system and to low resolutions.

3.1. 3D field reconstruction and sensitivity to texture

We tested our dissection line detection method's sensi-
tiveness to texture. We used four types of paper (plain
white, checkerboard pattern, rough surfaced, kraft
paper) and the dissection phantom. We kept the phan-
tom and the papers in the opened state to simulate

Fig. 4. Robot movements of the surgical subtask automation:
(a) the field of view is unobstructed; (b) the surgical instrument
moving to the dissection target; (c) penetrating the phantom
with the instrument; (d) open the tool; (e) pull out the in-
strument and (f) move to the next target.

Fig. 5. Flow diagram of the blunt dissection automation
method. The image-based input defines the targets of the blunt
dissection; based on this information, the robot can perform the
blunt dissection surgical subtask.
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retraction. In these cases, the algorithm was expected to
find a linear dissection profile. We choose the start and
end points on the objects with 10 cm distance from each
other; these points were the ground truth of the dissec-
tion line points. The objects were placed at an approxi-
mate 50 cm distance from the stereo system. We found
that our method is highly sensitive to the texture and the
pattern of the objects. The method worked well on fea-
ture rich objects (with the checkerboard pattern, kraft
paper and the dissection phantom), but it failed on fea-
ture poor objects (plain white paper and rough surface
paper). These results are shown in Fig. 6.

We tested the dissection line detection method's
sensitiveness to rotation as well. For this, we used the
blunt dissection phantom. The phantom was rotated
between 0� and 60� with 10� jumps relative to the
camera. We found that the method is not significantly

sensitive to rotation and performed sufficiently in every
case, as it is shown in Fig. 7.

Ex vivo test was conducted on chicken breast, pork
shoulder and duck liver in an effort to test the accuracy
in a realistic environment. Sensitivity test on the ex vivo
objects consisted of selecting six points to compare the
ground truth with the detected locations. In this experi-
ment, we found that the method is sensitive to the tex-
ture of the object and the lighting is crucial. The method
worked well on the pork shoulder, and it worked
acceptable on the chicken breast and the duck liver. The
reason for the pork shoulder's good performance lies in
its feature-richness, while the liver and the chicken
breast are feature-poor, and glaring for these materials is
significant as well, therefore, they provide inferior results
(Fig. 8).

Fig. 6. Dissection line detection sensitiveness to texture.

Fig. 8. Ex vivo tests of the dissection line detection: (a) blunt
dissection silicone sandwich phantom; (b) duck liver; (c)
chicken breast and (d) pork shoulder. The method is sensitive
to glaring (e.g. liver), and to feature-poor surfaces (e.g. chicken
breast).

Fig. 7. Absolute error of the dissection line detection while
rotating the phantom between 0� and 60� with 10� steps.
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Finally, the blunt dissection was tested on our silicone
sandwich phantom. We requested single dissections at
25 locations along the dissection line. From these 25 test
cases, 21 succeeded, and in the remaining 4 cases, the
tool missed the exact dissection point by not more than
3mm.

4. Discussion

The presented method utilizes the readily available ste-
reo camera image feed for the execution of blunt dis-
section. This makes the algorithm easily integrable into
current surgical applications. During initial tests, an
average of 1mm accuracy was achieved, which could
further be improved using more reliable stereo cameras.
It is worth to note however that in practice, submilli-
metric accuracy is usually not required for blunt dis-
section. The presented algorithm does not automate
several tasks needed for ex vivo and in vivo applications.
These include the automation of retraction, and the se-
lection of start and stop criteria. In the structure pre-
sented above, these are important, but separate subtask
level processes, and thus, they should be developed in-
dividually. Future objectives include the implementation
of \retraction", \suction", \coagulation", etc. ontological
terms. In this work, the robot motions were hardcoded
into the system, and while they were achieving the
intended goal, in future development, we intend to
improve the economy of motion by implementing
\learning by observation" approaches.

Error monitoring is one of the most important aspects
of surgical automation. While other subtask level pro-
cedure elements require constant monitoring of the
surgical field (for example, the detection of slippage
during retraction), such a monitoring is not necessary for
blunt dissection. For this application, we expect error
monitoring to be an external function which can detect
unintended bile leeks or bleeding and interrupts the
blunt dissection to start an error handling algorithm.

5. Conclusion

The example of the successfully automated blunt dis-
section shows that subtask level in SPMs is a low enough
granularity level where ontological terms can be defined
precisely enough to develop automated algorithms. On
the other hand, these terms are widely used in surgical
plans, therefore, it can become natural for the surgeons
to use these elements to build or assist their surgeries. It
was also presented that in case of blunt dissection during
LC, the available camera input can provide enough in-
formation to execute the automated method solely rely-
ing on the visual data. Further trials are necessary to

confirm the reliability and robustness of the method
under realistic surgical conditions.
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