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ABSTRACT

The recent discovery of mutations in the gene encoding diacylglycerol kinase ¢ (DGKE) identified a novel
pathophysiologic mechanism leading to HUS and/or MPGN. We report ten new patients from eight un-
related kindreds with DGKE nephropathy. We combined these cases with all previously published cases to
characterize the phenotypic spectrum and outcomes of this new disease entity. Most patients presented
with HUS accompanied by proteinuria, whereas a subset of patients exhibited clinical and histologic
patterns of MPGN without TMA. We also report the first two patients with clinical and histologic HUS/
MPGN overlap. DGKE-HUS typically manifested in the first year of life but was not exclusively limited to
infancy, and viral triggers frequently preceded HUS episodes. We observed signs of complement activa-
tion in some patients with DGKE-HUS, but the role of complement activation remains unclear. Most
patients developed a slowly progressive proteinuric nephropathy: 80% of patients did not have ESRD
within 10 years of diagnosis. Many patients experienced HUS remission without specific treatment, and a
few patients experienced HUS recurrence despite complete suppression of the complement pathway.
Five patients received renal allografts, with no post-transplant recurrence reported. In conclusion, we did
not observe a clear genotype-phenotype correlation in patients with DGKE nephropathy, suggesting
additional factors mediating phenotypic heterogeneity. Furthermore, the benefits of anti-complement
therapy are questionable but renal transplant may be afeasible option in the treatment of patients with this
condition.
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Atypical HUS is a TMA characterized by microan-
giopathic hemolytic anemia, thrombocytopenia,
and renal function abnormalities. Since the discov-
ery of complement involvement in the physiopa-
thology of aHUS, abnormalities have been detected
in several genes encoding proteins implicated in
the alternative complement pathway (AP).! Exces-
sive complement activation may be caused by
gain-of-function in complement factors (genetic
mutations) or loss-of-function in complement
regulatory proteins (genetic mutations or autoan-
tibodies). Aberrant complement activation affects
primarily the renal microcirculation, resulting in
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glomerular TMA. Approximately 60% of patients
with aHUS are diagnosed with a molecular AP
abnormality.?—*
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Table 1. Summary of findings of all DGKE-mediated kidney disease cases reported to date

Patient Characteristics All Patients (n=44) HUS (n=35) MPGN-Like (n=9)
Genetic status, n (%)
Parental consanguinity 21/44 (48) 12/35 (34) 9/9 (100)
Homozygous DGKE mutation 30/44 (68) 21/35 (60) 9/9 (100)
Clear loss-of-function DGKE genotype® 33/44 (75) 24/35 (69) 9/9 (100)
Concurrent complement mutations 3/44 (7) 3/35 (86) 0/9 (0)
First disease manifestation/diagnosis
Median age in yr (range) 0.7 (0.2-17) 0.6 (0.2-4.9)° 2(0.8-17)°
Documented viral trigger, n (%)° 13/44 (30) 13/35(37) —
Proteinuria at onset, n (%) 26/264 (100) 17/17 (100) 9/9 (100)
Nephrotic-range proteinuria, n (%) 21/26 (81) 13/17 (76) 8/9 (89)
Median sCr in mg/dl (range) 2.1(0.2-11.4) 2.8(0.2-11.4) 0.6 (0.3-3)
Need for dialysis, n (%) 22/42 (52) 22/33 (67) 0/9
HUS relapses, n (%)
No. of HUS relapses
None 10/35 (31) 10/35 (31) —
1-2 13/35 (34) 13/35 (34) —
=3 12/35 (34) 12/35 (34) —
Viral trigger documented for at least one HUS relapse 14/25 (56) 14/25 (56) —
Renal status at last documented clinic visit
Age in yr at last follow-up (range) 10 (1-30) 9 (1-25) 19 (2-30)
Any proteinuria, n (%) 36/42 (86) 28/34 (82) 8/8 (100)
Nephrotic-range proteinuria, n (%) 13/42 (31) 8/34 (24) 5/8 (63)
Hematuria, n (%) 24/31 (77) 25/31 (81) N/A
Progression to ESRD, n (%) 10/44 (23) 7/35 (20) 3/9 (33)
Age at ESRD, in yr (range) 12 (0.3-23) 11(0.3-18) 19 (8-23)
Evidence of systemic complement activation documented at any time, n (%) 10/44 (23) 10/35 (29) 0/9 (0)

—, not relevant to patients without HUS episodes; sCr, serum creatinine; N/A, not available.
@"Clear loss-of-function DGKE genotypes” are defined as any combination of two nonsense, frameshift, or splice-site DGKE mutations.

PP<0.05 for difference between subgroups.

“The denominator for this parameter is imprecise because for most patients without documentation of a viral trigger, few clinicians formally documented the

absence of infection.

9Denominators that are discordant with the total number of patients represent the number of patients with available data.

Lemaire et al. recently reported that recessive mutations in
the gene encoding for diacylglycerol kinase & (DGKE) cause
HUS.> DGKE is an intracellular lipid kinase that phosphorylates
diacylglycerol to phosphatidic acid. Current evidence suggests
this novel form of HUS does not require activation of the AP. The
mechanism by which DGKE deficiency in glomerular cells
(endothelia, podocytes) leads to HUS is poorly understood.® A
total of 34 patients with DGKE nephropathy are described in the
literature. Although most patients presented with a clinical and
histologic picture consistent with HUS,”-19 a subgroup showed a
membranoproliferative pattern of glomerular changes without
signs of HUS.!! Here we report ten new patients with DGKE
nephropathy from eight unrelated kindreds, including three
novel pathogenic genotypes. We also provide a comprehensive
analysis of the phenotypic spectrum of DGKE nephropathy on
the basis of all cases reported to date.

RESULTS
Genetic Findings

Recessive DGKE mutations were identified in ten new patients
from eight kindreds with a clinical diagnosis of aHUS (Table 1).
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The complement genes were free of mutations in all patients,
and no anti-CFH autoantibodies or evidence of Shiga-toxin
producing Escherichia coli were uncovered when tested. Con-
sanguinity was only reported for kindred 1. Seven patients were
homozygous and three were compound heterozygous for a to-
tal of six individual genotypes (Table 2). Novel disease-causing
mutations were identified in three kindreds: one originating
from Asia (p.IVS11+2), one from the Arabian Peninsula
(p-K109E) and one from Europe (p.I187Ffs*6). Patient 4.1
is included in this report even though his genotype
(p-T204Nfs*4/p.C167W) was previously reported because the
original publication did not provide a detailed description of
his phenotype.'? In silico analysis'>-18 revealed that the two
missense mutations are predicted to be deleterious (Supple-
mental Table 1) and both loci also display evolutionary conser-
vation at the amino acid levels (Supplemental Figure 1).
Including the patients presented here, 44 patients from 27
unrelated families with DGKE nephropathy have been docu-
mented to date. Parental consanguinity was documented in ten
families. Homozygosity was found in 17, and compound het-
erozygosity in ten kindreds, accounting for a total of 23 distinct
mutations (Figure 1). Three patients also had mutations in
genes associated with aHUS (thrombomodulin or C3).°
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Table 2. Demographic and clinical characteristics of newly described patients with DGKE mutations

ID Kindred _. Age é_,t ex Origin Parental Consanguinity = DGKE Mutations  C Activation Histologic Diagnosis
Diagnosis, yr

1.1 1 0.7 M United Arab Emirates Yes p.K109E/p.K109E No Not done

1.2 1 2.0 M United Arab Emirates Yes p.K109E/p.K109E No Not done

2.1 2 0.3 M Europe No p.W322*/p.W322* No TMA/MPGN

2.2 2 0.2 F  Europe No p.W322*/p.W322* No TMA

3.1 3 4.9 M Europe No p.IVS5+40/p.W322* No TMA

4.1 4 0.5 M  Asia No p.T204Nfs*4/p.C167W No Not done

5.1 5 0.6 F  Asia No p.IVS11+2/p.IVS11+2 Yes Not done

6.1 6 2.0 F  Europe No p.1187Ffs*6/p.W322* Yes TMA

7.1 7 0.4 F Europe No p.W322*/p.W322* No Not done

8.1 8 2.5 M Europe No p.W322*/p.W322* Yes TMA/MPGN

M, male; F, female; C, complement.

Prevalence of DGKE Mutations in Large aHUS Cohorts
We sought to estimate the prevalence of DGKE mutations in
two large pediatric aHUS cohorts that contained kindreds 1, 2,
and 4 (Supplemental Table 2). The analysis yielded an overall
prevalence of 3.1% and 2.0% in the cohorts from Heidelberg
(n=96) and Seoul (n=51), respectively. In both cohorts, genet-
ic abnormalities in any of the genes encoding members of the
AP were about ten-fold more prevalent (30.2% and 19.8%,
respectively).

Clinical Characteristics of DGKE-HUS

Eighty percent (35 of 44) of patients with DGKE nephropathy
had clinical presentation and laboratory investigations that
were consistent with HUS (Supplemental Tables 3 and 4, Table
3). Most patients with DGKE-HUS (30 of 35) had disease

onset in the first year of life (median, 7 months; (95% confi-
dence interval [95% CI], 5 to 8 months; range, 2—59 months).
All initial HUS episodes were accompanied by hypertension
and proteinuria, typically in the nephrotic range (Table 3).
Few prior reports included data for these parameters at disease
onset (Supplemental Table 4). Although two thirds of patients
with DGKE-HUS had AKI requiring dialysis, renal function
returned to normal in all but one patient after the first episode
(patient 8-3 reported by Lemaire et al.> had global cortical
ischemia). Renal biopsy specimens from 20 of 35 patients
with HUS exhibited features consistent with TMA. Relapsing
HUS was documented in 70% (25 of 35) of patients, almost
half of which experienced more than three HUS relapses. Most
relapse episodes were accompanied by nephrotic-range pro-
teinuria. Viral infections were reported as possible triggers for

p.S11* p.R63P p.K109E  p.C167W p.Q248H p.W322* p.P498R
c.32C>A ¢.188 G>C c.325A>G ¢.501C>G c¢.744 G>C c.966 G>A c.1493 C>G
2(1) 2(1) / 17(12) 2(1)
Protein H| | C1L C1L catalytic accessory
4(1) 2(1) 3(1)
c.127 C>T c.301 A>T c.818 G>C ¢.1000 C>T
p.Q43*  p.K101* p.R273P  p.Q334*
p.L24Cfs*145 p.W158Lfs*8 p.V163Sfs*3 p.IVS5-2 p.IVS5-1 p.IVS8-2 p.G484Gfs*10 p.H536Qfs*16

c.71delT c.472InsT c.486|2nslA c.889-2 3;f\>:lG c.889-1 G>A ¢.1213-2 A>G c.1452delG ¢.1608_1609delAC
(1) (1)
mRNA 1 2 3 4 5 6| 7 8 9 10 11
1 1704
2(1) 5(2)
c.559delA c.610delA c.610dupA c.888+40 A<G c.1524+2 T>C
p.I187Ffs*6  p.T204Qfs*6 p.T204Nfs*4 p.IVS5+40 p.IVS11+2

Figure 1. Schematic representations of DGKE protein and mRNA illustrating the relative positions of all pathogenic mutations reported
to date. Novel mutations are highlighted in red. The two mutations of patient 4.1 are underlined because they were recently reportedin a
report that did not include detailed clinical information, which is part of this report. The numbers next to many mutations indicate how
many individual patients have this genotype (number of kindreds). Mutations without an associated number were observed in one
patient. C1L, C1 domains (presumed to bind diacylglycerol); H, hydrophobic domain.
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Table 3. Clinical and laboratory data for the first episode of newly described patients with DGKE
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cyclosporin A,

cyclophosphamide,

vincristine

LDH, lactate dehydrogenase; sCr, serum creatinine; HTN, hypertension; N/A, not available; NR, nephrotic range; Pl, plasma infusions; GE, gastroenteritis; PE, plasma exchange; ACEi, angiotensin-converting

enzyme inhibitors.

the first HUS episode in nine out of ten newly identified pa-
tients, and nearly a third of all patients with HUS. Signs of
complement activation (low C3 and/or increased sC5b-9 lev-
els) at any time during the disease course were documented in
ten out of 35 patients.

Two of these 35 patients with DGKE-HUS (patients 2.1 and
8.1) were notable because their original pathologic diagnoses
were MPGN. No patient or clinical characteristics easily dis-
tinguish these two patients from the others. Both had the most
common pathogenic genotype (p.W322*/p.W322*). Of note,
the two siblings from kindred 2, who have the same genotype,
showed significant differences in both histologic features
(MPGN/TMA versus TMA) and outcomes (preserved renal
function versus rapid ESRD development; Tables 2—4). Rep-
resentative renal histology images are presented in Figure 2
(patient 2.1) and Supplemental Figure 2 (patient 2.2). The
clinical presentation of patient 8.1 is the most unusual. A diag-
nosis of nephrotic syndrome accompanied by hypertension was
posed 1 week before clear findings of aHUS were observed. It is
possible that the relatively late age at diagnosis of this patient (2.5
years) may not accurately reflect disease activity. Indeed, he was
diagnosed with transient erythroblastopenia of childhood 1 year
before because of chronic unexplained anemia.

Patient-level data of the new and previously identified pa-
tients with DGKE-HUS are provided in Supplemental Tables
3—6 and Tables 2—4, respectively. Detailed clinical histories for
all new patients are available in Supplemental Appendix.

We compared various clinical characteristics between pa-
tients with DGKE nephropathy caused by two alleles predicted
to resultin complete loss-of-function (nonsense, frameshift, or
splice-site mutations) to those with other genotypes. No dif-
ferences were found (Supplemental Table 7).

Clinical Characteristics of DGKE-MPGN

The other nine patients, all reported by Ozaltin et al.!' showed
no clinical signs of HUS. All harbored homozygous loss-of-
function genotypes. Patients were from three unrelated con-
sanguineous unions. Renal biopsies were done in all patients
and specimens were read as “MPGN-like.” Patients with
DGKE-MPGN were diagnosed later than those with DGKE-
HUS (median, 2 years; 95% CI, 1.5 to 8 years; range, 0.8-17
years; P<<0.001). All patients had nephrotic-range proteinuria
at diagnosis that persisted long term. Complement investiga-
tions were done for seven out of nine patients and showed no
abnormalities. Patient-level data of patients with DGKE-
MPGN are provided in Supplemental Tables 3—6.

Assessment of Therapies Prescribed and Long-Term
Outcomes

Management was restricted to supportive measures for 16 of 35
patients with DGKE-HUS at disease onset. Renal function
returned to normal for all patients. Six of these patients
(four with relapsing HUS episodes) never received any spe-
cific therapy (e.g., plasma therapy or eculizumab), and five
out of six had normal renal function documented after a

J Am Soc Nephrol 28: eee—eee, 2017
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Figure 2. Renal histology of patient 2.1 shows features of both MPGN and TMA. Light
microscopical changes of affected glomeruli with lobulation of the glomerular tuft,
thickening and double contours of glomerular basement membranes, collapse of the
capillary tuft, and swelling of endothelial cells. One glomerulus shows active TMA
(arrow). (A) Hematoxylin and eosin stain, original magnification, X40; (B) periodic acid-
Schiff stain, original magnification, X40. (C and D) Immunohistochemistry using antibodies
against IgG and C3c shows no specific glomerular staining. Original magnification, X40.
(E and F) Electron microscopy at various magnifications (X2000, X5000) showing
endothelial cell swelling (e) with subendothelial cleft formation (arrow) and capillary
lumen obliteration. Glomerular basement membrane is intact. Podocytes (p) show
enlarged cytoplasm and foot process effacement. No specific osmiophilic deposits
and no fibrils.

median follow-up of 5 years (95% CI, 4 to 13 years; range,
0.5-24 years). The other patient progressed to ESRD 15 years
after the first HUS episode. All six had significant protein-
uria at their last observation. Among the 19 patients with
DGKE-HUS who received HUS-related therapy at disease
onset (immunosuppression, plasma treatment, and/or ecu-
lizumab), one patient did not regain normal renal function
(patient 8-3).

both patients.

J Am Soc Nephrol 28: ese—eee, 2017
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Out of the 29 of 35 patients with DGKE-
HUS who did receive one of the HUS-
specific therapies at any time during the
disease course, detailed information was
available for 16. Acute improvements
were attributed to plasma therapy in ten
out of 16 patients. Regular plasma infusions
were continued for eight patients: four had
no disease recurrences, and four developed
HUS relapses after prolongation of intervals
between plasma infusions that were reported
as responsive to treatment intensification. An
example of intermittent use of plasmapheresis
for patient 4.1 for >8 years since diagnosis is
provided in Supplemental Figure 3.

Three patients were treated with eculi-
zumab at disease onset. Resolution of lab-
oratory evidence of TMA was documented,
along with recovery of renal function in two
patients (patient reported by Miyata et al.®
and new patient 5.1). Regular eculizumab
maintenance infusions were continued in
both patients. The third patient (new pa-
tient 6.1) received only two eculizumab
doses with no effect on laboratory signs
of TMA or renal laboratory indices (details
in Supplemental Figure 4).

Data on eculizumab therapy were avail-
able for three other patients treated for the
first time after the initial HUS episode be-
cause of clinical worsening or persistent,
mild HUS. In one patient (HUS272),° it
was associated with a transient increase in
serum albumin whereas in the other (patient
1.2), no effects were documented. Patient 6-3
was already recovering from a HUS relapse
when eculizumab was started.>

A history of biochemical signs of AP ac-
tivations (typically, mildly depressed C3
levels) was documented in all patients
who received eculizumab except patients
1.2 and 6-3.

The original report by Lemaire et al.
described a patient who developed a HUS
relapse while on eculizumab maintenance
therapy (patient 6-3).> We now describe a
second patient with a similar clinical course

(patient 5.1; details in Supplemental Figure 5). Evidence of
adequate anti-complement therapy was documented for

More aggressive immunosuppressive therapy was adminis-
tered to patients 2.1 and 8.1 because of histopathology consis-
tent with MPGN. A course of steroids was associated with
recovery of renal function in patient 2.1. The sister of patient
2.1 (patient 2.2) was also treated with steroids, with no apparent

Phenotypes of DGKE Nephropathy 5
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Yes

Yes

Tx, kidney transplantation; NR, nephrotic range; HD, hemodialysis; N/A, not available; Pl, plasma infusions; ACEi, angiotensin-converting enzyme inhibitors; ARB, angiotensin receptor blocker; PE, plasma ex-

change.

No

CKD2

20

ACEi

810

improvements: she rapidly progressed to ESRD after the first HUS
relapse. Patient 8.1 received trials of steroids, cyclosporin A, and
cyclophosphamide for persistent nephrotic-range proteinuria,
with no effects. Subsequently, plasma exchange combined with
vincristine, oral steroids, and angiotensin-converting enzyme in-
hibition were associated with attenuation of proteinuria.

All nine patients with MPGN-like phenotype received im-
munosuppressive therapies that were associated with partial
remission in three patients, and complete remission in one
patient.!! At last follow-up (median age, 10 years; median fol-
low-up time, 8.9 years), all patients still exhibited proteinuria.

Four patients with HUS and one patient with MPGN-like
disease received renal allografts; none of them developed post-
transplant recurrence. One patient with DGKE-MPGN report-
ed by Ozaltin et al. died at 4 years, from meningitis.!! Four
siblings of reported patients (indicated in Supplemental Ap-
pendix) died in early childhood from HUS with no genetic
testing or detailed history.

Cumulative Incidence and Renal Survival

The cumulative incidence of all DGKE nephropathy cases is
presented in Figure 3. The actuarial ESRD-free renal survival
for the entire cohort is shown in Figure 4. A total of ten (22%)
patients reached ESRD at a median age of 12 years (95% CI, 1
to 19 years). The 10-year renal survival rate was 80% in all
patients with DGKE nephropathy, 89% in patients with
DGKE-HUS, and 50% in patients with MPGN-like phenotype
(HUS versus MPGN-like phenotype, P=0.37). Split actuarial
survival for HUS and MPGN-like phenotype patients is shown
in Supplemental Figure 6.

DISCUSSION

We describe the largest cohort of patients with DGKE nephrop-
athy. The combined analysis of the ten newly identified cases
with all previously published patients provides convincing ev-
idence that this condition is a genetically and phenotypically
distinct disease entity. However, the larger sample size has
helped uncover findings that deviate from that of the original
reports.

The predominant phenotype of DGKE nephropathy is
early-onset relapsing HUS with chronic proteinuria and
long-term progression to CKD. On the basis of the original
report by Lemaire et al.> and the reports that followed,”1°
DGKE-HUS appeared to be a disease with onset during early
infancy. Aggregated data analysis show that indeed most pa-
tients with DGKE-HUS (86%) are diagnosed within the first
year of life. However, there are now five patients diagnosed
between the ages of 1 and 4 years. On that basis, it would be
helpful to screen for DGKE mutations in all patients with
aHUS, irrespective of age at diagnosis.

Chronic proteinuria is a distinctive feature of DGKE ne-
phropathy. Proteinuria (mostly nephrotic range) was present in all
patients at disease onset, regardless of clinical or histopathologic
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Figure 3. Most patients with DGKE nephropathy are diagnosed
before the age of two. Cumulative incidence of DGKE nephropathy
diagnosis in the cohort of 44 patients (age at first HUS episode or at
diagnosis of MPGN).

findings. Most patients displayed chronic proteinuria that was
present even after resolution of HUS relapses. This degree of pro-
teinuria could result from TMA-induced glomerular damages. The
fact that chronic proteinuria is uncommon in patients with
complement-mediated TMA lesions would suggest a distinct
mechanism, such as primary endothelial and/or podocyte
dysfunction.!® It is unclear if proteinuria contributed to the
development of HUS lesions in these patients. The association
between proteinuric glomerulopathies and HUS was recently
reviewed.!?

One of the most striking differences emerging from the two
original reports>!! is the clear clinical and histologic divide
between patients who exhibit HUS or MPGN-like phenotypes.
Patients with MPGN-like phenotypes were, on average, signif-
icantly older at diagnosis and were all noted to have a chronic
proteinuria glomerulopathy devoid of TMA features.!! All ca-
ses reported since then have linked pathogenic DGKE geno-
types with HUS.7-10 We identified two new subjects (patients
2.1 and 8.1) with histologic signs of MPGN that were diag-
nosed at age 0.6 and 2.5 years, respectively. In contrast to other
patients with MPGN, these patients did exhibit clinical hall-
marks of HUS. It is intriguing to consider that the transient
erythroblastopenia of childhood documented in patient 8.1 at
approximately 1.5 years may have reflected the recovery phase
of an undiagnosed microangiopathic episode. It may be im-
portant to consider testing for renal dysfunction in young chil-
dren with unexplained anemia to rule out the possibility of
subclinical TMA. These new findings of phenotypic overlaps
further expand the clinical and pathophysiologic spectrum of
DGKE nephropathy.

HUS relapses are reported in two thirds of patients with
DGKE-HUS. The relapse rates appear to be highly variable and
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Figure 4. Kaplan-Meier curve of renal survival, defined as pro-
gression to ESRD. The numbers above the x-axis indicate number
of subjects remaining at risk at 5-year intervals.

do notseem to correlate with long-term outcomes (ESRD rates
in two out of ten versus five out of 25 patients without and with
relapses). The detailed analysis of the new patients reported
here revealed a high incidence of viral infections preceding
renal TMA development. Similar to complement-mediated
aHUS,* infectious triggers were previously documented in
some patients with DGKE nephropathy.”-10 The apparently
lower report rates in previous studies may be because of un-
derreporting, variations in host inflammatory responses, or
severity of infections.

DGKE-HUS was initially described as a complement-
independent disorder because no patients had evidence of
systemic complement activation, and one patient had a HUS
relapse whilst on eculizumab therapy.> Importantly, we now
describe a second patient in which eculizumab could not
prevent a HUS relapse (patient 5.1). This notion is supported
by data from recent in vitro studies focusing on the role of
DGKE in endothelial cells.® Including our patients, there are
now ten cases of DGKE nephropathy in which complement
activation of various degrees was documented.”~!% In most
patients, the reduction in plasma C3 levels was modest, and
kidney biopsy specimens did not show C3 deposition. Concur-
rent heterozygous mutations in genes encoding AP components
were found in only two of these patients.” It is interesting to note
that all of these patients were diagnosed with HUS, and none
have developed ESRD. Also of note, most of the patients who
showed signs of AP activation received complement targeting
therapy, which could attenuate the effects of AP activation. It
remains unclear if complement activation defines a subset of
DGKE nephropathy or is a nonspecific secondary finding.

The optimal therapy for DGKE nephropathy is unclear
because anti-complement and other immunosuppressive reg-
imen do not appear to provide benefits. The presumptive
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diagnosis of aHUS or MPGN frequently led to the initiation of
standard complement targeting or immunosuppressive ther-
apies, respectively. It is important to note that 16 patients with
DGKE-HUS who did not receive any specific therapy at disease
onset showed spontaneous recovery from the initial HUS ep-
isode. Furthermore, only one out of six patients with no further
therapy progressed to ESRD. Moreover, 11 out of 12 patients
with DGKE-HUS who did progress to CKD stage 3 and beyond
received specific treatments during their disease course, and
two patients had HUS recurrence while on regular eculizumab
infusions. The absence of differences in long-term outcomes
and spontaneous disease evolution in patients with and without
specific treatment put the value of complement targeting ther-
apiesin question. Disease recurrence after kidney transplantation
is a well known issue for patients with complement-mediated
aHUS, especially if not treated with eculizumab.?? None of the
five patients with DGKE nephropathy that received a renal allo-
graft developed post-transplant disease recurrence to date.

The genotypes of most patients with DGKE nephropathy
are expected to result in a clear loss-of-function phenotype
(nonsense, frameshift, or splice site). By extension, the mis-
sense DGKE mutations identified are predicted to also cause
DGKE deficiencys; this has yet to be demonstrated experimen-
tally. The fact that these missense DGKE mutations span the
entire coding region of the DGKE gene suggests that all func-
tional modules are likely required for normal DGKE protein
enzymatic activity.

No differences were found when comparing various clinical
characteristics of patients with genotypes expected to result in
complete loss-of-function with others. It is also remarkable
that equally damaging recessive mutations were found in pa-
tients with either HUS or MPGN phenotype: complete DGKE
functional deficiency is expected in all patients. Moreover,
obvious intrafamilial phenotypic and outcome discordance
is evident for the two affected siblings from kindred 2 (Tables
3 and 4). Overall, these data strongly suggest that patient-
specific gene modifiers and/or exposure to environmental
triggers may play a major role in defining the pattern of glo-
merular disease expression. DGKE nephropathy is thus an-
other example of a complex Mendelian condition.?!

The recognition of DGKE nephropathy has paved a new
pathway in the understanding of a subset of patients with pre-
viously unexplained HUS and MPGN. It is a heterogenous
glomerular disorder with histopathologic and clinical features
ranging from HUS to MPGN, and displays poor genotype-
phenotype correlations. Optimal treatment remains unclear
and conventional therapies appear to be of questionable ben-
efits. The disease evolves over time to a state of chronic pro-
teinuria that slowly progresses to CKD. Renal transplantation
is a safe option for patients with ESRD because there is no post-
transplant HUS recurrence. The expanding phenotypic spectrum
of DGKE nephropathy suggests a complex disease mechanism
that remains to be elucidated. This expanded cohort is impor-
tant to help refine the prognosis and the range of phenotypes
associated with this condition.
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CONCISE METHODS

Identification of New Patients with DGKE Mutations
The patients with DGKE mutations were identified by either retro-

spective screening of known patients with aHUS or prospective di-
agnostic work-up. The affected patients were identified by pediatric
nephrologists in Germany, Hungary, Poland, United States, United
Arab Emirates, Canada, and South Korea, and referred to aHUS di-
agnostic reference laboratories. Detailed descriptions of each patient
are provided in the online Supplemental Appendix.

All patients were screened for single nucleotide variants and short
indel mutations in genes encoding for complement proteins and reg-
ulators of the alternative pathway (CFH, CFB, CFI, MCP, THBD, and
C3) and DGKE using Sanger sequencing, next-generation sequencing
multigene panel testing, or whole-exome sequencing. CFHR1-3 de-
letions were sought with multiplex ligation-dependent probe ampli-
fication and/or by high-coverage next-generation sequencing. ELISA
was used to detect the presence of anti-CFH autoantibodies.

The pathogenic potential of the novel missense DGKE mutations
was evaluated by assessing the degree of amino acid conservation
across species and by integrating the results of various i silico predictions,
such as PolyPhen-2, SIFT (Sorting Intolerant From Tolerant), Mutation
Assessor, PROVEAN (Protein Variation Effect Analyzer), PANTHER
(Protein Analysis Through Evolutionary Relationships), and CONDEL
(Consensus Deleteriousness).1>~17 A detailed description of the genetic
and immunologic complement system analyses along with details about
Shiga-toxin producing Escherichia coli testing performed on each family is
presented in Supplemental Table 8.

Identification of Previously Published Cases of
DGKE Nephropathy

Previously reported cases were identified by PubMed search (performed in
July of 2016) using various combinations of relevant keywords: “DGKE,”
“Diacylglycerol Kinase Epsilon,” “HUS,” “aHUS,” “TMA,” “Hemolytic
Uremic Syndrome,” “Thrombotic microangiopathies,” “Membranoproli-
ferative GN,” and “MPGN”, Genetic, clinical, and laboratory data of all

previously reported cases were extracted from relevant articles, as available.

Statistical Analyses
Distribution-free 95% CIs were calculated for medians of non-nor-

mally distributed data. Group comparisons were performed using Mann—
Whitney and chi-squared tests. Statistical analysis was performed with
SigmaPlot software, version 13.0 (Systat Software, San Jose, CA) and SAS
software, version 9.3 (SAS Institute Inc., Cary, NC).

Survival Analyses
Kaplan—Meier actuarial survival analysis and log-rank test was used

to calculate and compare renal survival, defined as progression to
ESRD. Time zero for the survival analysis was defined as age at first
HUS episode or clinical MPGN diagnosis.
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