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Abstract Given Jordan’s limited water resources and the doubling of its population over the

last two decades, the gap between water demand and supply has been constantly increasing.

Climate change is anticipated to worsen this situation by jeopardizing existing water resources.

In the present study, SWAT was used to assess the impacts of climate change on water

resources in the northern regions of Jordan. Global climate models (GCM) were used to assess

the future impacts of climate change on water resources in the study area. The analyses of three

different GCM-generated datasets indicate that stream flow rates are expected to decrease by

up to 22 % by the year 2080. This decrease will be particularly severe in the months of

maximum peak flow (February and March), perhaps reaching as much as 35–40 %. A minor

increase in stream flow rates is expected to occur in some months. Based on these results,

impacts of climate change are projected to raise water deficits in Jordan. Therefore, it is crucial

to review Jordan’s 2008–2022 National Water Strategy.

Keywords Climate change impacts � Water resources � SWAT � Jordan � Stream flow �
Surface hydrology

1 Introduction

With a current 110–150 m3 year-1 per capita share of all-purpose water, compared to the

international water poverty line of 1000 m3 year-1 per capita, Jordan is the fourth poorest

country in the world in terms of water resources (World Bank 2013). Water availability has

declined from 3600 m3 year-1 per capita in 1946 to 145 m3 year-1 per capita in 2007
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(MWI 2009). Water for irrigation, in particular, represents 71 % of the water demand and

64 % of the water supply. Groundwater in Jordan having been overexploited for agricul-

tural uses in the last two decades has resulted in a 151 9 106 m3 deficit in 2007 (MWI

2009).

The relatively high and rising consumption of available water resources over the last

two decades is linked to the population growth rate, which reached about 2.5 % in 2012

(DOS 2013) and added population growth due to unexpected geopolitical changes. For

instance more than 1 million people were relocated to Jordan after the Second Gulf War in

1990. Furthermore, more than 1.5 million Syrian refugees have crossed the borders due to

the current war in Syria. All these factors have imposed a substantial added pressure on

already strained water resources resulting in unexpected increases in water demand.

According to Jordan’s Water Strategy for the years 2008 to 2022 (MWI 2009), the deficit

in the available water resources was approximately 45 % in 2005 (Table 1), while the pro-

jected deficit in 2022 is expected to be around 30 %. This assumes that additional sources of

water will be discovered and exploited and some mega projects will be implemented. Such

projects include so-called Red-Dead Canal that would connect Red Sea with Dead Sea,

another project is desalination, and also water harvesting projects are planned.

International studies, including reviews by the Intergovernmental Panel on Climate

Change (IPCC 2000), have reported that arid areas, semi-arid areas and those currently

suffering a scarcity of water resources (e.g., North Africa, the Middle East, and in particular

Jordan) will be subject to even greater water deficits in the future, not only in terms of

quantity, but also in terms of quality (IPCC 2008). Earlier regional and local studies relying on

past weather records have shown an increase in mean temperatures and in the magnitude and

frequency of extreme temperatures events (IPCC 2008). The IPCC Technical Report on

ClimateChange andWater Resources (2008) presents records and climate projections, which

provide abundant evidence that climate change impacts threaten freshwater resources, and

outlines how these might have wide-ranging consequences for human societies and

ecosystems. Such climate change would also affect the function and operation of existing

hydrological infrastructure, including hydropower, structural flood defenses, irrigation and

drainage systems, as well as require updated water management practices.

A number of studies conducted in Jordan have sought to assess the potential impacts of

climate change on the nation’s water resources. In 1997, the First National Communication

Table 1 Water Budget for Jor-
dan (MWI 2009)

Year 2005 2010 2015 2022

Available resources (MCM)

Ground water 259 259 259 259

Surface water 382 404 419 433

Reclaimed water 34 69 89 101

Others 344 511 454 456

Total 1019 1244 1220 1250

Required demands (MCM)

Urban, Industrial 433 493 561 634

Agriculture 1114 1120 1101 1052

Return flow from groundwater 66 63 62 63

Deficit -461 -306 -371 -373

Deficit % 45 25 31 30
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Report to the United Nations Framework Convention on Climate Change (UNFCCC)

under the theme of ‘‘Vulnerability and Adaptation to Climate Change’’ was published

(GCEP 1997). In this report, simulations of future monthly water balance components,

derived with the Surface-Infiltration-Base Flow model, showed that temperature increases

would lead to lower annual mean and peak stream flows, although the timing of peaks

would remain largely unaltered.

Jordan’s Second National Communication to the UNFCCC (MEJ-UNDP, 2009) out-

lined the analysis of potential impacts of climate change on hydrological systems and water

resources using the WEAP (Water Evaluation and Planning System) hydrological model.

The analyses showed that, in general, across several possible future climate scenarios,

stream flow rates would be strongly affected, dropping by as much as 30 % within the next

50 years, when assuming a 20 % drop in precipitation and 2 �C rise in temperature. By

2050 a 20 % drop in flow rate would be expected in the rainy months of January and

February, within the next 50 years, March flow rates might be expected to drop by 40 %.

Jordan’s Third National Communication on Climate Change was released in 2014.

According to this Report, the impact of the increased evaporation and decreased rainfall

will result in less recharge and therefore less replenishment of surface water and

groundwater reserves (MoEnv 2014).

According to the 2009 Arab Environment: Climate Change report (ADEP 2009), which

described the potential impacts of climate change on water resources in Arab countries,

anthropogenic problems, attributed the worsening situation in Jordan to the widespread

construction of dams, unsustainable irrigation practices consuming 50 % in excess of

Jordanian water resources, as well as high rates of human water consumption. The

expected effects of climate change are likely to exacerbate this situation. With continuing

increases in temperature, water flow in the Euphrates and Jordan rivers are predicted to

decrease by 30 and 80 %, respectively, by the year 2100.

A study of Lioubimtseva and Henebry (2009) conducted to assess climatic and envi-

ronmental changes in arid Central Asia, found that aridity was expected to increase across

the entire Central Asian region, and particularly in the western portions of Turkmenistan,

Uzbekistan, and Kazakhstan. Temperature increases were projected to be particularly high

in the summer and fall, accompanied by decreases in precipitation (Lioubimtseva and

Henebry 2009). A similar study on the impacts of climate change and anthropogenic

alterations in land-cover on arid lands in central Asia, found that such alterations could

significantly modify surface albedo, water exchange and nutrient cycles, and, in turn,

influence both regional and global climatic systems (Lioubimtseva et al. 2005).

There is a strong necessity for further research into the possible impacts of climate

change on water resources in Jordan. As such, the present study aims at assessing the

impacts of climate change on water resources, by using the Soil and Water Assessment

Tool (SWAT) model to simulate one of the most important watersheds in Jordan (Yarmouk

Basin) under different future climate scenarios.

2 Study area

The Yarmouk River basin spans the northern part of Jordan and southern part of western

Syria, emptying into the Jordan River near Adasiyia, Jordan (Fig. 1). The river thus drains

flood and base flows from both Jordanian and Syrian territory. The river’s total catchment

area covers 6790 km2. Among these, only 20 % of this total area are located within
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Jordan’s area (MEJ-UNDP 2009). Based on data from the Earth Remote Sensing Data

Analysis Center (ERSDAC), elevation ranged from -328 m at the outlet of the Yarmouk

Basin to 1786 m in the western highlands.

Yarmouk Basin has the semiarid climate of the Mediterranean Sea region with a limited

amount of rainfall and high temperatures. The mean annual rainfall is about 410 mm, while

mean annual temperatures is about 18 �C, respectively (Rakad et al. 2007).

About 60 % of the Yarmouk basin’s agricultural lands are rainfed, and 20 % are irri-

gated. Roughly 11 % of the basin area is open rangeland, 6 % is urbanized, and 2 % is

protected as a natural reserve. Due to over-pumping of groundwater and the construction of

dams in Syria’s portion of the basin, the river witnessed a sharp drop in base flow in

Jordan’s northwest, during the late 1990s and early 2000s. Currently, the summer base flow

of this river is about 158 MCM (MoEnv 2009).

3 Methodology

Climate, topography, soil and land use data were collected and downloaded to allow the

calibration and validation of the GIS-assisted ArcSWAT model based on current condi-

tions in the basin (i.e., baseline scenario). The three Global Climate Model (GCM) models

best suited to the study area served to provide separate predicted climate data under

different land management options for the ArcSWAT model. The validated SWAT model

and using future climatic data will provide an assessment of the impacts of climate change

on water resources of the study area.

The adopted methodology to achieve this study objective is illustrated in Fig. 2.

Fig. 1 Geographical location of the Yarmouk River Basin within Jordan
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4 Data collection

Different data sets were collected, including:

a) Digital Elevation Model (DEM): A DEM was downloaded from the Earth Remote

Sensing Data Analysis Center (ERSDAC) website (http://www.gdem.aster.ersdac.or.jp/).

The data were of the ASTER GDEM type, with a spatial resolution of 30 m (Fig. 3).

b) Soil Data: Soil information was obtained from Ministry of Agriculture for the study

area. A soil texture map with five soil groups was prepared including Clay Loam

(CL), Clay (C), Silty Clay (SiC), Silty Clay Loam (SiCL) and Silty Loam (SiL) as

defined by USDA soil classification nomenclature (Fig. 4).

c) Landsat ETM ? Imagery: This imagery served in visual and digital interpretation to

obtain land use information for the study area. Two Landsat scenes were downloaded

from the USGS Earth Resources and Science Center (EOS) (http://glovis.usgs.gov/).

PCI Geomatica was used to perform supervised classification for the downloaded

Landsat ETM ? Images. As a result, Yarmouk basin was classified into five major land

use types (Fig. 5), these are (1) Rangeland, (2) Rain fed agriculture, (3) irrigated

agriculture (4) Urban, and (5) Water Bodies. The western and the northwestern portions

of the study area house over 90 % of the basin’s agricultural activities and vegetation.

Agricultural lands, forested lands and pasturelands are concentrated in the western part

of Yarmouk basin. Significant urban areas can be found in the northwestern portion of

the Yarmouk basin (e.g., Irbid City, the second largest city in Jordan, as well as the city

of Ramtha city). Barren lands can be found in the eastern portion of the basin.

Fig. 2 Methodology adopted to assess the impacts of climate change in Jordan’s Yarmouk River basin
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d) Meteorological Data: This included daily precipitation, temperature, and stream flow

gauges for calibration purposes. Figure 6 shows the different gauges used in this

study.

Fig. 3 ASTER GDEM-derived elevation map for the Yarmouk River basin

Fig. 4 Soil classification map for the Yarmouk River basin based on texture (C Clay, CL Clay Loam, SiC
Silty Clay, SiCL Silty Clay Loam, SiL Silty Loam)
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e) General Circulation Models (GCM) Data: GCMs are numerical models representing

physical processes in the atmosphere, ocean, cryosphere and land surface. These

models are the most advanced tools currently available for simulating the response of

Fig. 5 Land use/land cover map for the the Yarmouk River basin, based on Landsat ETM? image dated
April 2002

Fig. 6 Precipitation, temperature and surface flow gauging stations in the Yarmouk Basin
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the global climate system to increasing greenhouse gas concentrations (IPCC 2008).

Three types of GCM data sets were downloaded and used in this study.

5 Hydrological modeling using SWAT

The Soil and Water Assessment Tool (SWAT), a watershed-scale simulation model

developed by the United States Department of Agriculture—Agricultural Research Service

(USDA-ARS), was developed to predict the impact of land management practices on

water, sediment and agricultural chemical yields in large, complex watersheds with

varying soils, land use and management conditions, over long periods of time. The model

is physically-based and rather than incorporating regression equations to describe the

relationship between input and output variables, SWAT requires specific information about

weather, soil properties, topography, vegetation, and land management practices occurring

in a watershed (Neitsch et al. 2005). The physical processes associated with water

movement, sediment movement, crop growth, nutrient cycling, etc. are directly modeled by

SWAT, using the input data. A continuous-time model (i.e., a long-term yield model),

SWAT is regularly updated, the latest version having been released in 2009 (SWAT 2009).

ArcSWAT is an ArcGIS-ArcView extension and graphical user input interface for the

SWAT model (Neitsch et al. 2005). ArcSWAT facilitates the preparation of all the required

input files to run the SWAT model and to extract the output results to project databases,

and display them.

The hydrologic cycle as simulated by SWAT is based on the water balance equation:

SWt ¼ SWo þ
Xt

i¼1

ðRday � Qsurf � Ea � wseep � QgwÞ ð1Þ

where t time (days), wseep quantity of seepage, i.e., water entering the vadose zone from the

soil profile on day i (mm H2O), Ea quantity of evapotranspiration on day i (mm H2O), Qgw

quantity of return flow on day i (mm H2O), Qsurf quantity of surface runoff on day i (mm

H2O), Rday quantity of precipitation on day i (mm H2O), SWt final soil water content (mm

H2O), SW0 initial soil water content, day i = 0 (mm H2O).

SWAT has been widely used to assess the impacts of climate change on water

resources. Wang et al. (2012) have used SWAT to assess the impact of climate change on

stream flow in the arid Shiyang River Basin of northwest China. This study reveals that

mean monthly stream flow in the Shiyang River Basin would increase in the 2020s, 2050s

and 2080s by between 0.7 and 6.1 % at the Zamu gauging station, and by 0.1–4.8 % at the

Xiying gauging station. Monthly minimum streamflow were expected to increase persis-

tently; however, while they increased in the 2020s, they subsequently decreased slightly in

the 2050s and 2080s. Abouabdillah et al. (2010) also using SWAT, modelled the impact of

climate change in a Mediterranean catchment (Merguellil, Tunisia). The main results from

this study indicated severe impacts on available water resources as a result of increased

temperature and reduced rainfall. Furthermore, the model predicted more intense drought

events.

Ashraf et al. (2013) used SWAT to analyze the impact of climate change on water

resource components, drought and wheat yield in a semiarid region: the Karkheh River

Basin in Iran. Their study showed an increase of up to 25 % in both frequency and length

of dry periods in the study area, whereas increasing flood events could be expected in the
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northern and western parts of the region. Authors concluded that the impact of climate

change would vary across the region, with some areas experiencing net negative impacts

and others net positive impacts.

These studies indicate that SWAT model was efficient in simulating hydrological

process in arid and semi-arid areas. Furthermore, SWAT was applied successfully in these

studies to assess the impacts of climate change on water resources. However, and to ensure

a successful implantation of SWAT, results always should be verified against measured

observation from the field, as for example, measured stream flow values from stream flow

gauges.

SWAT provides two methods for estimating stream flow rate: the SCS (Soil Conser-

vation System) curve number procedure (SCS 1972) and the Green and Ampt infiltration

method (Green and Ampt 1911). Due to data availability constraints, the SCS curve

number was used in this study.

Baseline was created by using ArcSWAT. The time domain for the baseline scenario

extends from 1/1/1972 to 31/12/1999. This period contains dry, wet, and normal flood flow

years. For calibration purposes, the period from 1/1/1972 to 31/12/1990 was used, while

the period from 1/1/1991 to 31/12/1999 was used for validation purposes. The SWAT

model contains a large number of parameters generally drawn or estimated from the

ArcSWAT database. Sensitivity analysis was performed to consider the most sensitive

parameters for calibration process (Table 2).

Calibration was performed using monthly observed flow data measured at station

AD0033 located in the downstream portion of the basin. The results of the automated

calibration of SWAT (Fig. 7) show a good match between simulated and observed monthly

surface flows. The mean monthly simulated flow for the calibration period (1972–1990)

was 5.1 m3 s-1, which is similar to the observed mean stream flow during this period.

Simulation results for the validation period (1991–1998) on a monthly (Fig. 7) and annual

basis (Fig. 8) show a good match.

To better judge the quality of the calibrated model’s output, the model performance

statistics of root mean square (RMSE) and Nash–Sutcliffe model efficiency coefficient

(NSE) were calculated. The RMSE represents the average magnitude of model errors when

comparing predicted and observed values (Everitt 2002), but does not give any information

on the direction of the error (i.e., over- vs. under-estimation). RMSE is given as (ArcGIS 10

Geostatistical Analyst Manual):

Table 2 Parameters used in SWAT model calibration

Name Definition Estimated
value

Calibrated
value

Units Possible
range

Min Max

CN2 Curve number 80.1 82.6 – 0 100

SOIL_ALB Moist soil albedo 0.21 0.81 – 0 1

EPCO Plant uptake compensation factor 0.41 0.95 Inches 0 1

ESCO Soil evaporation compensation factor 0.099 0.1200 Inches 0 1

SOIL_K Saturated hydraulic conductivity 0.9100 0.9100 mm/hr 0 2000

CANMX Maximum canopy storage (mm H2O) 0.186 0.27 mm 0 2.5

REVAPMN Threshold depth of water in the
shallow aquifer

0.13 0.65 mm -1 1
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RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðXobs;i � Xmo del;iÞ2

n

s

ð2Þ

where i represents an increment of time or place, n is the total number of observed or

modelled values, Xobs, i is the ith observed value, in this case discharge, and Xmodel, i is the

ith modelled value for discharge.

The RMSE can range from 0 to ?, with 0 being a perfect score. The RMSE value was

0.25 for the calibration period and 0.28 for the validation period. Figure 9 shows simple

correlation coefficients between simulated and observed time series (both for the cali-

bration and the validation periods). As seen from this figure, the correlation coefficient (R2)

between these values is about 0.9 which indicates a high correlation between simulated and

observed stream flow values.

The Nash–Sutcliffe efficiency coefficient (NSE), commonly used to assess the predic-

tive accuracy of hydrological models, is given as (Nash and Sutcliffe 1970):

NSE ¼ 1 �

PT

t¼1

ðQt
o � Qt

mÞ
2

PT

t¼1

ðQt
o � QoÞ2

ð3Þ

where Qt
o is the observed discharge at time t, Qt

m is the modeled discharge at time t, Q0 is

the mean observed discharge, and T is the number of observed (and thus modeled) dis-

charge values.

The NSE can range from -? to 1, where NSE = 1 represents a perfect match of

modeled to observed discharge. NSE = 0 represents a case where the models performs no

better than using Q0 as the predicted value for all predicted values, and increasingly

negative NSE values represent increasingly poor model performance. Values of NSE were

0.91 for the calibration period and 0.86 for the validation period, indicating that the

simulated values match the observed values quite well.

6 Assessment of climate change impacts on water resources

To assess the impacts of climate change on water resources in the Yarmouk basin, the

Global Climate Model (GCM) was used to generate future climate data records.

Fig. 7 Simulated (blue) and observed (red) total monthly flows in the Yarmouk Basin for the SWAT
model’s calibration (1972–1990) and validation (1991–1998) periods
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Climate change scenarios describe plausible future changes in terms of climate variables

which are usually compared to baseline (current) climate conditions. The most common

approach to derive climate change scenarios is to make use of one of three types of

increasingly complex climate model outputs: (i) Simple Climate Models, (ii) General

Circulation Models, or Global Climate Models (GCMs) or (iii) Regional Climate Models

(RCMs). In this study, temperature and precipitation outputs of 13 GCMs over the period

of 1961–2005 were downloaded from the Canadian Climate Change Scenarios Network

website (http://www.cccsn.ec.gc.ca/). According to Jordan’s Second National Communi-

cation to the United Nations Framework Convention on Climate Change (MEJ-UNDP,

2009), there are three GCM models that best match Jordan’s climatological records. These

include the (i) CSIROMK3 model developed by the Commonwealth Scientific and

Industrial Research Organization (CSIRO), Australia, (ii) ECHAM5OM model, the 5th

generation of the ECHAM general circulation model developed by the Max Planck

Institute for Meteorology, Germany, and (iii) HADGEM1, the Hadley Center Global

Climate Model, developed in the UK. For these three models SRES A2 climate models

scenarios were used where regional economic development, high population growth and

slow technological change are assumed (IPCC 2010). Future climate data from these

models were downloaded on daily time scale to cover the period from 2010 to 2060.

Daily precipitation, minimum and maximum temperature data from these three models

where downscaled using a Statistical Downscaling Model (SDSM), a decision support tool

developed to assess local climate change impacts, using a robust statistical downscaling

technique (Wilby and Dawson 2004).

Figure 10 shows a comparison of predicted mean monthly temperature using three GCM

models against mean monthly measured temperature at Yarmouk Basin (MEJ-UNDP 2009).

7 Results and discussion

Global Climate Models were used in this study to generate future climate records for the

next 50 years (2010–2060) for the Yarmouk basin study area. These data were used as

inputs to the calibrated and validated SWAT model to assess the impacts of climate change
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on water resource of the study area. Each GCM scenario generated one set of stream flow

predictions for the Yarmouk basin.

The three GCM models’ simulated stream flows were compared directly (Fig. 11) and

on a percentage basis (Fig. 12) to those under the baseline scenario. Despite using three

different GCM climate models, similar results were obtained. Various magnitudes of

decline in surface flow rates were expected in different months. The CSIROMK3 model

predicts a major decrease in stream flow rates in February (about 41 %), 37 % in March,

18 % in December and 13 % in January. The model also predicts an increase in stream
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flow in November (2 %) and October (7 %). The net change for rainy months according to

this model is 24 % decrease in stream flow rates. For the German model, ECHAM5OM,

results similar to those of the CSIROMK3 model were obtained, except for October and

November, where the model expect a decrease in stream flow rates with 10 %. The

maximum drop is also expected in February (also roughly 40 %). For the entire rainy

season, the net flow is projected to drop by 22 %. For the British model, HADGEM1,

projected results are more catastrophic. For February, 50 % of the flow rates will decrease.

For March, the three GCM models combined predict a drop in stream flow of 30 %. The

HADGEM1 model predicted a 16 % rise in flow in October. Across the three GCMs

maximum drops in the surface flow rates are expected for February and March (45 and

35 % respectively). A minor (\5 %) increase is expected in October and November. The

three models projected that the net flow will drop by 22 % for the entire rainy season.

8 Conclusion

Given Jordan’s limited water resources, the critical of water resources situation in Jordan

could become even more complicated in consequence of the potential impacts of climate

change. This study aims at assessing the impacts of climate change on water resources for

one of the most important watersheds in Jordan, the Yarmouk Basin. To achieve this

objective, the SWAT model was used along with ArcGIS software.

The baseline SWAT model was calibrated using observed data obtained from a runoff

gauge station in the basin. The calibrated model’s accuracy was tested using the RMSE and

NSE statistics, showing the model outputs to closely match the observed flow values.

Future climatic data were required to assess the impacts of climate change on water

resources in the Yarmouk Basin.

To assess the impacts of climate change of surface flow rates of the study area, three

GCM models were used to supply SWAT climatic input data: CSIROMK3, ECHAM5OM

and HADGEM1. Future flow rates were predicted to drop by an average of 22 % across the

three GCMs. Such a situation would increase the stress on the already highly stressed water

resources in Jordan.

In light of this, it is necessary to revise Jordan’s current water budget (Table 1) to

consider these changes in the budget. Furthermore, it is indispensable for Jordan to

reconsider policies and strategies to assist the country adapt to the impacts of climate

change and to reflect on these strategies and policies in the context of Jordan’s National

Water Strategy which was initiated in 2008 and involves planning through 2022.

As shown in this study, SWAT is an effective multi-purpose tool that could be used in

assessing of climate change impacts on water resources. Therefore, SWAT is recom-

mended in future studies of other watersheds in Jordan with different characteristics. This

will help planners and decision-makers in Jordan’s water sector and in adjacent countries

to better manage their water resources while taking into account the varied impacts of

climate change. It is suggested that in future studies in Jordan, SWAT be linked with other

water management tools (e.g., WEAP or STELLA- modeling and simulation software).

Through such links, SWAT would provide these tools with the necessary inputs by using

different climate change scenarios.
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