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Abstract GPS compasses equipped with short baselines can provide precise heading and

elevation information for land vehicles. Most recent research in this area has focused on

developing single-frequency, single-epoch ambiguity resolution, as the ambiguity resolu-

tion in a single epoch can guarantee total independence from carrier phase slips and lock

losses. The reliability of single-frequency, single-epoch ambiguity resolution, however, are

often insufficient for actual applications due to the weak baseline model. For land vehicle

applications, baseline elevation can also be measured by inclinometer, which provides an

important constraint that can be exploited to directly assist the ambiguity resolution pro-

cess. In this study, we developed an innovative method that fully integrates MEMS-based

inclinometer measurements into single-difference GPS observation equations and obtains

the fixed baseline solution via weighted constrained integer least squares. We then

explored the performance and effectiveness of the proposed method by building an inte-

grated GPS/inclinometer compass system (IGICS) with low-cost GPS receivers (U-Blox

LEA-6T) and a MEMS-based inclinometer (SCA-100T). Both actual static and dynamic

experiments demonstrated that our method is capable of successfully fixing the set of

integer ambiguities to the correct value for land vehicles equipped with very short base-

lines. The proposed method is also more easily implemented than the traditional aug-

menting scheme with rate gyros and IMU, as evidenced by a comparative experiment

conducted using three approaches: (1) the new method; (2) horizontal constraint without

inclinometer measurements; and (3) exploiting inclinometer measurements without

imposing horizontal constraints.
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1 Introduction

In low-cost land vehicle applications, the navigation system needs not only accurate

position and velocity information, but precise heading information. In recent decades, the

two most common types of heading indicators have been the magnetic compass and the

gyrocompass—the accuracy of the magnetic compass is affected by magnetic field

intensity nearby the equipment, however, and the gyroscope suffers from error drift (King

1998). More recently, the global positioning system (GPS) compass has been widely used

in attitude determination, favored for advantages such as long-term and stable accuracy

(Tu et al. 1997; Park et al. 1997). To realize this technique, two antennas are attached to a

vehicle, then the baseline between two antennas is estimated with a differential approach.

As such, there are no natural directional constraints. In order to make differenced carrier

phase measurements act as high-precision relative distance measurements, the carrier

phase integer ambiguity must be successfully resolved thus allowing a baseline solution

with a comparably high precision as well as highly precise attitude determination (Teu-

nissen et al. 2011a). Parameterizing the phase ambiguities when there are cycle slips

(Shirazian et al. 2011), however, poses a significant challenge during GPS data processing.

For most land vehicle navigation applications, due to lock loss and noise disturbance, cycle

slips rather often occur and, if repaired incorrectly, affect all subsequent observations (Kim

and Langley 2002; Leick 2004; Karaim et al. 2013; Gao et al. 2015). To this effect, they

may decrease the continuity of the entire attitude determination system in difficult

environments.

Attitude determination in single epoch may be a way to effectively address this prob-

lem, because it uses only instantaneous carrier-phase measurements with ambiguity

function values that are insensitive to changes in the entire cycle of the carrier phase.

Single-frequency GPS receivers already are commonly used in this type of application, as

well, because they are low in cost and readily available. Successfully and efficiently

performing integer ambiguity resolution for single-frequency single-epoch cases is of

considerable practical significance, as it can improve continuity in difficult environments.

In general, the reliability of ambiguity resolution is defined by the probability of correct

integer ambiguity estimation, i.e., the so-called ambiguity success rate (Teunissen and

Odijk 1997), which is, in essence, determined by the strength of the underlying GNSS

model; the stronger the model, the higher the success rate. Recently proposed approaches

have made use of the Constrained (C-) LAMBDA method to improve the strength of the

single-epoch GNSS model (Teunissen 2007; Buist 2007; Park and Teunissen 2009; Teu-

nissen et al. 2011a; Chen and Qin 2012; Buist 2013), because as it applies to nonlinear

constrained models, it is therefore nearly optimal for the GPS attitude determination

problem because baseline length is typically known in advance (Teunissen 2010). The

rigorous inclusion of the baseline length constraint into the ambiguity objective function

has resulted in dramatic improvements in success rates.

In fact, to further improve ambiguity resolution success rate, any other baseline con-

straint in addition to length can be exploited to directly aid the ambiguity resolution

process and decrease the ambiguity search space. For example, in any multiple-antenna
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attitude determination scheme, the geometrical constraint of multiple baselines provides a

very strong constraint for augmenting the weak baseline model (Hide et al. 2007; Giorgi

et al. 2010; Teunissen et al. 2011b; Giorgi et al. 2012). The necessary multiple auxiliary

receivers and antennas increase system cost, however, limiting the use of this type of

scheme in land vehicle applications. Recent studies have integrated inertial and magnetic

field sensor measurements into the GPS attitude determination model in order to utilize

multiple constraints to decrease the ambiguity search space (Gebre-Egziabher et al. 1998;

Li et al. 2006, 2012; Roth et al. 2012; Eling et al. 2013; Zhu et al. 2013, 2014). For

example, Zhu et al. (2013) applied rate-gyro-constraints to filter the candidates in the

ambiguity search stage, resulting in high ambiguity search success rates after efficiently

shrinking the search space.

The MEMS-based inclinometer, a relatively simple inertial sensor used in land vehicle

applications, can also provide elevation measurements with very high sampling rate.

Assuming that the measuring axis of the sensing element is parallel to the mounting plane

and the GPS baseline vector, the real-time elevation of the baseline vector can consistently

obtained independent of GPS carrier phase measurements; the vector then serves as a

constraint that effectively shrinks the ambiguity search space. The MEMS-based incli-

nometer also is a cheap, readily available, and relatively small device that can be easily

equipped to the GPS compass system to provide real-time elevation constraint. To make

the best of this additional auxiliary information, we fully integrated the constraint into the

ambiguity resolution estimation process with a proper weight so that the ambiguity fixed

solution could be obtained by weighted constrained integer least squares (ILSs) (Teunissen

2010). Compared to the augmenting scheme with rate gyros and IMU, the proposed

method is theoretically cheaper and more easily implemented; further, both static and

dynamic experiments verified its effectiveness and feasibility.

2 Single-epoch ambiguity estimation with real-time elevation constraint

2.1 Model using approximate geodetic horizon plane constraint
and inclinometer measurements

For two nearby antennas A and B, the single-differenced (SD) carrier phase and code

observation equations on band L1 of GPS satellite i can be modeled as follows:

k1 /i
AB þ aiAB

� �
¼ riAB þ c dtA � dtBð Þ þ c ddA � ddBð Þ þ viAB

qiAB ¼ riAB þ c dtA � dtBð Þ þ c ddA � ddBð Þ þ liAB
ð1Þ

where k1 is the wavelength of L1 carrier, /i
AB and aiAB denote the SD fractional phase and

integer ambiguity, respectively, qiAB denotes the observable SD code, viAB and liAB
respectively denote the SD phase and code observable noise, riAB is the SD geometric range

of two receivers for satellite i, dtA and dtB are clock biases of receiver A and B, ddA and ddB
are hardware delay biases of receiver A and B on band L1 (Buist 2013), and c is the

velocity of light.

The baseline length is very short, as it is assumed to have a sufficiently small size (e.g.,

\100 m) in relation to the high altitudes of GPS satellites (about 20,000 km), and the lines

of sight (LOSs) are approximately parallel for both antennas (Cohen 1992). Thus, the SD

geometric range of two antennas for satellite i can be considered a projection of the

baseline in the LOS direction:
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riAB ¼ si
� �T

b ð2Þ

where si ¼ siE siN siU
� �T

is the normalized line-of-sight vector and b is the baseline

vector, which in the local east-north-up frame can be expressed using the heading w,

elevation h, and baseline length l as follows:

b ¼
bE
bN
bU

2

4

3

5 ¼
l cos h sinw
l cos h cosw
l sin h

2

4

3

5 ð3Þ

With (2), the SD carrier phase and code measurement equations can be modeled as:

k1 /i
AB þ aiAB

� �
¼ siEbE þ siNbN þ siUbU þ bþ viAB

qiAB ¼ siEbE þ siNbE þ siUbU þ bþ liAB
ð4Þ

where b ¼ c � dtA � dtBð Þ þ ddA � ddBð Þ½ �. Note that the baseline coordinate bU can be

parameterized with baseline length l and elevation angle h, which can be measured by the

MEMS-based inclinometer. Measurement angle a is given as:

a ¼ hþ Dþ wa;wa �N 0; r2
a

� �
ð5Þ

where r2
a denotes the variance of measurement white noise wa and D denotes install error

and non-linearity error. Assuming that the measurement axis of the MEMS-based incli-

nometer is parallel to both the mounting plane and the baseline, install error can be

neglected; non-linearity error size is dependent on the extent of tilt, i.e., the smaller the tilt

angle, the smaller the non-linearity error.

For land vehicle applications, the baseline approximately lies in the plane of the local

geodetic horizon (Chen and Qin 2012) meaning that elevation angle h is often close to

zero, so sin h � h; cos h � 1. In this case, the non-linearity error of the MEMS-based

inclinometer is small enough for most land vehicle applications (\0.1� for SCA-100T, for

example.) The expectation of output measurements a is thus equal to elevation h. See the

following equation:

a ¼ hþ wa;wa �N 0; r2
a

� �
ð6Þ

In addition, for a land vehicle equipped with a high-accuracy inclinometer, the following

expression is essentially correct:

sinwa � wa; coswa � 1 ð7Þ

and the next two approximate mathematical expressions can be obtained by exploiting

Eqs. (3) and (7):

l sin a ¼ l sin hþ wað Þ ¼ l sin h coswa þ l cos h sinwa � bU þ lwa ð8Þ

l cos a ¼ l cos hþ wað Þ ¼ l cos h coswa � l sin h sinwa � bHk k � lhwa ð9Þ

where bH ¼ l cos h sinw l cos h coswð ÞT
denotes the baseline projection in the local

geodetic horizon plane and its length bHk k is equal to l cos h. With Eq. (8), the SD carrier

phase measurement equation and SD code measurement equation can be modeled as

follows:
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/k
AB �

l

k1

skU sin a

� �
¼ 1

k1
skE skN 1
� �

bE

bN

b

2

64

3

75� akAB þ
1

k1

vkAB þ
1

k1

skUlwa

� �

1

k1

qkAB �
l

k1

skU sin a

� �
¼ 1

k1
skE skN 1
� �

bE

bN

b

2

64

3

75þ 1

k1

lkAB þ
1

k1

skUlwa

� �
ð10Þ

For n satellites in view, there are n independent SD phase measurements and SD code

measurement equations, respectively. Note that the SD code observation term is also

expressed in units of cycles in order to obtain similar expression as the carrier phase. Clock

bias is assumed constant on each tracking channel, that is, the hardware delays are inde-

pendent of which satellite is being tracked. All relevant equations can be expressed in

compact vector and matrix notation as follows:

y/;a ¼ 1

k1

G � x� aþ n/;a; n/;a �N 0;Q/;a
� �

yq;a ¼ 1

k1

G � xþ nq;a; nq;a �N 0;Qq;a
� � ð11Þ

where a denotes the SD carrier phase ambiguity vector and x contains the horizontal

baseline components and clock bias b, and all other terms are expressed as follows:

y/;a ¼

/1
AB �

ls1
U sin a
k1

/2
AB �

ls2
U sin a
k1

..

.

/n
AB �

lsnU sin a
k1

0

BBBBBBBBB@

1

CCCCCCCCCA

; yq;a ¼

1

k1

q1
AB �

ls1
U sin a
k1

1

k1

q2
AB �

ls2
U sin a
k1

..

.

1

k1

qnAB �
lsnU sin a

k1

0

BBBBBBBBB@

1

CCCCCCCCCA

; G � H eð Þ;

H ¼

s1
E s1

N

s2
E s2

N

..

. ..
.

snE snN

0

BBB@

1

CCCA
; e ¼

1

1

..

.

1

0

BB@

1

CCA

ð12Þ

The Q/;a and Qq;a matrices are the variance–covariance matrices of y/;a and yq;a, which

capture the relative precision contributions of the SD phase/code data and the scaled

measuring error of the MEMS-based inclinometer. We assumed that SD measurements

were uncorrelated because measurements from different satellites on a single receiver were

independent. Due to atmospheric dispersion and antennae qualities, they may also include

satellite elevation’s dependency on dispersion (Teunissen et al. 2011b). For instance, in the

case of Q/;a, the ith diagonal element can be characterized as follows:

Q/;a i; ið Þ ¼ 2r2
/;i þ

siUl
� �2

r2
a

k2
1

ð13Þ

where r/;i is the standard deviation (in cycle units) of the undifferentiated single-frequency

L1 phase observables of satellite i. In this study, we used the following elevation-depen-

dent model (Teunissen et al. 2011b):
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r/;i ¼
r0

k1

1 þ a0 exp
�hi
h0

� �� �
ð14Þ

where hi is the elevation angle of satellite i and a0 ¼ 2, h0 ¼ 10
�
,r0 ¼ 0:007 m. In the

same manner, Qq;a can also be obtained based on the elevation-dependent model with

r0 ¼ 1:1 m.

Equation (13) suggests that extra error can be induced by the inclinometer, which is also

related to baseline length l, up component siU , and carrier wavelength. Of course, the short

baseline and highly accurate inclinometer can significantly reduce the induced error,

however, too short a baseline during practical application should also be avoided since it

will reduce the precision of the GPS-based attitude solution.

Under the definition G � H eð Þ and according to Eq. (11), we can obtain the fol-

lowing single-difference model:

y/;a

yq;a

� �
¼ �Im

0

� �
aþ 1

k1

H
H

� �
bH þ 1

k1

e
e

� �
bþ n/;a

nq;a

� �
ð15Þ

Note that the original baseline vector is reduced to 2D from 3D space, so only the

horizontal components given by bH ¼ bE bNð ÞT
should be estimated. If we consider the

horizontal baseline length as an observable factor, the horizontal baseline length constraint

forms a nonlinear observation equation. Equation (9) provides the approximate expression

written as follows:

l cos a � bHk k � lawa ð16Þ

Considering the nonlinear horizontal baseline constraint above, the GPS compass model

is expressed as:

E yð Þ¼ Aaþ BbH þ Cb;D yð Þ ¼ Qy; a 2 Zn

Eðl cos aÞ ¼ bHk k;D l cos að Þ ¼ l2a2r2
a; bH 2 R2

ð17Þ

where n ¼ m� 1. Each term is expressed as follows:

y ¼ y/;a

yq;a

� �
; A ¼ �Im

0

� �
; B ¼ 1

k1

H
H

� �
; C ¼ 1

k1

e
e

� �
; Qy ¼

Q/;a

Qq;a

� 	

The GPS compass is often equipped with a very short baseline due to land vehicle size

limitation (Qin and Chen 2013), which benefits the success rate of Model (17)—first

because the shorter baseline can greatly reduce the scaled inclinometer error in Qy, and

second because the uncertainty of the horizontal baseline length constraint is very small for

the weighted model above.

To solve for the unknown parameter vectors a and b and the clock bias b of Model (17),

we applied the estimation principle of least-squares (LSs) to Model (17) to create the

following minimization problem:

min
a;bH ;b

y� Aa� BbH � Cbk k2
Qy

a 2 Zn;Eðl cos aÞ ¼ bHk k;D l cos að Þ ¼ l2a2r2
a; bH 2 R2

ð18Þ
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To gain insight into the ILSs problem in Eq. (18), it is helpful to first apply an

orthogonal decomposition to the objective function (Teunissen 2007). To do so, we wrote

the objective function as a sum of four squares:

y� Aa� Bb� Cbk k2
Qy
¼ êk k2

Qy
þ â� ak k2Qâ

þ b̂ að Þ � b









2

Qb̂ að Þ

þ b̂ að Þ � b








Qb̂ að Þ
ð19Þ

where ê is the unconstrained LS residual vector, b̂ að Þ and b̂ að Þ are the LSs estimates of

b and b conditioned on a, respectively, Qb̂ að Þ is the variance–covariance matrix of b̂ að Þ, Qâ

is the variance–covariance matrix of float ambiguity vector â, and Qb̂ að Þ is the variance of

clock bias b. Note that no constraints are posed on the clock bias, therefore, the fixed clock

bias (i.e., conditional to the fix ambiguity vector) solution is b
^

að Þ ¼ b̂ að Þ and the last term

in Eq. (19) is identically null. Apart from the integer constraint on the ambiguity vector,

then, only the nonlinear baseline constraint is considered and receives proper weighting in

its minimization as follows:

min
a2Zn

â� ak k2
Qâ
þ min

bH2R2
H a; bHð Þ

� �
ð20Þ

where

H a; bHð Þ ¼ b̂H að Þ � bH










2

Qb̂ að Þ

þ 1

l2a2r2
a
l cos a� bHk kð Þ2 ð21Þ

This minimization problem can be resolved with the weighted constrained (WC-)

LAMBDA method, which is described in detail in Teunissen’s paper (2010).

2.2 Model using horizontal constraint without inclinometer measurements

In Sect. 2.1, we made the assumption that the inclinations of land vehicles are often small.

Under this assumption, by removing the inclinometer and applying a constraint of very

small inclination angles, the results obtained are nearly identical without introducing any

additional cost or complexity due to the inclinometer. For example, one can identify the

most likely correct candidate by penalizing those baseline solutions that would result in

large inclinations in the validation procedure, with the following minimization problem:

a ¼ min
a2X

p b̂ að Þ
� �n o

ð22Þ

where p bð Þ ¼ bUj j
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2
E þ b2

N

p
and X is the ambiguity candidate space given by:

â� ak k2
Qâ
þ min

b2R3; bk k¼l
b̂ að Þ � b









2

Qb̂ að Þ

	 v2
q ð23Þ

where the space size v2
q indicates that the number of candidates is q. In actuality, the results

obtained are almost matched only for very flat geodetic planes with smooth motion—for

rough roads, reliability decreases. This phenomenon is attributable to three main facts.

First, there are no obvious distinctions between two candidates (or in other words, the

absolute elevation values are too close.) For instance, when 4.12� and -3.93� are the

elevations of the most likely potential candidates, it is difficult to identify which is correct.
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Reordering the candidates by elevation and choosing the one with minimum cost may also

fail if there are no obvious distinctions between the costs of candidates, especially when

low-cost receivers are utilized in a multipath environment. Inclinometer measurements can

help identify correct candidates and reduce the effects of multiple paths on the search.

Second, the horizontal approximation may not hold well for high road slopes, (e.g., when

attitude determination is applied to a cross-country environment.) Third, the correct can-

didate can be identified using the horizontal constraint without inclinometer measurements,

however, it may be limited by the search time and search space during real-time appli-

cation. In other words, the chosen search space v2 must be large enough to guarantee the

presence of the integer minimizer, but if too large, will result in excessive computational

load. Inclinometer measurements also help reduce the search space and the time consumed

by this process.

2.3 Model exploiting inclinometer measurements without horizontal
constraints

Note that the proposed method limits the baseline to practically horizontal orientation, as

evidenced by Eqs. (7)–(9), thus making the solution unreliable for large elevation

(Sect. 2.1). A viable solution to this problem is to use the inclination measurement as an

additional observation in the GPS baseline model, without the constraint on h given in

Eq. (7). In this case, Eqs. (8) and (9) can be written as:

l sin a ¼ l sin hþ a� hð Þ½ � ¼ bU cos a� hð Þ þ l cos h sin a� hð Þ ð24Þ

l cos a ¼ l cos hþ a� hð Þ½ � ¼ bHk k cos a� hð Þ � l sin h sin a� hð Þ ð25Þ

By a simple mathematical derivation, then:

l sin a� cos h sin a� hð Þð Þ
cos a� hð Þ ¼ bU ð26Þ

l cos a
cos a� hð Þ þ l sin h tan a� hð Þ ¼ bHk k ð27Þ

With the equation above, the SD carrier phase measurement equation and SD code mea-

surement equation can be modeled as follows:

/k
AB �

l

k1

skU
sin a� cos h sin a� hð Þð Þ

cos a� hð Þ

� �
¼ 1

k1
skE skN 1
� �

bE

bN

b

2

64

3

75� akAB þ
1

k1

vkAB

1

k1

qkAB �
l

k1

skU
sin a� cos h sin a� hð Þð Þ

cos a� hð Þ

� �
¼ 1

k1
skE skN 1
� �

bE

bN

b

2

64

3

75þ 1

k1

lkAB :

ð28Þ

Note that the true elevation h is required in the model above. Although it is hard to

obtain directly, an approximate measurement can be given by the inclinometer. The ele-

vation search strategy can be used in order to build an accurate h into the model above,

under the basic principle that correct elevation results in the best matching data for the
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model, thus making the cost of the fixed ambiguity objective function as the global

minimum. At this point, we can assume that the true elevation angle exists in the interval of

a� g � N a; gð Þ; aþ g � N a; gð Þ½ �, where g is the step size and N a; gð Þ is the number of

sampling points in positive or negative direction for current inclination measurement. In

general, N a; gð Þ is an empirical function that depends mainly on the performance of the

inclinometer and the step size. Accordingly, for each step, the elevation candidate is given

by:

hj ¼ aþ jg;�N a; gð Þ	 j	N a; gð Þ: ð29Þ

There must be some hj closest to the true elevation angle h, and with bias of the closest

candidate smaller than g
2
. Assuming that the closest candidate of hj is hj0 , the following

model is appropriate:

/k
AB �

l

k1

skU
sina� cosh sin a� hj0

� �� �

cos a� hj0
� �

 !

¼ 1

k1
skE skN 1
� �

bE

bN

b

2

64

3

75� akAB þ
1

k1

vkAB þ
1

k1

skUlc

1

k1

qkAB �
l

k1

skU
sina� cosh sin a� hj0

� �� �

cos a� hj0
� �

 !

¼ 1

k1
skE skN 1
� �

bE

bN

b

2

64

3

75þ
1

k1

lkAB þ
1

k1

skUlc

ð30Þ

where c¼ sina�cosh sin a�hð Þð Þ
cos a�hð Þ � sina�cosh sin a�hj0ð Þð Þ

cos a�hj0ð Þ � h�hj0ð Þcos hj0ð Þ
cos a�hj0ð Þ . Similarly, the following

equation can be obtained:

l cos a

cos a� hj0
� �þ l sin hj0 tan a� hj0

� �
¼ bHk k þ lf ð31Þ

where

f ¼ cos a
cos a�hð Þ þ sin h tan a� hð Þ
h i

� cos a
cos a�hj0ð Þ þ sin hj0 tan a� hj0

� �� 	
� hj0 � h
� �

sin hj0 .

If hj0 is close enough to the true elevation angle h, we can consider the noise term of the

GPS baseline model as approximately normal. It is given as c ! 0 and f ! 0, thus making

the CLAMBDA method available. If hj is far from the true elevation angle h, the noise

term cannot be considered normal and the data vector on the left of Eq. (30) will mismatch

the baseline model, and the calculation results will be incorrect. In other words, these

conditions result in incorrect integer ambiguity vectors and baseline vectors. Basically,

step size g should be as small as possible.

Next, we can calculate the minimum of the ambiguity objective function F að Þ for each

hj to find the optimal integer ambiguity candidate:

a
^

j ¼ arg min
a2Zn

F ajhj
� �

: ð32Þ

The most correct ambiguity candidate can be identified by traversing all the elevation

candidates. In fact, most of the optimal integer ambiguity candidates are incorrect, because

they are obtained using mismatched data. Only one, which is given by one or several hjs
that are close enough to the true elevation angle, is absolutely correct. To find it, we can

search for the global minimum of the fixed ambiguity objective function; that is, for each
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hj, compare F a
^

jjhj
� �

to determine the optimal candidate that makes the fixed ambiguity

objective function as the global minimum. See the following:

j0 ¼ arg min
j

F a
^

jjhj
� �

;�N a; gð Þ	 j	N a; gð Þ: ð33Þ

Note that the imposed horizontal constraints can be removed in this model, however, the

elevation search strategy requires greater computational effort related to the number of

sampling points. During our experiments with the Murata SCA100T inclinometer, we used

the following empirical formula:

N a; gð Þ ¼ 0:05aþ 0:01

g

� 	
: ð34Þ

3 Ambiguity validation with real-time elevation constraint

Once the ambiguity vector a has been resolved successfully based on Eq. (4), all the SD

carrier phase equations can be expressed in compact vector and matrix notation as follows:

E y/ þ a
� �

¼ 1

k1

S � x; D y/
� �

¼ Q/ ð35Þ

where each term is given as:

y/ ¼

/1
AB

/2
AB

..

.

/n
AB

0

BBB@

1

CCCA
; S ¼

s1
E s1

N s1
U 1

s2
E s2

N s2
U 1

..

. ..
. ..

. ..
.

snE snN snU 1

0

BBB@

1

CCCA
; x ¼ b

b

� 	
; b ¼

bE
bN
bU

2

4

3

5;

Q/ ¼ 2diagðr2
/;1; r

2
/;2; . . .; r

2
/;nÞ

where r/;i is the undifferentiated phase standard deviation of satellite i in cycle units. With

the resolved ambiguity vector a, the conditional LSs solution for x can be written as:

x̂ að Þ ¼ k1 STQ�1
/ S

� ��1

STQ�1
/ y/ þ a
� �

ð36Þ

and the variance–covariance matrix is given by:

Qx̂ að Þ ¼ k2
1 STQ�1

/ S
� ��1

ð37Þ

Thus, heading wC and elevation hC can be computed from the baseline coordinates bE,

bN, and bU:

wC ¼ tan�1 bE

bN

� �
; hC ¼ tan�1 bUffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2
N þ b2

E

p

 !

ð38Þ

where subscript C denotes that the attitude angle is derived from the compass baseline

solution. Heading and elevation accuracy can also be estimated as follows (Park et al.

1997; Chen et al. 2012):
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r2
dw ¼ coswCð Þ2r2

E þ sinwCð Þ2r2
N

l2 cos hð Þ2
ð39Þ

r2
dh ¼

sinwC sin hCð Þ2r2
E þ coswC sin hCð Þ2r2

N þ ðcos hCÞ2r2
U

l2
: ð40Þ

Equations (39) and (40) imply that the accuracies of heading and elevation increase as the

baseline length increases. Baseline placement can also affect GPS compass accuracy, since

heading and elevation errors are related to baseline vector direction.

Note that the elevation can also be obtained from the inclinometer, for which the

measurement is independent of the ambiguity vector. To some extent, once the ambiguity

vector a is resolved correctly, the measured elevation of the inclinometer should be con-

sistent with the computed elevation derived from the GPS compass. Wrongly resolved

ambiguities may result in unacceptably large baseline vector errors, however, thus making

inconsistent elevations possible. Although the inclination measurement already drives the

ambiguity resolution process, there is no guarantee that the correct ambiguity candidate is

identifiable. In order to evaluate the consistency of the two elevations, the difference

should be considered:

D ¼ hC � a ¼ hþ dhð Þ � hþ Dþ wað Þ ¼ dh� D� wa: ð41Þ

For land vehicle applications, the non-linearity error can be neglected. Regardless of install

error, then, the variance of the elevation difference is written as follows:

r2
D ¼ r2

dh þ r2
a: ð42Þ

One can set a threshold with 3-sigma (3-standard error), for example, to determine whether

or not the ambiguity resolution has been resolved correctly.

4 Integrated GPS/inclinometer compass system (IGICS) and experiment

4.1 IGICS design and implementation

To test the proposed method, we constructed an integrated GPS/inclinometer compass

system (IGICS). In order to implement the IGICS at relatively low cost, two U-Blox LEA-

6T receivers and one Murata SCA-100T-D02 inclinometer were utilized for the hardware

platform. The U-Blox LEA-6T receiver provides raw measurements including carrier

phase and code, is cost-effective, and is already commonly used for time service and

Fig. 1 Designed hardware board
for U-Blox LEA-6T receiver
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attitude determination. The hardware of the LEA-6T module was integrated very carefully

to ensure favorable performance. The LEA-6T module and single-receiver hardware board

are depicted in Fig. 1.

The SCA-100T-D02 is a MEMS-based dual axis inclinometer that provides instru-

mentation-grade performance and measuring ranges ±90� with a 0.07� digital output

resolution. Dual axis inclination measurements (X and Y) assist the GPS attitude deter-

mination system (with at least two baselines) and only the X-axis measurement is nec-

essary for the GPS compass system. Low-temperature dependency, high resolution, and

low noise, together with robust sensing element design, made the SCA-100T an ideal

choice for IGICS. The Murata inclinometers we used are insensitive to vibration due to

their over-damped sensing elements, and can withstand mechanical shocks of up to

20,000 g.

To provide a sufficiently accurate elevation angle for IGICS, microcontrollers such as

those in the STM32 family can be utilized for data communication with the serial

peripheral interface of the SCA-100T-D02; the output rate of digital elevation can reach

10 Hz. Figure 2 demonstrates the Murata SCA-100T-D02 inclinometer and the hardware

board we used for elevation sensing. We implemented the proposed method in C language

and applied it to real-time measurements from IGICS with 1 Hz output. All raw mea-

surements of LEA-6T receivers and SCA100T-D02 were processed by ARM Cortex-A8

processor, and for convenience, the raw data and final results were sent to the computer via

a Bluetooth link. During real-time application, current GPS measurements must be com-

bined with current inclinometer measurements—high-rate measurements helped reduce the

synchronization error.

To minimize baseline length measurement error, the IGICS was equipped with two

geodetic antennae fixed on two ends of a rigid pipe. Different baseline lengths were

achieved by varying the length of the pipe, which contained the two GPS receivers and

SCA-100T hardware board fixed on the inside. A diagram of the IGICS with 0.54 m

baseline length is shown in Fig. 3. We should point out that we carefully attempted to

make the baseline vector parallel to the mounting plane and calibrated the inclinometer

installation error meticulously.

4.2 IGICS static experiments

In order to verify the performance of GPS compass attitude determination with the aid of

MEMS-based inclinometer, two groups of static experiments were achieved. One was done

with different elevations and the other was done with different baseline lengths.

Fig. 2 Murata SCA-100T-D02 inclinometer and the hardware board for elevation sensing
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In the first experiment, six static tests were performed in 6 days and each group of data

collected over the same time span each day. The number of visible satellites was thus

nearly identical for each test. To avoid any strong multipath interference, all data was

collected on the roof with the baseline pointing to the northeast but at varying elevation for

each test. Table 1 summarizes the experimental success rates for different elevations.

During about half an hour of observation, the number of available satellites was usually

eight (though a few dropped to seven or rose to nine.) The stochastic model of GPS carrier

phase observables can be specified by the elevation-dependent model described in

Eqs. (13) and (14).

We assumed that rq;i ¼ 1000r/;i; this empirical value worked well in each of the tests.

To satisfy weighted constraint model (18), the standard derivation of measurement for

inclination white noise was 0.05�.
As shown in Table 1, the success rates of the proposed method (Sect. 2.1) declined as

baseline elevation increased. In fact, the approximations of Eqs. (7)–(9) decreased as

baseline placement grew farther from the plane of the local geodetic horizon, thus

impacting the correctness of the model. The size of the non-linearity error, which is

dependent on the tilt angle of the baseline vector, may have also contributed to these

results—as mentioned above, higher tilt angle results in larger non-linearity error. Table 1

also shows where the elevation difference of the GPS compass and MEMS-based incli-

nometer diverged as tilt angle increased. That said, for land vehicles, the baseline often

approximately lies in the plane of the local geodetic horizon and inclinometer non-linearity

error can be neglected, so the application would still guarantee high success rates in

practice.

Fig. 3 Integrated GPS/inclinometer compass system (54 cm baseline)

Table 1 Comparison of ambiguity success rates for IGICS with different elevations (0.54 m baseline, the
approach given by Sect. 2.1)

Group Elevation of
compass (�)

Heading of
compass (�)

Success rate of
compass (%)

Elevation of
inclinometer (�)

Elevation
difference (�)

Mean (rdh) Mean (rdw) Mean (ra)

1 0.52 (1.18) 44.58 (0.58) 99.89 0.43 (0.040) -0.09

2 5.85 (1.22) 44.65 (0.58) 99.60 5.80 (0.041) -0.05

3 12.11 (1.17) 44.64 (0.60) 97.67 12.21 (0.042) 0.10

4 18.09 (1.34) 44.71 (0.76) 94.94 18.28 (0.042) 0.19

5 30.31 (1.71) 44.55 (0.83) 87.28 31.65 (0.049) 1.34

6 42.03 (1.68) 44.79 (0.89) 70.83 43.86 (0.055) 1.83
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For the second experiment, another six static tests were performed with the same

method described above but with different baseline lengths (pointed northeast) placed in

the local geodetic horizon plane for each test. Table 2 summarizes the experimental suc-

cess rates for different baseline lengths, which decreased as baseline length increased.

Lengthier baseline likely worsened the success rate because it increased the variance

components, as described in Eq. (13), and/or because the uncertainty of the horizontal

baseline length constraint significantly increased for the weighted model (17). These

results reflect the fact that shorter baseline is better suited to success rate in land vehicles,

however, since heading and elevation accuracies decrease as baseline length decreases, a

balance should be achieved for the baseline length between success rate and accuracy.

In order to make a proper comparison between three approaches discussed in Sect. 2,

we conducted two additional experiments—one using the same data listed in Table 1

(results are shown in Table 3) and another designed to compare the success rates among

approaches in a case with high elevation. A new group of data were collected with different

baselines and a 45-� elevation angle (results are shown in Table 4.) In both Tables 3 and 4,

‘‘Approach I’’ denotes the method described in Sect. 2.1, ‘‘Approach II’’ the method from

Sect. 2.2, which uses the horizontal constraint without inclinometer measurements (with

the most likely correct candidate identified by penalizing those baseline solutions that

result in large inclinations, and q of Eq. (23) set to 3,) and ‘‘Approach IIIA’’ and ‘‘Ap-

proach IIIB’’ both refer to the method described in Sect. 2.3 which exploits inclinometer

measurements without imposing horizontal constraints; the step size was 0.002 radians for

Approach IIIA and 0.001 radians for Approach IIIB.

Tables 3 and 4 both show where Approach III had the highest success rates. Smaller

step size helped improve the success rate, especially at longer baselines. For Approach II,

the results obtained almost matched Approach I, but only at small elevations. For

Approach I, complexity was lower than Approach III but success rates neared those of

Approach III only at short baselines and small elevations. Approach III proved better suited

than other approaches to various baseline lengths and elevations, but requires complex

computation. Therefore, after taking into account both the high success rate and low

computational burden, a combination of Approach I and Approach III is the most viable

method for practical application.

Note that the elevation angle can be measured by inclinometer, although it may

introduce bias at large elevation. Approaches I and III both use an inclinometer, so we can

preset a threshold value according to baseline length to control the corresponding success

Table 2 Comparison of ambiguity success rates for IGICS with different baselines (the approach given by
Sect. 2.1)

Baseline
length (m)

Elevation of
compass (�)

Heading of
compass (�)

Success rate of
compass (%)

Elevation of
inclinometer (�)

Mean (rdh) Mean (rdw) Mean (ra)

0.540 0.34 (1.16) 44.46 (0.56) 99.94 0.37 (0.041)

1.003 0.38 (0.63) 44.51 (0.31) 99.83 0.36 (0.038)

1.499 0.35 (0.42) 44.67 (0.23) 99.11 0.37 (0.041)

2.001 0.34 (0.32) 44.49 (0.17) 98.33 0.37 (0.040)

2.498 0.34 (0.27) 44.52 (0.13) 96.07 0.36 (0.041)

3.003 0.36 (0.21) 44.50 (0.10) 95.02 0.37 (0.039)

124 Acta Geod Geophys (2017) 52:111–129

123



rates of both approaches. As an example, we set the threshold as 6� for 0.54 m baseline

(Table 1) and found that if the measured elevation of the inclinometer is larger than the

threshold, Approach III improves the system’s reliability—if not, Approach I can be

applied to reduce the computational burden. Because land vehicles typically operate at low

elevation, large computational burden is usually avoidable.

4.3 IGICS dynamic experiment

We tested the proposed method’s ability to process actual data during a dynamic experi-

ment with the IGICS. The experiment was conducted at the Civil Aviation University of

China on June 27, 2015 (GPS week 1850; TOW: 532454–533186). The IGICS with 0.54 m

baseline was mounted on a rotating platform with rotational velocity of about 3 deg/s, as

shown in Fig. 4, then GPS observations were collected for about 14 min with a 1 Hz

sampling rate. Figure 5 demonstrates the attitude results of the GPS compass as well as the

elevation measured by the inclinometer. Results showed that the periodic heading coin-

cided with the periodic motion of the IGICS. The elevation also presented a certain

periodicity due to the undulating planes, however, the elevation fluctuation amplitude of

the GPS compass was much larger than that of the inclinometer because the very short

baseline resulted in low accuracy, but inclinometer accuracy is not related to baseline

length or placement. In order to further verify the periodicity of the baseline vector, the

resolved east, north, and up baseline components were as shown in Fig. 6 during the

dynamic experiment. All baseline components were resolved by Eq. (23). The

Table 3 Success rate comparison between the three approaches presented in Sect. 2 for the same data used
in Table 1

Group Approach I (%) Approach II (%) Approach IIIA (%) Approach IIIB (%)

1 99.89 99.78 99.89 99.94

2 99.60 96.89 99.83 99.94

3 97.67 83.94 99.67 99.78

4 94.94 68.44 99.83 99.83

5 87.28 56.22 99.56 99.89

6 70.83 43.17 99.61 99.72

Table 4 Success rate comparison between the three approaches presented in Sect. 2 for a 45-� elevation
with different baseline lengths

Baseline length (m) Approach I (%) Approach II (%) Approach IIIA (%) Approach IIIB (%)

0.540 67.95 42.06 99.50 99.78

1.003 66.06 42.61 99.06 99.38

1.502 59.22 39.89 98.78 99.33

1.998 50.83 41.78 98.06 99.11

2.497 44.61 39.56 97.56 98.39

3.001 38.28 35.94 95.72 97.27
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constellation of satellites in the experiment was as shown in Fig. 7, and each satellite was

discernible by its PRN number. The results suggest that for practical application of small-

sized land vehicles, the elevation accuracy of the inclinometer is higher than that of the

GPS compass—but for larger tilt angle or longer baseline, the accuracy and precision of

the GPS compass is higher.

Fig. 4 Dynamic experiment
platform for IGICS
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Fig. 5 Attitude results of dynamic experiment
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5 Conclusions

In this study, we developed a single-frequency, single-epoch GPS attitude determination

method based on inclinometer elevation measurements for land vehicle applications. The

proposed method was designed to obtain high success rates by integrating MEMS-based

inclinometer measurements into the GPS compass model. The baseline elevation measured

by the inclinometer, in essence, provides a necessary constraint to assist the ambiguity

resolution process; under this constraint, the original baseline vector is reduced to 2D from

3D space so the ambiguity fixed solution can be resolved by weighted constrained ILSs.

Experimental results showed that high success rates were indeed achievable for land

vehicles equipped with very short baselines, however, reliability decreases as baseline

increases at larger elevations. We proposed a solution to this problem by exploiting

inclinometer measurements based on elevation search without imposing horizontal con-

straints. In short, combining both approaches is a viable method for practical applications.
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