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Abstract In the present study, we have used 250 MHz radio signal radiated by geosta-

tionary satellite UFO-02 to study the occurrence characteristics of very high frequency

scintillations associated with ionospheric irregularities during recent extreme low solar

activity period from 2008 to 2010 at low latitude Indian station Varanasi (Geomag. lati-

tude = 14�550N, long. = 154�E, Dip angle = 37.3�, Sub-ionospheric dip = 34�). The

impact of this recent extreme low solar activity period on ionosphere is investigated. It is

observed that the scintillation occurrence is low having maximum percentage occurrence

during pre-midnight periods. With increasing interest in understanding the behavior of

ionospheric irregularities, an effort has been made to examine also the influence of solar

and magnetic activity over the occurrence of scintillations. During the extreme low solar

activity years the scintillation occurrences do not vary linearly with the sunspot number.

The inhibition and generation of irregularities during enhanced magnetic activity period

are explained by considering changes in the electric field. The spectral analysis provide

spectral index for irregularities which varied between -1.5 and -8 and characteristic

length of irregularities varied between 400 and 1200 m which confirms that 250 MHz

scintillations observed over Varanasi were associated with intermediate scale irregularities.

Keywords Ionospheric irregularities � VHF scintillation � Wave propagation � Low solar

activity

1 Introduction

Recent solar minimum between solar cycles 23 and 24 was unique amongst last several

solar minima for two reasons: firstly the solar activity during this period was quietest

during last 60 years and secondly, it prolonged for much more time than that of other solar
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minimum period. The impact of this extreme low solar activity period on Earth’s envi-

ronment especially on ionosphere is very interesting to be investigated. Ionospheric

scintillation is a peculiar phenomenon that relates to fluctuations in the phase and

amplitude of the radio signals from the satellites when they cross regions of electron

density irregularities in the ionosphere (Kintner et al. 2001). The study of ionospheric

scintillations is one of the important components of the space weather activities, because

their observations have been used to identify and diagnose irregular structures in highly

varied propagation medium and leads to contributions in ionospheric and magnetospheric

physics (Abdu et al. 2003; Pedatella et al. 2009). The radio waves propagating through

ionospheric irregularities experience scattering and diffraction, causing random fluctua-

tions in amplitude and phase of the signal, known as amplitude and phase scintillations

respectively (Aarons et al. 1980). The amplitude fluctuations may lead to data loss and

cycle slips in Global Positioning System (GPS) and sudden phase changes may cause a loss

of phase lock in GPS receivers (Basu et al. 1996). Hence, in order to provide support to

operational communication/navigation systems, the magnitudes of amplitude and phase

scintillations and the temporal structures of scintillations need to be specified.

The formation and dynamics of the plasma irregularities have been studied by many

scientists (e.g., McClure et al. 1977; Aarons et al. 1980; Tsunoda et al. 1982; Basu et al.

1983; Chen et al. 1983; Singh et al. 2004, 2006) and it was concluded that after sunset

these irregularities regions develop from the bottom side of the ionosphere probably due to

Rayleigh–Taylor instabilities. Once these irregularities are triggered, they will cause a

plasma depletion or depleted plasma bubble which rises into regions above the peak of

F-layer extending to well over 1000 km in altitude (Huang 1970). These bubbles then

move along the geomagnetic field lines to anomaly locations of 15�N and 15�S magnetic

latitudes (Groves et al. 1997). The night-time scintillations are mainly attributed to spread-

F, whereas daytime scintillations are linked to E-region irregularities (Anastassiadis et al.

1970; DasGupta and Kersley 1976; Rastogi and Iyer 1976; Basu et al. 1977; Ogawa et al.

1989; Hajkowicz and Minakoshi 2003; Patel et al. 2009).

The combined effects of gravity, eastward electric fields, and vertically downward

neutral wind in association with vertically upward density gradient makes the plasma in the

ionosphere unstable and generates density fluctuations over a wide range of scale sizes

starting from a few centimetres to a few tens of kilometres (Haerendel 1974; Kelley 1989;

Basu 1998). A single instability mechanism cannot account for such a wide range of scale

sizes (Fejer and Kelley 1980). The generalized Rayleigh–Taylor instability (which includes

cross field instability, neutral wind effects and various drift mode instabilities) can generate

irregularities with longer as well as shorter wave lengths (Krishna Murthy 1993). Irregu-

larities are broadly termed as large scale ([10 km), intermediate scale (10–0.1 km),

transitional scale (100–10 m) and small scale (\10 m) (Kelley 1985).

The electric field at the site plays a dominant role in shaping the development of these

irregularities. Any change in the electric field influences the occurrence of low-latitude

scintillations (Fejer 1991, 1997). The influences of solar and magnetic activity over the

occurrence of scintillation associated with ionospheric irregularities have been reported by

many worker (Aarons et al. 1980; Rastogi et al. 1981; DasGupta et al. 1985; Dabas et al.

1989; Pathak et al. 1995; Chakraborty et al. 1999; Kumar and Gwal 2000; Banola et al.

2001; Basu et al. 2001a, b; Bhattacharya et al. 2002; Singh et al. 2004). Most of the studies

are during solar active periods and study during extremely low solar activity period are

lacking. The solar minimum between solar cycles 23 and 24 was unique because the solar

activity during this period was quietest during last 60 years and it also prolonged for much

more. The impact of this extreme low solar activity period on terrestrial environment
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especially on ionosphere is very interesting to be investigated. Hence, it is necessary to

understand the occurrence of scintillations during this extremely low solar activity period.

The detailed study of the occurrence characteristics of very high frequency (VHF)

scintillations associated with ionospheric irregularities during recent extremely low solar

Fig. 1 Typical examples of different types of scintillations observed at Varanasi during 2008–2010
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activity period of 3 years of 2008 (Rz = 2.9), 2009 (Rz = 3.1) and 2010 (Rz = 16.5) at

our low latitude Indian station Varanasi (Geomag. latitude = 14�550N, long. = 154�E, Dip

angle = 37.3�, Sub-ionospheric dip = 34�) have been presented. The diurnal, monthly,

seasonal, and annual occurrences of scintillations as well as effect of solar and geomag-

netic activity on occurrence of scintillations have been carried out.

2 Data analysis

The experimental set up of receiving system installed at Banaras Hindu University, Var-

anasi consisted of an eleven element Yagi-Uda antenna, a super–heterodyne fixed fre-

quency VHF receiver, ‘Akash’ and a signal channel strip chart recorder. The amplitude

scintillations of the 250 MHz signal radiated from the geostationary satellite UFO-02

situated at 72�E longitude were continuously monitored at Varanasi (Singh et al. 2004).

The receiver was calibrated using the method described by Basu and Basu (1989). The

dynamic range of the receiver was about 20 dB. Most of our scintillation data were

recorded on a strip chart which is calibrated as 1 cm equal to 2.54 dB (Singh et al. 2010).

In addition to the normal chart recorder, data were also recorded digitally, at the sampling

rate of 10 Hz, on a few nights. The amplitude fluctuations having peak to peak variations

greater than 1 dB were included in the present analysis using the day and night time data.

The scintillation index in dB has been scaled manually every 15 min by measuring peak-

to-peak Pmax - Pmin excursion in dB and using a calibration chart and a conversion

chart (Whitney et al. 1969), where Pmax is the power amplitude of the third peak down

from the maximum excursion and Pmin is the power amplitude of the third level up from

the minimum excursion. The scintillation data are tabulated for each 15 min, to count the

number of events per hour and hence to evaluate the occurrence rate. The percentage

occurrence of scintillations has been calculated after dividing the number of the occurrence

of scintillation data by total number of days of scintillation recorded and then multiplying

by 100.

Some typical examples of different types of scintillations recorded on different dates

and times at Varanasi during 2008–2010 are shown in the Fig. 1. At Varanasi VHF

scintillation are predominantly produced after sunsets during evening and nighttimes

(Singh et al. 2004). Figure 1 shows the events of different types of scintillations recorded

(A) on 16-10-2010 having two small intense scintillation patches observed during

19:35–19:45 IST and 19:50–20:10 IST, (B) on 22-07-2010 having intense scintillation

patches observed during 17:40–18:15 and 18:40–19:07 IST, (C) on 04-05-2010 having

patches observed during 13:20–14:15 IST and 15:50–17:10 IST, (D) on 21-08-2010 having

strong scintillation patches observed during 12:30–13:10 IST and 13:15–14:10 IST, (E) on

15-05-2008 having weak scintillation patches observed during 22:50–05:20 IST, (F) on

19-07-2009 having weak scintillation patches observed during 22:50–03:30 IST, (G) on

27-10-2009 having two scintillation patches during 05:15–05:50 IST and 06:10–06:30 IST

and (H) on 20-07-2010 having patches observed during 12:50–13:14 IST. The scintillation

index of the recorded different amplitude fluctuations varies between 1.27 and 5.08 dB.

The scintillation index of the different scintillation patches of Fig. 1a is 2.54 dB, b is 3.55

and 2.03 dB, c is 4.57 and 5.08 dB, d is 3.55 and 3.04 dB, e is 1.52 dB, f is 1.54 dB, g is

1.27 and 1.42 dB, and h is 1.52 and 2.03 dB.

The seasonal variation of percentage occurrence of scintillation has been grouped in

summer, equinox and winter months. The detailed analysis of occurrence characteristics of
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scintillations at Varanasi is explained in Sect. 3. The power spectral analysis and auto-

correlation analysis of associated ionospheric irregularities are also presented.

3 Results and discussions

The diurnal, monthly, seasonal, and annual occurrence characteristics of scintillations as

well as effect of solar and geomagnetic activity on occurrence of scintillations observed at

low latitude station Varanasi during the lowest solar active period from 2008 to 2010 have

been carried out.

3.1 Diurnal and annual variation

At Varanasi scintillations occur in small patches (Singh and Singh 1997). The duration of

patches represents the East–West dimensions of the moving irregularity (Mathew et al.

1992). The mean value of patch duration at Varanasi is 30 min which is in good agreement

with that of Rajkot (Mathew et al. 1992). The diurnal variation of percentage occurrence of

scintillations during the period of 3 years from 2008 to 2010 is shown in the Fig. 2a. It is

observed from Fig. 2a, that in general during 2008 and 2010, the scintillation occurrence is

low having maximum percentage occurrence between 21:00 and 23:00 h IST during pre-

midnight periods. The scintillation occurrence rate is comparatively high during the year

2008 in respect to 2009 and 2010. The peak occurrences are 11 % during 2008, 5 % during

2009 and 4 % during 2010. To compare the present results of extremely low solar activity

Fig. 2 Scintillation occurrence rate during a 2008–2010, and b 1991 and 1998 at low latitude station,
Varanasi
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periods with that of high solar activity period, we have analyzed the occurrence charac-

teristics of VHF scintillations observed at Varanasi during complete year of a high solar

activity period of 1991 (Rz = 145.9) which is shown in Fig. 2b. It is observed that the

Fig. 3 Seasonal occurrence of scintillations during a 2008–2010 and b 1991 and 1998 at low latitude
station, Varanasi
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scintillation occurrence rate is comparatively high during the year 1991 having peak

occurrence of 16 %. To compare our present results of extremely low solar activity periods

with that of previous low solar activity period, we have analyzed the occurrence charac-

teristics of VHF scintillations observed at Varanasi during complete year of a low solar

activity period of 1998 (Rz = 41.6) which is also shown in Fig. 2b. It is observed that the

scintillation occurrence rate is comparatively high during the year 1998 having peak

occurrence of 12.8 % mainly during daytime.

Chandra et al. (1993) have analyzed scintillation data recorded at a chain of stations

covering the whole of India and have shown that the scintillations become patchy and

patch duration decreases as one move away from the equator. The relatively intense and

faster fade rates observed before midnight at Varanasi could be of equatorial origin during

winter and equinox seasons (Pathan et al. 1992; Kumar and Gwal 2000). Comparatively

weak, slow and short duration scintillations seen during summer could have a local/mid

latitude/equatorial origin (DasGupta et al. 1981; Chakraborty et al. 1999).

3.2 Seasonal variation

Seasonal variations of percentage occurrences of scintillations for three different seasons of

summer, winter and equinox during the years 2008–2010 are presented in Fig. 3a. The

percentage occurrence of scintillations is high in equinox and summer and low in the

winter. During summer and equinox seasons the occurrence of scintillation events

increases after one or two hours of local sunset time and attain a maximum percentage

occurrences around mid-nighttime and then decreases from mid-nighttime to post-midnight

time. Whereas in winter season the percentage occurrence of scintillation is comparatively

low having maximum occurrence during daytime. To compare the present seasonal vari-

ations with that of a high solar activity period and a previous low solar activity period, we

have analyzed the seasonal occurrence characteristics of VHF scintillations observed at

Varanasi during a high solar activity period of 1991 (Rz = 145.9) and a low solar activity

period of 1998 (Rz = 41.6) which is shown in Fig. 3b. It is observed that the scintillation

occurrence rate is comparatively high during winter and equinox seasons but low during

summer season during 1991 whereas scintillation occurrence rate is slightly large during

1998 mainly in daytime.

It is well recognized that the nighttime VHF scintillations are primarily produced due to

presence of ionospheric F-region plasma density irregularities and daytime scintillations

due to E-region irregularities (Rastogi and Iyer 1976; Hajkowicz and Minakoshi 2003;

Patel et al. 2009). For identifications of various possible causes, origin and precursors for

the onset time of VHF ionospheric scintillations occurrence, extensive experimental,

modeling as well as theoretical work has been carried out in the recent past over equator

and away from equator for understanding basic causes and precursors of VHF scintillations

events with association of equatorial spread-F (ESF) phenomena (Rastogi and Woodman

1978; Rama Rao et al. 2004). Further a remarkable couplings in variations of VHF scin-

tillation activity with maximum values of F-region electron density (NmF2) (Whalen

2009) and equatorial electrojet strength (EEJS) (Dabas, et al. 2003) have been observed.

Several investigators have also demonstrated the association of scintillations events with

the diurnal/seasonal behaviors of vertical drift velocity and with range spread-F before

midnight and with frequency spread-F after midnight hours (Sreeja et al. 2009; Tulasi Ram

et al. 2006).
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3.3 Effect of solar activity

To study the effect of solar activity on occurrence of scintillations, the monthly variation of

percentage occurrence of scintillations with mean sunspot numbers during the years 2008

(Rz = 2.9), 2009 (Rz = 3.1) and 2010 (Rz = 16.5) are shown in Fig. 4. The solar activity

dependence is not clearly evident from the figure because these years are extreme lowest

sunspot minimum years of several decades. The figure shows the maximum percentage

occurrence in the equinox and winter months of each year in comparison to summer

months. The solar activity effects reported here are not consistent with previous results

reported from studies at anomaly crest stations (Pathak et al. 1995; Kumar and Gwal 2000;

Singh et al. 2004) because the sunspot number variation is too low to show any effect. This

may be due to extreme lowest solar activity years of our study period.

The equatorial plasma bubbles are incapable to rise over the magnetic equator above

800 km that diffuse downward along the geomagnetic field and scattered away from the

equator and also not make the signature of scintillations activity over the edge of equatorial

Appleton region during low solar activity periods due to the low occurrences and persis-

tence of ESF, reduction of F-region height and vertical drift along with low ambient

electron density in low solar activity period (Kumar and Gwal 2000; Dabas et al. 2003).

3.4 Effect of geomagnetic activity

To study the effect of geomagnetic activity on occurrence of scintillations we have chosen

five most quiet days and five most disturb magnetic days from each month. The diurnal

variations of percentage occurrence of scintillation during geomagnetic quiet and disturbed

days during the years from 2008 to 2010 are shown in Fig. 5. The figure shows that in

general the scintillation occurrence rate is high during quiet days in respect to disturbed

days during the whole period from 2008 to 2010 except during daytime in 2010. This

shows that in general the geomagnetic activity suppresses the occurrence scintillation.

The effects of geomagnetic disturbances on equatorial as well as low latitude iono-

spheric scintillations have been reported by several workers (Aarons et al. 1980; Rastogi

et al. 1981; Vyas and Ayanandan 2011; Singh et al. 2010) who explained that with increase

Fig. 4 Variation of scintillation occurrence with the mean sunspot number during 2008–2010 at low
latitude station, Varanasi
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in the magnetic activity, the probability of occurrence of scintillation increases during the

post-midnight periods in all longitude sectors, while the pre-midnight phenomenon

depends on the season as well as on longitude. By comparing the percentage occurrence of

scintillations during quiet and disturbed days, Rama Rao et al. (1996, 1997) and Prasad

et al. (2004, 2012) have reported that the occurrence of nighttime scintillation is inhibited

during disturbed days of higher solar activity period. Kumar et al. (1993) and Kumar and

Gwal (2000) studied the effects of geomagnetic disturbances on scintillations at low lat-

itudes and reported that the geomagnetic disturbances suppresses the scintillations

throughout the night at Bhopal (23.2N, 77.6E), but at Varanasi (25.3N, 83E) the scintil-

lations were inhibited in pre-midnight period and enhanced in the post-midnight period.

Mathew et al. (1991) also studied the geomagnetic effect on the scintillation occurrence at

equatorial and anomaly crest stations and reported that, there is a considerable suppression

of scintillation activity in any season on disturbed days. The inhibition and enhancement of

the irregularities during geomagnetic disturbances can be attributed to changes in ring

current (Aarons 1991). During the pre-sunset period, the eastward electric field is

increased, causing an increase in F-layer height (Fejer et al. 1999). Thus geomagnetic

storm processes would lower the local eastward electric field and reduce the F-layer height.

This effect may sometimes be large enough to reverse the upward movement of F-layer

during the post-sunset period, thereby inhibiting the creation of irregularities. This may

result in a suppression of pre-midnight scintillations over most longitudes during periods of

intense magnetic activity.

Fig. 5 Diurnal variation of scintillation occurrence during geomagnetic quiet and disturbed days for period
of 2008–2010 at low latitude station, Varanasi
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3.5 Effect of geomagnetic storm

The geomagnetic storm is a temporary disturbance of the Earth’s magnetosphere and

caused by a solar wind shock wave and cloud of magnetic field which interacts with the

Earth’s magnetic field. During these disturbances ionosphere shows a variety of effects

which may depend on season, geographic latitude, local time and the time of onset of the

storm (Pedatella et al. 2009). These storms introduce dynamical and electro-dynamical

changes in the ionosphere. The effect of geomagnetic storms on the occurrence of VHF

scintillations have been observed by many scientists (Prasad et al. 2005; Singh et al. 2004)

and their statistical results are explained relating to the average behavior of storm phe-

nomena in the short term (transients) and long term (recurrent) effects during individual

storm events (Abdu et al. 1995). These effects are known to differ from one storm to the

other. Dynamic effects that can influence the ionosphere during geomagnetic disturbances

to the upward or downward motion of the ionization caused, either by electric fields or

neutral winds and field-aligned flow of ions between the ionosphere and magnetosphere

(Fejer 1997).

Different phases of geomagnetic storms affect the generation and development of

ionospheric irregularities differently. The Dst-index, which is a measure of the ring current

is used to understand the effect on scintillations. The available theories which model the

effect of ring currents on the generation of equatorial F-region irregularities depend on the

timing of the maximum negative Dst excursion vis-a-vis local time (DasGupta et al. 1985;

Aarons 1991; Basu et al. 2001a, b). In the present work storms for which Dst goes below

-50 nT have been selected for study. A total of 12 moderate geomagnetic storms were

seen during the observation period for which scintillations were recorded. The details of

these 12 geomagnetic storms, their longevity and peak Dst-index along with the occurrence

Table 1 Details of geomagnetic storms and occurrence of scintillation during 2008–2010

S. no. Storm day Magnitude of
storm (nT)

Longevity
(h)

Occurrence of scintillations

Pre
day

Occurrence
day

Post
day

1 28 February 2008 -52 230 No No No

2 9 March 2008 -86 261 No No No

3 27 March 2008 -56 138 No No No

4 11 October 2008 -54 155 No No No

5 22 July 2009 -83 200 Yes No No

6 15 February 2010 -58 81 No No No

7 6 April 2010 -73 138 No No No

8 12 April 2010 -51 25 No Yes No

9 2 May 2010 -66 201 Yes No Yes

10 29 May 2010 -85 209 No No Yes

11 4 August 2010 -67 123 No No No

12 11 October 2010 -80 64 Yes Yes No
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of scintillations for next 3 days at Varanasi is shown in Table 1. Out of these 12 events

scintillations were observed only in the case of five events. In the remaining seven storms

no scintillations were observed. Thus no clear effect of moderate strength storms is seen on

the occurrence of VHF scintillations over Varanasi.

3.6 Spectral analysis of ionospheric irregularities

For the spectral analysis of the amplitude scintillation index the auto-correlation function

and power spectra are computed that gives the information about the relative power of

irregularities in different temporal scales (Singh et al. 2004). Its significance is that, its

measurements lies in the quantitative estimate of the fluctuations in the electron density

where one needs the information of the power law index describing the irregularities.

Fig. 6 Typical examples of auto-correlation function of VHF scintillations observed at Varanasi on a 21-
07-2008, b 23-02-2008 and c 21-12-1992
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3.6.1 Auto-correlation analysis

The auto-correlation function tells us about the correlation of the amplitude of scintillation

within the same signal. This can be computed as (Muhtarov and Kutiev 1999)

Ck ¼
PT

t¼kþ1 Xt � �Xð Þ Xt�k � �Xð Þf g
PT

t¼1 Xt � �Xð Þ2
ð1Þ

where Xt is the amplitude of the particular time and �X is the average of the given data.

This function depicts the shape and scale size of the ionospheres irregularity. Typical

examples of auto-correlation functions of VHF scintillations observed at Varanasi on

(a) 21-07-2008 and (b) 23-02-2008 are shown in Fig. 6. From this the characteristic length

of the irregularity can be determined according to its definition; the characteristic length of

the irregularity is equal to the distance at which the auto-correlation function falls to 0.5

when the irregularity is moving with a known drift velocity (Khastgir and Singh 1960;

Singh et al. 2006). The time at which the auto-correlation function falls to 0.5 is called as

half-decorrelation time. From the figure, the half-decorrelation time is 6.67 and 9.7 s

respectively. To determine the characteristic length of the irregularities at Varanasi, the

average drift velocity is considered as 100 m/s (Singh et al. 2006). The product of the drift

velocity and the half-decorrelation time gives the characteristic length of the corresponding

irregularities as 667 and 970 m respectively. We have computed half-decorrelation time

and characteristic lengths for 25 samples and observed that the corresponding length of

irregularities varies between 400 and 1200 m which belongs to intermediate scale irreg-

ularities. To compare the auto-correlation functions of same strength scintillation patches

with that of high solar activity period, we have included a typical example of auto-

correlation function derived from scintillation data of high solar activity period observed

on 21st December, 1992 at 1709–1710 h, IST which is also shown in Fig. 6 (Patel et al.

2009). From the Fig. 6c the half-decorrelation time is 4.9 s and the corresponding char-

acteristic length of the irregularities is 490 m. Patel et al. (2009) and Singh et al. (2006)

have shown that the characteristic lengths of irregularities over Varanasi varies between

100 and 3000 m which belongs to intermediate scale irregularities. Basu et al. (1977) have

shown that irregularities for daytime scintillations cover the scale size range at least few

meters to 1 km.

3.6.2 Power spectrum analysis

The power spectra of irregularities are derived from the analysis of the digital scintillation

data. Due to the Fresnel filtering the spectral range is limited, for few hundred meters to

tens of meters depending on the irregularity drift. However, from this, it is possible to

cover large scale sizes. The amplitude scintillation data under strong scintillation condi-

tions can be used to yield information about large irregularities with sizes greater than

Fresnel zone dimension (Yeh and Liu 1982). For the analysis of scintillation through power

spectrum which shows the relation between the power of the scintillation activity with

respect to frequency.

Typical examples of power spectrum of VHF scintillations observed at Varanasi on

(a) 21-07-2008 and (b) 23-02-2008 are shown in Fig. 7 which shows the flat portion

towards the low frequency region, which is due to the effect of Fresnel filtering. The

important features of interest are the slope of the high frequency portion of the scintillation

spectra under consideration of weak scatter. The spectra from roll-off portion and onward
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can be approximated by a straight line. The spectral indices (slopes of the spectra) are

computed between the frequency ranges of 0.1 to 0.5 Hz. The slopes of the corresponding

spectra (Fig. 7) in the frequency range 0.1 Hz B f B 0.5 Hz are -6.97 and -1.98

respectively. The spectral slopes for 25 samples have been computed which determined

that the spectral index of irregularities varies between -1.5 and -8 showing both tran-

sitional scale and intermediate scale irregularities over Varanasi. To compare the power

spectrum of same strength scintillation patches with that of high solar activity period, we

Fig. 7 Typical examples of power spectrum of VHF scintillations observed at Varanasi on a 21-07-2008,
b 23-02-2008 and c 05-12-1992
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have included a typical example of power spectra derived from scintillation data of high

solar activity period observed on 5th December, 1992 at 1739–1745 Hrs IST which is also

shown in Fig. 7 (Patel et al. 2009). The spectral index of the corresponding spectra

(Fig. 7c) in the frequency range 0.1 Hz B f B 0.5 Hz is -6.5. Patel et al. (2009) and Singh

et al. (2006) have shown that the spectral indices of irregularities over Varanasi range

between -2 and -9 with a mean value of -4.

Spectral analysis of observed amplitude fluctuations have shown that the electron

density irregularities in the ionosphere may be represented by a power law spectrum

(Singleton 1974; Crane 1976). The derived power law index for irregularities lying

overhead Varanasi varied between -1.5 and -8. This shows that the scale length of

irregularities varied from event to event. Direct observations by rocket probes have con-

firmed the existence of different spectral slopes for different scale size ranges. Prakash

et al. (1991) reported spectral index values ranging from -1.5 to -4.6 for one-dimensional

power spectra of in situ electron density fluctuations measured by rocket-borne Langmuir

probe flown from SHAR. Jahn and LaBelle (1998) derived spectral indices as -1.7 and -5

at frequencies less than 60 Hz and greater than 60 Hz from in situ rocket measurements of

electron density and electric field. Analyzing about 100 scintillation events recorded at

Ahmedabad, Vyas and Chandra (1994) reported spectral indices in the range -1 to -5.

Basu et al. (1980) reported a spectral index value of 2.8 for scale sizes less than 1 km and

of 1.5 for scale sizes greater than 1 km from in situ data obtained from AE-E satellite.

4 Conclusions

To understand the impact of the recent extreme low solar activity period on the occurrence

of scintillations at low latitude, we analyzed the VHF scintillation observed at Varanasi

during period of 2008–2010. At Varanasi scintillations occur in small patches having the

mean value of patch duration of 30 min. The diurnal variation of percentage occurrence of

scintillations during the extreme minimum solar activity period of 2008–2010 showed that

the scintillation occurrence is low having maximum percentage occurrence between 21:00

and 23:00 h IST during pre-midnight periods. The peak occurrences are 11 % during 2008,

5 % during 2009 and 4 % during 2010. The seasonal percentage occurrence of scintilla-

tions is high in equinox and summer and low in the winter.

The occurrence of VHF scintillations at low latitude particularly in the late afternoon

hours may be due to E-region irregularities and the nighttime scintillation maybe due to the

F-region irregularities. During the extreme low solar activity years the scintillation

occurrences do not vary linearly with the sunspot number. The inhibition and generation of

irregularities during enhanced magnetic activity period are explained by considering

changes in the electric field. The role of the storm time electric field is very complex. It

appears that the magnetospheric electric field changes related to the ring current intensi-

fication are not sufficient to explain all of the observations of inhibition and the generation

of low-latitude ionospheric irregularities during the night. Apart from the ring current,

there are several other factors which shape the development of irregularities, such as the

ion-neutral collision frequency, neutral wind, large scale plasma density gradient, gravity

wave, etc. A magnetic storm enhances the interplay of these parameters and hence their

contributions should be considered separately.

The spectral analysis of observed amplitude fluctuations have shown that the electron

density irregularities in the ionosphere may be represented by a power law spectrum. The
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derived power law index for irregularities lying over head Varanasi varied between -1.5

and -8. This shows that the scale length of irregularities varied from event to event which

correspond to intermediate scale irregularities. The auto-correlation analysis of amplitude

scintillations showed that characteristic length of irregularities varies between 400 and

1200 m which confirms to the intermediate scale irregularities.

Effect of magnetic and solar activities on ionospheric irregularities are studied so as to

ascertain their role in the space weather of the near-earth environment in space. Solar and

geomagnetic activity are linked to the upper atmosphere and constituted one of the important

links in understanding the complex solar terrestrial relations. The study of solar-terrestrial

relation is also of practical importance because the trans-ionospheric radio communications

and satellite ephemeris predictions are severally degraded during these activities.

Acknowledgments This work was partially supported by Indian Space Research Organization (ISRO),
Bangalore under ISRO-SSPS program. We are thankful to all the reviewers and Editor for providing
constructive comments and suggestions to improve the quality of the manuscript.

References

Aarons J (1991) The role of the ring current in the generation or inhibition of equatorial F-layer irregularities
during magnetic storms. Radio Sci 26(4):1131–1149

Aarons J, Mullen JP, Koster JR, Da Silva RF, Mede-rios JR, Mederios RT, Bushby R, Pantoja J, Lanat J,
Paulson MR (1980) Seasonal and geomagnetic control of equatorial scintillations in two longitude
sectors. J Atmos Terr Phys 42(9):861–866

Abdu MA, Batista IS, Walker GO, Sobral JHA, Trivedi NB, de Paula ER (1995) Equatorial ionospheric
electric fields during magnetospheric disturbances: local time/longitude dependences from recent EITS
campaigns. J Atmos Terr Phys 57(10):1065–1083

Abdu MA, Batista IS, Takahashi H, Sobral JHA, Medeiros AF, Trivedi NB (2003) Magnetospheric distur-
bances induced equatorial plasma bubble development and dynamics. J Geophys Res 108(A12):1449

Anastassiadis M, Matsoukas D, Moraitis G (1970) 40-MHz ionospheric scintillation and the sporadic-E
layer. Radio Sci 5(6):953–957

Banola S, Pathan BM, Rao DRK (2001) Strength of the equatorial electrojet and geomagnetic activity control
on VHF scintillations at the Indian longitudinal zone. Indian J Radio Space Phys 30(4):163–171

Basu B (1998) Equatorial plasma instability in time-dependent equilibrium. Phys Plasmas 5(5):2022–2028
Basu S, Basu Su (1989) Scintillation technique for probing ionospheric irregularities. In: Liu CH (ed) World

ionospheric/thermospheric studies (WITS) handbook, vol 2. SCOSTEP University of Ill Urbana,
Champaign, pp 128–130

Basu S, Aarons J, McClure JP, Lahoz C, Bushby A, Woodman RF (1977) Preliminary comparisons of VHF
radar maps of F-region irregularities with scintillations in the equatorial region. J Atmos Terr Phys
39(9):1251–1262

Basu S, McClure JP, Bau S, Hanson WB, Aarons J (1980) Coordinated study of equatorial scintillation and
in situ and radar observations of nighttime F region irregularities. J Geophys Res 85(1):5119–5130

Basu Su, Basu S, McClure JP, Hanson WB, Whitney HE (1983) High resolution topside in situ data of
electron densities and VHF/GHz scintillation in the equatorial region. J Geophys Res 88(1):403–415

Basu S, Kudeki E, Basu Su, Valladares CE, Weber EJ, Zengingounul HP, Bhattacharyya A, Sheehan R,
Meriwether JW, Boindi MA, Kuenzler H, Espinoza J (1996) Scintillations, plasma drifts and neutral
winds in the equatorial ionosphere. J Geophys Res 101(12):26783–26795

Basu S, Basu Su, Groves KM, Yeh HC, Su SY, Rich FJ, Sultan PJ (2001a) Response of the equatorial
ionosphere in the South Atlantic region to the great magnetic storm of 15 July 2000. Geophys Res Lett
28(18):3577–3580

Basu Su, Basu S, Valladares CE, Yeh HC, Su SY, MacKenzie E, Sultan PJ, Aarons J, Rich FJ, Doherty P,
Groves KM, Bullett TW (2001b) Ionospheric effects of major magnetic storms during the international
space weather period of September and October 1999: GPS observations, VHF/UHF scintillations and
in situ density structures at middle and equatorial latitudes. J Geophys Res 106(A12):30389–30413

Bhattacharya A, Basu S, Groves KM, Valladares CE, Sheehan R (2002) Effect of magnetic activity on the
dynamics of equatorial F region irregularities. J Geophys Res 107(A12):SIA 20-1–SIA 20-7

Acta Geod Geophys (2017) 52:35–51 49

123



Chakraborty SK, DasGupta A, Ray S, Banerjee S (1999) Long-term observations of VHF scintillation and
total electron content near the crest of the equatorial anomaly in the Indian longitude zone. Radio Sci
34(1):241–255

Chandra H, Vyas GD, Rao DRK, Pathan BM, Iype A, Sekaran BR, Naidu A, Sadique SM, Salgaonkar CS,
Tyagi TR, Vijay Kumar PN, Singh L, Iyer KN, Pathak KN, Gwal AK, Kumar S, Singh RP, Singh UP,
Singh B, Jain VK, Navneeth GN, Koparkar PV, Rama Rao PVS, Jaychandram PT, Sriram P, Santa Rao
NYS, Das Gupta A, Basu K, Rastogi RG (1993) Coordinated multistation VHF scintillation obser-
vations in India. Ind J Radio Space Phys 22:69–81

Chen J, Satyanarayana P, Ossakow SL (1983) The morphology of a multi-bubble system in the ionosphere.
J Geophys Res 88(A7):5525–5536

Crane RK (1976) Spectra of ionospheric scintillation. J Geophys Res 81:2041–2050
Dabas RS, Lakshmi DR, Reddy BM (1989) Effect of geomagnetic disturbances on the VHF nighttime

scintillation activity at equatorial and low latitudes. Radio Sci 24(4):563–573
Dabas RS, Singh L, Lakshmi DR, Subramanyam P, Chopra P, Garg SC (2003) Evolution and dynamics of

equatorial plasma bubbles: Relationships to E 9 B drift, post sunset total electron content enhance-
ments, and equatorial electrojet strength. Radio Sci 38(4):14-1–14-11

Dasgupta A, Kersley L (1976) Summer daytime scintillations and sporadic-E. J Atmos Terr Phys
38(6):615–618

DasGupta A, Maitra A, Basu S (1981) Occurrence of nighttime VHF scintillations near the equatorial
anomaly crest in the Indian sector. Radio Sci 16(6):1455–1458

DasGupta A, Maitra A, Das SK (1985) Post-midnight equatorial scintillation activity in relation to geo-
magnetic disturbances. J Atmos Terr Phys 47(8):911–916

Fejer BG (1991) Low latitude electrodynamic plasma drifts: a review. J Atmos Terr Phys 53(8):677–693
Fejer BG (1997) The electrodynamics of the low latitude ionosphere: recent results and future challenges.

J Atmos Solar Terr Phys 59(13):1465–1482
Fejer BG, Kelley MC (1980) Ionospheric irregularities. Rev Geophys 18(2):401–454
Fejer BG, Scherliess L, DePaula ER (1999) Effects of the vertical plasma drift velocity on the generation

and evolution of equatorial spread F. J Geophys Res 104(A9):19859–19869
Groves KM, Basu S, Weber EJ, Smithan M, Kuenzler H, Valladares CE, Sheehan R, Mackenzie E, Secan

JA, Ning P, McNeill WJ, Moonan DW, Kendra MJ (1997) Equatorial scintillation and system support.
Radio Sci 32(5):2047–2064

Haerendel G (1974) Theory of equatorial spread-F, Rep. Max Planck Institut fur Phys. and Astrophys,
Garching

Hajkowicz LA, Minakoshi H (2003) Mid-latitude ionospheric scintillation anomaly in the Far East. Ann
Geophys 21:577–581

Huang CM (1970) F-region irregularities that cause scintillations and spread-F at low latitude. J Geophys
Res 75:4833–4841

Jahn JM, LaBelle J (1998) Rocket measurements of high-altitude spread F irregularities at the magnetic dip
equator. J Geophys Res 103(A10):23427–23441

Kelley MC (1985) Recent results and outstanding problems of equatorial spread-F. J Atmos Solar Terr Phys
47(8):745–752

Kelley MC (1989) The Earth’s ionosphere. Academic Press, San Diego
Khastgir SR, Singh RN (1960) The size of moving irregularities in the F-region and spread angle of the radio

waves scattered from them. J Atmos Terr Phys 18:123–126
Kintner PM, Kil H, Beach TL, De Paula ER (2001) Fading timescales associated with GPS signal and

potential consequences. Radio Sci 36(4):731–743
Krishna Murthy BV (1993) Equatorial spread-F. Indian J Radio Space Phys 22:82–88
Kumar S, Gwal AK (2000) VHF ionospheric scintillations near the equatorial anomaly crest: solar and

magnetic activity effects. J Atmos Solar Terr Phys 62(3):157–167
Kumar S, Singh AK, Chauhan P, Gwal AK, Singh B, Singh RP (1993) Multistation analysis of VHF radio

wave scintillations at low latitudes. Indian J Radio Space Phys 22(4):267–272
Mathew B, Pathan BM, Iyer KN, Rao DRK (1991) Comparative study of scintillations at the magnetic

equator and at the crest regions of the anomaly in the Indian zone. Proc Indian Acad Sci
100(4):331–340

Mathew B, Iyer KN, Pathan BM (1992) Patchy occurrence of VHF scintillation at tropical latitudes. J Atmos
Terr Phys 54(7):963–968

McClure JP, Hanson WB, Hoffman JH (1977) Plasma bubbles and irregularities over the equatorial iono-
sphere. J Geophys Res 82:2650–2656

Muhtarov P, Kutiev I (1999) Autocorrelation method for temporal interpolation and short-term prediction of
ionospheric data. Radio Sci 34:459–464

50 Acta Geod Geophys (2017) 52:35–51

123



Ogawa T, Suzuki A, Kunitake M (1989) Spatial distribution of mid-latitude sporadic-E scintillations in
summer daytime. Radio Sci 24(4):527–538

Patel K, Singh AK, Patel RP, Singh RP (2009) Characteristics of low latitude ionospheric E-region irreg-
ularities linked with daytime VHF scintillations measured from Varanasi. J Earth Syst Sci 118(6):1–11

Pathak KN, Jivrajani RD, Joshi HP, Iyer KN (1995) Characteristics of VHF scintillations in the equatorial
anomaly crest region in India. Ann Geophys 13:730–739

Pathan BM, Rastogi RG, Rao DRK (1992) On the width and complexities of the equatorial nighttime radio
wave scintillation belt in the Indian region. J Geomagn Geoelectr 44(2):129–142

Pedatella NM, Lei J, Larson KM, Forbes JM (2009) Observation of the ionospheric response to the 15
December 2006 geomagnetic storm: long duration positive storm effect. J Geophys Res 114:A12313

Prakash S, Pal S, Chandra H (1991) In-situ studies of equatorial spread-F over SHAR—steep gradients in the
bottomside F-region and transitional wavelength results. J Atmos Terr Phys 53(10):977–986

Prasad DSYYD, Brahmanandam PS, Yenkateswarlu K, Niranjan K, Rama Rao PVS (2004) Characteristics
of VHF scintillations in the Indian equatorial and low latitude stations. Indian J Radio Space Phys
33(3):158–169

Prasad DSVVD, Rama Rao PVS, Uma G, Gopi Krishna S, Venkateswarlu K (2005) Geomagnetic activity
control on VHF scintillations over an Indian low latitude station, Waltair (17.7�N, 83.3�E, 20�N dip).
J Earth Syst Sci 114(4):437–441

Prasad SNVS, Rama Rao PVS, Prasad DSVVD, Venkatesh K, Niranjan K (2012) Morphological studies on
ionospheric VHF scintillations over an Indian low latitude station during a solar cycle period
(2001–2010). Adv Space Res 50(1):56–69

Rama Rao PVS, Sri Ram P, Jayachandran PT, Prasad DSVVD (1996) Multistation VHF scintillation studies
at low latitudes. Planet Space Sci 44(10):1209–1217

Rama Rao PVS, Jayachandran PT, Sri Ram P (1997) Ionospheric irregularities role of equatorial ionisation
anomaly. Radio Sci 32(4):1551–1557

Rama Rao PVS, Niranjan K, Prasad DSVVD, Gopi Krishna S, Tulasi Ram S (2004) Simultaneous obser-
vations of VHF and L-band scintillations from an Indian low latitude station Waltair (17.7�N, 83.3�E).
In: Proceedings of IBSS-2004, Trieste, Italy

Rastogi RG, Iyer KN (1976) Ionospheric scintillations induced by cloud of intense sporadic-E layer. Curr
Sci 45:685–686

Rastogi RG, Woodman RF (1978) Spread F in equatorial ionograms associated with reversal of horizontal
F-region electric field. Ann Geophys 34:31–36

Rastogi RG, Mullen JP, Mackenzie E (1981) Effect of geomagnetic activity on equatorial VHF scintillations
and spread F. J Geophys Res 86(A5):3661–3664

Singh AK, Singh RP (1997) Observations and modeling of nocturnal ionospheric irregularities in low
latitude region. J Geomagn Geoelectr 40:1115–1129

Singh RP, Patel RP, Singh AK (2004) Effect of solar and magnetic activity on VHF scintillations near the
equatorial anomaly crest. Ann Geophys 22:2849–2860

Singh AK, Patel RP, Singh RP (2006) Statistical features of overhead ionospheric irregularities and its
generation mechanism at low latitude. J Atmos Solar Terr Phys 68(10):1116–1124

Singh SB, Patel RP, Singh AK, Singh RP (2010) Modeling of VHF scintillation observed at low latitude.
IOP Sci J Phys 208:012065

Singleton DG (1974) Power spectra of ionospheric scintillations. J Atmos Terr Phys 36(1):113–133
Sreeja V, Devasia CV, Ravindran S, Sridharan R (2009) The persistence of equatorial spread F—an analysis

on seasonal, solar activity and geomagnetic activity aspects. Ann Geophys 27:503–510
Tsunoda RT, Livingston RC, McClure JP, Hanson WB (1982) Equatorial plasma bubbles: vertically

elongated wedges from the bottom side Flayer. J Geophys Res 87(A11):9171–9180
Tulasi Ram S, Ramma Rao PVS, Niranjan K, Prasad DSVVD, Sridharan R, Devasia CV, Ravindran S

(2006) The role of post-sunset vertical drifts at the equator in predicting the onset of VHF ionospheric
scintillations during high and low sunspot activity. Ann Geophys 24:1609–1616

Vyas BM, Ayanandan BD (2011) Nighttime VHF ionospheric scintillation characteristics near the crest of
Appleton anomaly station Udaipur (24.6�N, 73.7�E). Indian J Radio Space Phys 40(4):191–202

Vyas GD, Chandra H (1994) VHF scintillation and spread-F in the anomaly crest region. Indian J Radio
Space Phys 23:157–164

Whalen JA (2009) The linear dependence of GHz scintillations on electron density observed in the equa-
torial anomaly. Ann Geophys 27:1755–1761

Whitney HE, Aarons J, Malik C (1969) A proposed index for measuring ionospheric scintillation. Planet
Space Sci 17:1069–1073

Yeh KC, Liu CH (1982) Radio-wave scintillations in the ionosphere. Proc IEEE 70:324–360

Acta Geod Geophys (2017) 52:35–51 51

123


	Ionospheric irregularities at low latitude using VHF scintillations during extreme low solar activity period (2008--2010)
	Abstract
	Introduction
	Data analysis
	Results and discussions
	Diurnal and annual variation
	Seasonal variation
	Effect of solar activity
	Effect of geomagnetic activity
	Effect of geomagnetic storm
	Spectral analysis of ionospheric irregularities
	Auto-correlation analysis
	Power spectrum analysis


	Conclusions
	Acknowledgments
	References




