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Abstract In Palancz et al. (J Geod 84: 79-85, 2009), linear homotopy was introduced
and its applications to geodesy presented. Never before had the concept of nonlinear
homotopy been used by the geodetic community. This is partly attributed to the complexity
of the involved equations and partly due to the computational time required. Recently,
however, Nor et al. (MATEMATIKA 29: 159-171, 2013) suggested the possibility of
constructing nonlinear homotopy. In this short note, Nor et al. (MATEMATIKA 29:
159-171, 2013) idea is developed for geodetic applications and an example of its use
illustrated.
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1 Nonlinear Homotopy

Since the linear homotopy function H(x,4) is just a linear combination of the starting p(x)
and the target system ¢(x), it is a first order polynomial of the homotopy parameter / (see,
e.g., Awange et al. 2010, p. 64) given by

H(x,2) = (1 = 2)p(x) + Aq(x). (1)
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It would be reasonable to think that a nonlinear homotopys, i.e.,—let us say a second order
homotopy—can be constructed as a second order polynomial of A. However, Nor et al.
(2013) suggested the following analogy to create a second order homotopy function. Nor
et al. (2013) idea of nonlinear homotopy function comes from the construction of the
Bezier splines. Bezier curves are used to draw smooth curves along points on a path. In
case of two points (P, Py) in Fig. 1, the point Qg runs from P, to P; while the parameter A
changes from O to 1, i.e.,

Qo= (1—2)Po+ P, 7€[0,1]. (2)

In case of three points (Py, Py, P»), e.g., Fig. 2, the point Q¢ runs from Py to P, while
point Q; runs from P, to P», i.e.,

él :(1 _/I)Pﬂl_")”P*}% VAS [0’ 1]7 (3)
and point Ry runs along a smooth path from Py to Py, i.e.,
Ro=(1—7)Q0+ 701, 7€[0,1], (4)
or substituting Egs. (2) and (3) in (4) leads to
Ro=(1—2)Po+2(1— )P, + 2Py, 1 €l0,1]. (5)

Considering the analogy between the Bezier curve construction and the quadratic homo-
topy function, Nor et al. (2013) suggested the following casting,

Py~ p(x)
Py NH(X> /“)

P Nq(x)7

from which the second order homotopy function becomes

Fig. 1 Linear Bezier spline P1
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Fig. 2 Quadratic Bezier spline

Hy(x, 2) = (1 — 2)%p(x) +24(1 — A)H(x, 2) 4+ *q(x). (6)
Substituting H(x, ) from Eq. (1) in (6) leads to
(1= 2)%p(x) +22(1 = 2)((1 = Dp(x) + 2q(x)) + 2*q(x), (7)

which surprisingly is a third order polynomial of /.

2 Example of its Application to Geodesy (GPS Pseudorange Problem)

In order to discover the features of the nonlinear homotopy (Eq. 7), the overdetermine GPS
positioning problem (i.e., the case of n > 4 satellite) is illustrated. The prototype equation
expressing the known satellite positions (a;, b;, ¢;), unknown receiver position (x, x3, x3),
and clock bias (x4) is (Awange and Palancz 2016):

gi=d;— (\/(xl — @) (2 — by) (v — ) - x4), fori=1,2,...n

The overdetermined system can then be converted into a determined system using the
least square technique. Given the objective function to be minimized as G(x1,x2,x3,%4) =
" | g7, its partial derivative with respect to the unknown receiver position and clock bias,
variables x;| i = 1, 2,...4 leads to a determined nonlinear system of four equations
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Table 1 Results of the solutions

of the GPS pseudorange problem Method Running time (s) Norm of error

fi ious methods.

o various methods Linear homotopy (1) 130 0.04424
Nonlinear homotopy 1.94 0.03125
Numerical Groebner basis 0.06 0.0690
Linear homotopy (2) 2.58 0.0358

. —12+n - 2(x; — a;) (—X4 - \/(xl - ai)2+(x2 - bi)2+(X3 - Ci)2 + di>
i=0

VG — @)+ — b))+ — )

,in 2()62 — b,’) (7X4 — \/(xl — a,‘)2+(XQ — b,’)2+()€3 — C,‘)2 + di>
82 = -
’ i=0 \/(xl — a,-)2+(x2 — bi)2+(X3 — c,-)2

. ,lin . 2(x3 — ;) (—x4 - \/(xl - a,-)z—i-(xz — b)) 4 (x3 — c,l)2 + a’i>

=0 \/(x, — i)+ (0 = b) (v — )’

=5 2= = a4 - e+ ).

The resulting determined system above is then solved using both linear and nonlinear
second order homotopy. The starting system can be created via fixed point homotopy (see,
e.g., Palancz et al. 2009). First, computations are made with the same medium step size for
both linear as well as nonlinear homotopy. The results of the computations are summarized
in Table 1 where they show the running time of the nonlinear homotopy to be higher than
that of the linear homotopy, but with smaller error. To clarify the situation, a second
computation with linear homotopy (2) using smaller step size in order to decrease its error
was undertaken. In that case, the running time increased considerably and the error was
higher than that of the nonlinear homotopy. It means that nonlinear homotopy may provide
shorter running time at the same error limit. As a check to the computation, the system of
nonlinear equations is solved using numerical Groebner basis. Groebner basis leads to a
faster computational time but with higher error. Considering its running time, one should
take into consideration that numerical Groebner basis is a compiled function, while the
homotopy function runs in interpreter mode.

References

Awange JL, Palancz B (2016) Geosptatial algebraic computations. In: Theory and applications, 3rd edn.
Springer, Berlin

Awange JL, Grafarend EW, Palancz B, Zaletnyik P (2010) Algebraic geodesy and geoinformatics. Springer,
Berlin

Nor HM, Ismail AM, Majid AA (2013) Quadratic bezier homotopy function for solving system of poly-
nomial equations. MATEMATIKA 29(2):159-171

Palancz B, Awange JL, Zaletnyik P, Lewis RH (2009) Linear homotopy solution of nonlinear systems of
equations in geodesy. J Geod 84(1):79-95

@ Springer



	Nonlinear homotopy in geodesy
	Abstract
	Nonlinear Homotopy
	Example of its Application to Geodesy (GPS Pseudorange Problem)
	References




