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Abstract In this paper we present the results of 3D conductive thermal modeling of the

Alpine–Pannonian transition zone. The study area comprises the Vienna, Danube, Styrian

and Mura–Zala basins, surrounded by the Eastern Alps, the Western Carpathians and

Transdanubian Range. The model consists of three layers: Tertiary sediments, the under-

lying crust and lithospheric mantle. The crust and mantle were homogenous with constant

thermal properties. Heat production in the sediments and crust was 1 lW/m3. The thermal

conductivity of sediments varied horizontally and vertically and based on laboratory

measurements. We tested two scenarios: a steady-state and a time-dependent case. The

conductive heat transport equation was solved by finite element method using Comsol

Multiphysics. The results of the steady-state model fit to the observation in the northern part

of the study area, but this model predicts lower heat flow density and temperatures than

observed in the southern part of the study area including the Styrian basin. The area

underwent lithospheric stretching during the Early-Middle Miocene time, therefore the

temperature field in the lithosphere is not steady-state. We calculated the initial temperature

distribution in the lithosphere at the end of rifting using non-homogeneous stretching fac-

tors, and we modeled the present day thermal field. The results of the time-dependent model

fit to the observed heat flow density and temperatures, except in those areas where intensive

groundwater flow occurs in the carbonatic basement of the Transdanubian Range and

Northern Calcareous Alps, and the metamorphic basement high between the Mura trough

and Styrian basin. We conclude that time-dependent model is able to predict the temperature

field in the upper 6–8 km of the crust, and is a valuable tool in EGS exploration.
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1 Introduction

The Pannonian basin is one of the most favorable areas in Europe to utilize geothermal

energy owing to the high heat flow density (Hurter and Haenel 2002; Rajver and Ravnik

2002; Franko et al. 1995; Lenkey et al. 2002) and abundance of thermal water stored in the

porous-permeable sediments and in the fractured basement (Goldbrunner 2000; Fendek

and Fendekova 2010; Rman et al. 2015; Szanyi and Kovács 2010; Horváth et al. 2015).

The geothermal resources are shared amongst the countries located in the area, therefore

the sustainable production of thermal water requires coordinated actions. In the framework

of the TransEnergy (TE) project the geological surveys of Austria, Hungary, Slovakia and

Slovenia collected and harmonized the geological, hydrogeological and geothermal data in

order to estimate the geothermal potential, register the geothermal installations, determine

the rate of present day utilization and aid the future installations in the Alpine–Pannonian

transition zone (Fig. 1). The geothermal data are presented in the forms of heat flow

density map and temperature maps, which exhibit several geothermal anomalies. These

anomalies can be interpreted by modeling the temperature distribution beneath the study

Fig. 1 Index map of the study area. SBS: South Burgenland Swell
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area. The modeling allows the extrapolation of temperature to large depth, which is crucial

to understand the geodynamics of the lithosphere (Stüwe 2002; Cloetingh et al. 2010).

Several crustal and lithospheric scale temperature models were calculated in the Pan-

nonian-Carpathian region before. Based on steady-state 2D thermal models along regional

deep seismic sections Čermák and Bodri (1986) concluded that the high heat flow in the

Pannonian basin originated from the mantle. On the contrary, 2D thermal balance calcula-

tions along a section in the Transylvanian basin explain the low heat flow density in the basin

by normal mantle heat flow and reduced heat production rate in the upper crust built up of

ophiolites (Andreescu et al. 2002). The Eastern Carpathians are characterized by normal heat

flow density and it is in accordance with normal crustal structure and heat production rates as

demonstrated by the steady-state thermal modelling along sections (Dérerová et al. 2006). In

their model the crustal structure was derived from deep seismic sections, and gravity mod-

elling. Surface heat flow density as boundary condition together with crustal structure and

heat production rates were used by Lankreijer et al. (1999) to calculate the temperature

distribution in the lithosphere and the integrated strength of the lithosphere along two sections

crossing the Western Carpathians—Pannonian basin and Transylvanian basin—Eastern

Carpathians. They concluded that the cold European foreland and the Ukrainian Shield

comprised a mechanically strong frame of the Carpathians and the lithosphere of the hot

internal parts was very weak. Time-dependent thermal models were used to take into cor-

rection the cooling effect of Neogene and Quaternary sedimentation on the heat flow density

in the Pannonian basin (Lenkey 1999) and Transylvanian basin (Demetrescu et al. 2001) and

determine the subsidence, thermal and maturation history of sediments in hydrocarbon

exploration wells in the Pannonian basin (Horváth et al. 1988).

This paper presents the results of 3D conductive modeling of the temperature field in the

lithosphere of the Alpine–Pannonian transition zone. We tested both steady-state and time-

dependent models in order to fit into the thermal data compiled in the TE project and draw

conclusions about the heat transport processes in the study area.

2 Geological setting

The study area is surrounded by the Eastern Alps to the west, the Western Carpathians to

the north and the Transdanubian Range to the south-east. The southern boundary follows

the Slovenian-Croatian border until the Hungarian border and after crossing the Zala basin

Fig. 2 Crustal scale tectonic section across the study area after Szafián et al. (1999). Location of the section
is shown in Fig. 1
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it joins to the Transdanubian Range (Fig. 1). In the study area several deep basins and

troughs filled with Neogene and Quaternary sediments can be found (Figs. 2, 3a). These

sediments unconformably overlie Mesozoic carbonates and Paleozoic metamorphic rocks

belonging to the Austroalpine nappe system. Figure 2 shows a typical crustal section

across the area illustrating the structure of the basement and the tectonic evolution of the

Alpine–Pannonian transition zone after Szafián et al. (1999) and Schmid et al. (2008). The

section is based on well data, industrial seismic lines and the deep reflection seismic line

MK-1 from distance 100 km until 175 km (Ádám et al. 1984). The Vienna basin is located

on the junction between the Eastern Alps and the Western Carpathians. It is interpreted as a

sinistral pull-apart basin, which was opened along NE-SW trending shear zones during

Early-Middle Miocene (Royden 1985; Wessely 1988; Fodor 1995). The basement consists

of the Upper Austroalpine (Northern Calcareous Alps) and Lower Austroalpine nappes and

allochtonous molasse and flysch sediments. The Vienna basin is separated from the

Danube basin by the Little Carpathians and the Leitha Mts. In the northwestern part of the

Danube basin south-east dipping low-angle normal faults control the formation of troughs

and basement highs. The low-angle normal faults are the Middle Miocene rejuvenations of

the pre-existing Cretaceous thrust faults of the Austroalpine nappe system (Tari and

Fig. 3 The major horizons in the study area, which separate distinct rock types having different thermal
properties. a Pre-Tertiary basement compiled by Maros (2012), b depth of the Mohorovičić discontinuity
based on deep seismic lines listed in the text, c bottom of the lithosphere based on seismological
observations and magnetotelluric soundings. In a the Mesozoic and older carbonatic rocks are also
presented, because they comprise important geothermal reservoirs, where intensive karstic water flow is
taking place influencing the thermal field
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Horváth 2010). The Raba fault running in the middle of the basin in the NE-SW direction

separates the Paleozoic Lower Austroalpine basement to the northwest from the Upper

Austroalpine basement consisting of Triassic carbonates to the southeast (Szafián et al.

1999). The Styrian basin is located at the eastern margin of the Eastern Alps and the South

Burgenland Swell separates it from the Danube basin. The northern part of the South

Burgenland Swell comprises the Rechnitz window, where the Penninic basement of the

Austroalpine nappes outcrops. It is interpreted as a metamorphic core complex (Tari et al.

1992) resulted from extensional unroofing of the footwall of a low-angle normal fault. The

rapid uplift of the Rechnitz window (Dunkl and Demény 1997) was contemporaneous with

basement subsidence (Gross et al. 2007). The Mura trough was opened along a ENE-WSW

trending transtensional fault systems (Fig. 3a) during Early Miocene time (Jelen and Rifelj

2003). The Zala basin was formed by a NW–SE trending listric fault system active in

Early-Middle Miocene (Fodor et al. 2011).

The driving mechanism of the extension in the Pannonian basin was subduction roll-

back of the Magura oceanic plate beneath the Carpathians lasting from Early Miocene until

early Late Miocene (Royden et al. 1983a; Csontos et al. 1992; Horváth et al. 2015). In the

Alpine–Pannonian transition zone extrusion tectonics also strongly influenced the style of

extension (Ratschbacher et al. 1991a, b). The orogenic wedge of the Eastern Alps, formed

due to the Late Oligocene—Early Miocene convergence between the Adriatic and Euro-

pean plate, escaped towards east from the collisional zone, and suffered extensional col-

lapse along conjugate strike-slip fault systems. These strike-slip faults played an important

role in the formation of the Vienna and Danube basins and the Mura trough. Other

mechanisms as delamination and roll-back of the central Dinaric slab (Matenco and

Radivojević 2012) and eastward mantle flow (Kovács et al. 2012) might have also con-

tributed to the formation of the Pannonian basin.

Until Late Miocene mainly clayey and marly sediments with interbedded sand layers

were deposited in the basins of the study area (Kovač et al. 2004; Jelen and Rifelj 2005). In

Late Miocene the area was occupied by the Lake Pannon (Magyar et al. 1999). The lake

was filled up by a large delta system prograding from northwest and west (Magyar et al.

2013). First the Vienna basin was infilled, then the Danube and Zala basins, and coevally

the Mura trough from west. In the central regions (Danube basin, Mura–Zala basin) the

prograding delta deposited several kilometers wide and some 10 meters thick sheets of

sand with good connectivity. In the central part the subsidence and sedimentation con-

tinued, and these permeable layers, the so called ‘‘Upper Pannonian reservoir’’, was buried

under 2 km thick sediment pile. It is the main thermal water bearing layer in the Danube

basin and the Mura–Zala basin (Rman et al. 2015; Horváth et al. 2015; Tóth et al. 2016). In

the Vienna basin sediments were deposited in some 100 m thickness after Late Miocene,

and in the Styrian basin even erosion occurred (Hölzel et al. 2008; Sachsenhofer et al.

1997). Therefore, in the peripheral basins the geothermal reservoirs in the Neogene sed-

iments are restricted to a few local favorable layers in the Early-Middle Miocene strata.

Beside the regional Upper Pannonian reservoir and the smaller local reservoirs in the

Neogene sediments karstified and fractured carbonates represent another important type of

geothermal reservoirs in the area. The two most important reservoirs are developed in the

Transdanubian Range and the Northern Calcareous Alps. In the outcropping areas meteoric

water precipitates and after penetrating to large depth it rises to the surface along faults and

discharges in warm springs close to the foot of the hills. Such springs are found at the Lake

Hévı́z at the SW edge of the Transdanubian Range and at Baden or Bad Vöslau at the NE

edge of the Calcareous Alps.
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3 Basement, crustal and lithospheric structure

The pre-Tertiary basement presented in Fig. 3a was edited in the framework of TE by

unifying and harmonizing the national basement maps (Maros 2012). 1672 boreholes were

reevaluated and several 100 km of seismic sections were interpreted in order to update the

basement depth.

The crustal thickness is very well known in the area, because several deep seismic lines

and 3D experiments investigated the transition of the Eastern Alps and the Pannonian

region. The crustal thickness in Fig. 3b is based on deep seismic refraction line VI crossing

the Vienna and Danube basins in NW–SE direction (Beránek and Zounková 1979),

refraction lines ALP75 (Yan and Mechie 1989) and ST (Scarascia and Cassinis 1997)

crossing the Styrian basin in W-E direction, reflection line 3T crossing the Vienna basin,

Little Carpathians and northern part of the Danube basin (Tomek et al. 1987), line MK-1

(Ádám et al. 1984) interpreted in Fig. 2, line CEL-01 running in NE-SW direction in the

Danube basin at the foot of the Transdanubian Range (Sroda 2006) and CEL-07 running in

NW–SE direction along the Hungarian-Slovenian and Hungarian-Croatian borders (Kiss

2005). We also incorporated in the map the Moho map of the Eastern Alps based on

tomographic inversions (Behm et al. 2007).

The lithospheric thickness is based on seismological observations (Babuška and

Plomerová 1988; Babuška et al. 1990) and magnetotelluric soundings (Ádám 1996; Ádám

et al. 1996, 1997). As these data are sparse the map shows interpolated values beneath the

Styrian basin, and in general, in the southern part of the study area. In the recent years

several upper mantle tomographic results were published for the Alpine–Pannonian-Di-

naric region (Brückl 2011), where the lithospheric root of the Eastern Alps is well imaged

by the negative velocity anomaly. Unfortunately, in those areas where the lithosphere is

thinner than 150 km the models are not capable to resolve the lithospheric thickness.

However, we note that in 150 km depth negative P-wave velocity anomalies exist both

beneath the Mura–Zala basin and the Styrian basin (Mitterbauer et al. 2010), or only

beneath the Mura–Zala basin (Koulakov et al. 2009). It might indicate that the lithosphere

is thinner in these areas than indicated in Fig. 3c. Nevertheless, in the steady-state thermal

model we used the given lithospheric thickness.

4 Heat flow density and temperature

The geothermal conditions of the study area are presented by means of the heat flow

density map and temperature maps in 1 and 2.5 km depths (Fig. 4). The temperature data

used for constructing the maps derive from steady-state temperature logs, corrected bottom

hole temperatures, drill-stem tests, and corrected outflowing water temperatures from

thermal wells (only HU). In Austria new thermal conductivity and heat production rate

measurements were carried out on sediment samples. In the other countries thermal con-

ductivities from previous measurements were used in estimating the heat flow density. The

heat flow density map was constructed from 1243 data. Data coverage is suitable in the

basin areas, but is poor in the Eastern Alps.

In the Vienna basin the heat flow density increases from less than 50 mW/m2 in the

north to more than 80 mW/m2 in the south. The extreme values are caused by groundwater

flow in the Mesozoic carbonates of the Calcareous Alps. The carbonate reservoir recharges

at both outcrops in the SW and NE, and discharges in the southern Vienna basin. The heat
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flow density in the Danube basin is 70–80 mW/m2 with maximum values in the center and

northeastern rim. The heat flow density in the study area, in general, increases towards

south: in the Styrian basin it is over 90 mW/m2, and in the Mura–Zala region it reaches

more than 110 mW/m2. The Transdanubian Range is characterized by very low heat flow

density values of 30–50 mW/m2 due to precipitation of meteoric water into the karstified

limestones and dolomites. The water flows downward in NW direction in the basement of

the Danube basin, and one branch turns to northeast and discharges in lukewarm springs at

the northeastern edge of the mountains, in the Hungarian–Slovakian border zone. The other

branch follows a path toward southwest and discharges in Lake Hévı́z, where surface heat

flow density is around 250 mW/m2. The amount of heat discharged by the warm springs

was summed, and the heat flow density in the Transdanubian Range was corrected by this

value (Lenkey et al. 2002). Thus the heat flow density corrected for the karstic water flow

would increase to 70–80 mW/m2 in the area of the mountain range. It is not shown in

Fig. 4a, because it is based on the observed heat flow density values.

The temperature data measured in boreholes were inter- or extrapolated to 1 km and

2.5 km depths assuming conduction. Temperature in 1 km depth in the basin areas is

around 50–60 �C. The higher values are found in the southern part and in the northeastern

rim of the Danube basin. The recharge areas of the carbonatic reservoirs have low tem-

peratures of 20–30 �C. In the discharge areas of the Transdanubian Range the temperature

Fig. 4 Heat flow density and temperature maps of the study area compiled in the TransEnergy project.
a Heat flow density map, dots: location of heat flow density estimates, crosses with numbers: wells in which
thermal conductivity is known. Names of the wells are listed in Table 1. b Temperature in 1 km depth below
surface. c Temperature in 2.5 km depth. In the shaded area only few data exist
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Table 1 Wells where thermal conductivity and temperature were measured

No. Well name Short name Data type

Austria

1 Styrian basin St-1 T

2 Vienna basin W-3 T

Hungary

3 Lovászi-II k, T

4 Bárszentmihályfalva-1 k

5 B}osárkány-1 k, T

6 Budafa-I k, T

7 Újfalu-I k

8 Ortaháza-Ny1 k

9 Csapod-1 k, T

10 Csesztreg-I k

11 Szilvágy-33 k

12 Dabrony-1 k

13 Nagylengyel-II k

14 Tét-5 k

15 Egyházasdaróc-1 k

16 }Oriszentpéter-2 k

17 Gönyü-1 k, T

18 Celldömölk-ENy1 k

19 Ivánc-1 k

20 Mihályi-28 k

21 Mosonszolnok-1 k

22 Nagylengyel-74 k

23 Pér-1 k

24 Vaszar-DNy1 k

25 Pásztori-1 k

26 Bak-5 k

27 Szombathely-II k

Slovakia

28 Galanta FGG-1 k, T

29 Galanta FGG-2 k

30 Galanta FGG-3 k

31 Cilistoc FGC-1 k

32 Dunajska Streda DS-1 k

33 Dunajska Streda DS-2 k

34 Králova pri Senci VMK-1 k

35 Calovo C-1 k

36 Chorvátsko Grob FGB-1 k

37 Rusovce HGB-1 k

38 Láb L-90 k

39 Rohoznik R-1 k, T

40 Závod ZA-57 k
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was not extrapolated downward, because it would have resulted in extreme high

temperatures.

The temperature in 2.5 km varies more than in 1 km depth. In the centers of the Danube

basin and Mura–Zala basin the temperature is over 110 �C. In the Styrian basin the

location of the maximum temperature (120 �C) is shifted to southern rim of the basin. The

Vienna basin is slightly cooler compared to the other basins, it is characterized with

temperature of 70–80 �C.

5 Description of the model

5.1 Physical model

Assuming conduction the distribution of temperature in the lithosphere was calculated by

solving the heat transport equation (e.g. Carslaw and Jaeger 1959):

cq
oT

ot
¼ o

ox
k
oT

ox

� �
þ o

oy
k
oT

oy

� �
þ o

oz
k
oT

oz

� �
þ A ð1Þ

where T is temperature, c is specific heat, q is density, t is time, k is thermal conductivity,

and A is volumetric heat production rate. c, q, k and A can vary in space. In steady-state the

left side of the equation equals to zero.

We solved Eq. (1) with finite element method using Comsol Multiphysics. At the outer

and internal boundaries the length of an edge of a tetraedric element was 200 m, in general

it increased downward, and in the mantle it reached 2 km.

5.2 Geometry of the model

The model was built in UTM33 coordinate system and it includes three layers with their

own material properties (Fig. 5). These layers in order are the Tertiary sediments, con-

sisting mainly of Neogene sediments, crust and lithospheric mantle, bordered and divided

by the following horizons: surface (Fig. 1), the depth of the pre-Tertiary basement,

Table 1 continued

No. Well name Short name Data type

41 Ciliska Radvan CR-1 k

42 Horná Poton FGHP-1 k

43 Topolovec VTP-11 k, T

Slovenia

44 Moravske Toplice-2 Mt-2/61 T

45 Petišovci-45 Pt-45/53 T

46 Ljutomer-1/88 Ljut-1/88 k, T

47 Petišovci-7/88 Pg-7/88 k

48 Pečarovci-1/91 Peč-1/91 k

49 Murski Gozd-6/85 Mg-6/85 k, T

50 Maribor-1/90 Mb-1/90 k

Thermal conductivities of these wells (except St-1 and W-3) were used to obtain the thermal conductivity of
sediments in the model, the temperatures measured in the wells were compared to the modeled temperatures
(Fig. 11). For location of the wells see Fig. 4a
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Mohorovičić discontinuity, and the bottom of the lithosphere (Fig. 3). In case of the time-

dependent model the bottom of the model was in 125 km depth beneath basins and in areas

where the thickness of the lithosphere is less than 125 km. Otherwise the observed bottom

of the lithosphere was used.

5.3 Thermal properties of rocks

In Eq. (1) the most important material properties are the thermal conductivity and heat

production rate of rocks. Specific heat and density play a role only in the time-dependent

model. We assumed that except for the sediments the lithosphere was homogeneous. We

made this assumption, because we do not know in detail the spatial extent, especially the

thickness of different rock types in the crust, e.g. the thickness of Triassic carbonates in the

Transdanubian Range is unknown. The difference amongst the thermal conductivities of

basement rocks (crystalline rocks, metamorphic rocks and carbonates) is less than the

contrast between the thermal conductivities of the sediments and their basement. Thus, in

spite of the simplification of a homogeneous crust, except for sediments, the model takes

into account the first order features in the thermal conductivities.

The thermal conductivity of sediments varies both horizontally and vertically, due to

changes in their composition (shales, marls, sandstones) and compaction. In the model we

used the same thermal conductivities, which were applied in the heat flow density

Fig. 5 The model block in which the temperature was calculated. St: bottom of the steady-state model, see
Fig. 3c. Td: bottom of the time-dependent model. EA Eastern Alps, VB Vienna basin, DB Danube basin, SB
Styrian basin, TR Transdanubian Range
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estimates. Except for Austria we chose wells, for which we knew the thermal conduc-

tivities of the drilled rocks, in Slovakia after Franko et al. (1995), in Hungary after Dövényi

(1994), in Slovenia after Ravnik (1991) and Ravnik et al. (1995). These wells are given in

Table 1, and the locations of the wells are shown in Fig. 4a. The thermal conductivity of a

certain finite element belonging to the sediment layer in the model was calculated by

horizontal and vertical extrapolation of the values given in the wells. The extrapolation was

performed by the modelling software Comsol Multiphysics. In the Vienna and Styrian

basins we used the mean values of the measured thermal conductivities, because they did

not vary significantly with lithology, depth and age.

Thermal conductivities of crust and mantle were taken from Kappelmeyer and Haenel

(1974) and Zoth and Haenel (1988).

The volumetric heat production rate in the crust and sediments was chosen 1 lW/m3.

This value in the sediments derives from measurements on samples from the Vienna and

Styrian basins. Considerations on the surface and mantle heat flow densities result in

average continental heat production rate ranging between 0.79 and 0.99 lW/m3 (Jaupart

and Mareschal 2014). Our value is on the high end, because the heat flow density is also

high in the area. We neglected the heat production in the mantle, because it is two orders of

magnitude less than in the crust.

The density of sediments, crust and mantle corresponds to the average values. We

calculated the specific heat of rocks from the definition of the thermal diffusivity (j):

j = k/cq. Thermal diffusivity was kept constant in the whole lithosphere

(8.23 9 10-7 m2/s, after Royden and Keen 1980), and given the density and thermal

conductivity of rocks specific heat was determined. The thermal parameters of the model

are summarized in Table 2.

Sensitivity tests indicate that the temperature at the Moho can vary up to few 100 �C
depending on the actual values of the heat production rate and thermal conductivities used

in a thermal model (e.g. Baumann and Rybach 1991; Ellsworth and Ranalli 2002). We did

not take into account that heat production was higher in the upper crust (1.2–2 lW/m3),

and less in the lower crust (0.4–0.6 lW/m3) (Jaupart and Mareschal 1999; Andreescu et al.

2002). We also neglected that the thermal conductivity depended on the temperature

reducing its value in the crust. Therefore, our model can predict the temperature in the

lower crust and the mantle only with considerable error. However, the surface heat flow

Table 2 Thermal properties of rocks used in the model

k (W/m �C) A (10-6 W/m3) c (J/kg �C) q (kg/m3)

Styrian basin sediments 2.4 1 1282 2300

Vienna basin sediments 2.7 1 1426 2300

Sediments in other basins (HU, SK, SI) Varies
(1.5-2.8)

1 1282 2300

Crust 3 1 1374 2800

Mantle 4 0 1554 3300

k thermal conductivity, A volumetric heat production rate, c specific heat, q density

k and A data in Vienna and Styrian basins are mean values from laboratory measurements made in the
framework of TE project. Thermal conductivity of sediments in the other areas comes from wells; HU:
Dövényi (1994), SK: Franko et al. (1995), SI: Ravnik (1991), Ravnik et al. (1995), thermal conductivities of
crust and mantle are from (Kappelmeyer and Haenel 1974; Zoth and Haenel 1988) Densities are mean
values. Specific heat is calculated from j=k/cq assuming that j is constant (8.23 9 10-7 m/s2, Royden and
Keen 1980)
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density is much less sensitive to the variation of the thermal conductivities. We calculated

the surface heat flow density in a steady-state model, where the thickness of the crust and

lithosphere was 35 and 125 km, respectively, the heat production rate in the crust was

1 lW/m3, the temperature at the bottom of the lithosphere was 1300 �C (McKenzie 1978),

and 10 �C at the surface, and the thermal conductivity varied in the crust and mantle. In the

interesting range of crustal and mantle thermal conductivities the surface heat flow density

varies between 58 and 63 mW/m2 (Fig. 6). The latter value is obtained with the thermal

properties listed in Table 2, and it is in agreement to the average heat flow density value in

Europe (Majorowicz and Wybraniec 2011). Therefore, we conclude that the thermal

parameters we used in modeling are suitable to model the surface heat flow density and

predict the temperature until about 10 km depth.

5.4 Boundary and initial conditions

At the surface 10 �C, and at the bottom of the model 1300 �C were prescribed. The vertical

sides of the model were insulating.

In case of the time-dependent solution of Eq. 1 initial temperature distribution must be

defined. The Early-Middle Miocene extension affected the whole lithosphere of the Pan-

nonian basin as evidenced by the attenuated crust and lithosphere, and high heat flow

density (Figs. 3, 4). In the early 1980s Sclater et al. (1980) and Royden et al. (1983b)

showed that the high post-rift subsidence rate and the observed high heat flow density could

Fig. 6 Steady-state surface heat flow density (in mW/m2) as a function of crustal and mantle thermal
conductivities. Model set up: crustal and lithospheric thicknesses are 35 and 125 km, respectively, heat
production in the crust equals to 1 lW/m3, no heat production in the mantle, top and bottom temperatures
are 10 and 1300 �C, respectively. The hatched area indicates the range of thermal conductivities generally
used in modeling
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only be explained if the mantle part of the lithosphere were stretched more than the crust.

The following applications of the stretching model corroborated this observation (Royden

and Dövényi 1988; Lankreijer et al. 1995; Sachsenhofer et al. 1997; Lenkey 1999).

In the stretching model of the lithosphere (sensu McKenzie 1978; Royden and Keen

1980) the lithosphere is stretched instantaneously during the rifting phase, which results in

high geothermal gradient in the attenuated part of the lithosphere (Fig. 7). After the rifting

phase the high temperature in the lithosphere relaxes back to the original geotherm.

It seems suitable to use the stretching factors derived by Lenkey (1999) for the whole

Pannonian basin to calculate the initial temperature distribution in the present model. First we

calculated the steady-state geotherm with thermal parameters given in Table 2, boundary

conditions defined in this chapter, and assuming initial crustal and lithospheric thicknesses of

35 and 125 km, respectively (Fig. 7). We determined initial geotherms in the study area in a

grid with 5 km spacing by compressing the steady-state geotherm with the stretching factors

presented in Fig. 8. In those places, where stretching did not occur we kept the steady-state

geotherm. The initial temperature values in the nodes of the finite element mesh were

obtained by extrapolation of the temperature values of the initial geotherms in the grid.

We assumed that the stretching of the lithosphere was instantaneous, and occurred

17.5 Ma before present, which was the start of the time-dependent calculation.

6 Results

The results of the steady-state modeling are presented in Fig. 9. The modeled heat flow

density reflects the thickness of the lithosphere. As the temperature at the base of the

lithosphere is fixed and the thickness of the lithosphere decreases from NW towards SE

Fig. 7 Examples of geotherms
used in the modeling. Solid line:
steady-state temperature in the
lithosphere, for parameters see
caption of Fig. 6. Dashed line:
initial geotherm in the time-
dependent model calculated from
the steady-state geotherm by
stretching
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(Fig. 3c), the geothermal gradient in the lithosphere, and thus the heat flow density

increases towards SE. This tendency is slightly perturbed by the variation of the crustal

thickness and the refraction of heat flow. Below the Danube basin and Mura–Zala basin the

Fig. 8 Stretching factors in the time-dependent model, which were used to calculate the initial geotherm,
see Fig. 7

Fig. 9 Results of the steady-state model. a Modeled heat flow density. b The difference between the
observed and modeled heat flow densities, negative where observed heat flow density is lower than modeled,
positive vice versa. c Modeled temperature in 2.5 km depth. d The difference between the observed and
modeled temperatures, negative where observed temperature is lower than modeled, positive vice versa
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crust is thin, thus less heat is produced. Additionally, the sediments have lower thermal

conductivity than the crust, thus heat flow is diverted towards the basement flanks. The

superposition of these two effects results in the local heat flow density minima in the center

of the basins and heat flow density maximum in the South Burgenland Swell. The tem-

perature map exhibits the blanketing effect of sediments: the temperature in each basin is

high relative to the basin flanks. It follows from the Fourier law if the thermal conductivity

reduces, then the geothermal gradient increases, providing that the heat flow density is

constant. The effect clearly exists in the basin areas in spite of the fact that the heat flow

density is slightly reduced in the basin centers as discussed above. This reduction in the

heat flow density causes that the maximum temperature in the Danube basin shifts to

southeast.

It is evident that our conductive model is not able to reproduce the convective thermal

anomalies. The observed heat flow density is lower in the areas cooled by downward

groundwater flow (negative values in the difference maps), and higher in the discharge

areas (positive values in the difference maps in the Southern Vienna basin and around Lake

Hévı́z) than the modeled values.

In the southern part of the study area the steady-state model predicts 30–40 mW/m2 less

heat flow density than observed. There are indications that upward groundwater flow

occurs in the basement along faults in this area (Kraljić et al. 2005), but thermal anomalies

of such origin are restricted to smaller areas compared to the large positive anomaly shown

in Fig. 9b, d. Therefore, in the area of this anomaly we reject the model.

In the time-dependent model (Fig. 10), the heat flow density and temperature in the

southern part of the study area are considerably increased, additionally, the heat flow

density is about 10 mW/m2 higher in the center of the Danube basin. These changes

improve significantly the fit between the observed and modeled quantities. In the southern

part of the area, at the Austrian-Slovenian border the heat flow density and the temperature

are still higher than the modeled values (Figs. 10b, d). We attribute these anomalies to

groundwater flow as suggested by Kraljić et al. (2005).

The models are best constrained at those wells, where the thermal conductivity of

sediments is known (Table 1). We chose few wells, in which temperature measurements

were made. The modelled and observed temperatures along these control wells are shown

in Fig. 11. In the northern part of the study area both the steady-state and the time-

dependent model result in good fit to the observed temperatures. The only exception is the

well Göny}u-1, where the modeled values are higher. At this location groundwater flow

takes part in the carbonatic basement, which explains why both models predict higher

temperatures than the observed ones. The temperature data are confusing in the B}osárkány-

1 well. The modeled temperatures fit to the measured values in shallow depth, but it is

difficult to explain the high temperatures in 4 km depth. Either the data are wrong or

groundwater flow is taking place in the shallow sediments. We leave open this question. In

the southern part of the study area the steady-state model misfits to the measured data, and

the time-dependent model improves the fit. However, at the wells Petišovci-45, Moravske

Toplice-2 and Murski Gozd-6 the measured temperatures are very high. As discussed

above these high temperatures might be attributed to groundwater flow. In the Ljutomer-1

well the situation is opposite: the models overestimate the observed temperatures. The

temperature gradient seems to increase with depth, therefore either downward groundwater

flow occurs in the sediments near the well, or more likely the curvature, still visible in the

measured geotherm, is a consequence of influence of the last ice age (Würm) push which

slowly penetrates in depth and slowly dwindles in time (Šafanda and Rajver 2001).
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Either in the maps or in the temperature logs most of the differences between the

observed and modeled heat flow densities and temperatures occur in those places where

groundwater flow is taking place.

7 Discussion and conclusions

In stable continental areas the variation of heat flow density mainly depends on the

crustal heat production. However, in an extensional tectonic setting the heat flow density

is mainly influenced by the lithospheric thickness. The results of the steady-state model

revealed that in the southern part of the study area, where the lithospheric thickness is

not reliable, the model is not capable to reproduce the heat flow density and the mea-

sured temperatures. The time-dependent model leads to much better fit to the observa-

tions. This model contains stretching factors, and one possible interpretation of the

stretching factor is that the lithosphere indeed attenuates. This interpretation leads to the

conclusion that beneath the Styrian basin and Mura–Zala basin the lithosphere is thinner

than indicated on the present lithospheric thickness map. The other interpretation of the

mantle thinning is that surplus heat is added to the lithosphere by some mantle process.

This interpretation is supported by seismic tomographic images that show anomalously

low velocities, and thus high temperature beneath these basins (Koulakov et al. 2009;

Mitterbauer et al. 2010). We may accept any one of the two interpretations, because

Fig. 10 Results of the time-dependent model. For detailed description see caption Fig. 9
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from the viewpoint of the thermal regime of the lithosphere they are equivalent. It is an

important conclusion that care must be taken in those lithospheric scale thermal models

in which the temperature is prescribed at the bottom of the lithosphere. In such models

Fig. 11 Observed and modeled temperatures in control wells, where thermal conductivity is known and
temperature measurements were carried out. Rectangles: measured values, solid line: steady-state model
temperature, dashed line: time-dependent model temperature. Location of the wells is shown in Fig. 4a, and
number of the wells is listed in Table 1
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good controls on the lithospheric thickness and the temperature at the base of the

lithosphere is required.

In case of the time-dependent model, the modeling results differ from the observations

mainly in those areas where groundwater flow is taking place in the basement. Apart from

these places the model is in accordance with the observations. Therefore, we strongly

Fig. 11 continued
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believe that this model describes well the conductive thermal field in the upper 6–8 km of

the crust. Thus, the model can be used to screen target areas for EGS exploration.

In the future it is possible to refine the model. Collecting more information on the

structure of the crust and the heat production rate of the upper crustal rocks will lead to

more precise estimation of the temperature in the lower crust and upper mantle.

Acknowledgements The TransEnergy project was supported by the Central Europe Program, 2CE124P3.
The research presented in this paper was carried out in cooperation amongst the Department of Geophysics
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References
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