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Abstract—Robot-assisted surgery is becoming standard-of-care
in minimally invasive surgery. Given the intense development in
this area, many believe that the next big step is surgical subtask
automation, the partial automation of certain elements of the
procedure. Autonomous execution at lower task levels has the
potential to safely improve one element of a surgical process.
Automation by artificial intelligence may significantly improve
surgery with better accuracy and targeting, that can shorten the
recovering time of the patient. Furthermore, partial automation
can also help surgeons efficiently by reducing the fatigue in the
case of time-consuming operations. In this paper, we present the
automation of soft tissue retraction, an often recurring subtask of
surgical interventions. Soft tissue retraction plays an important
role in laparoscopic cholecystectomy, e.g., during the exploration
of the Calot triangle, automatic retraction would streamline the
procedure. The presented method only relies on a stereo camera
image feed, and therefore does not put additional overhead on
the already crowded operating room. We developed and tested
multiple control methods for soft tissue retraction built on each
other: a simple proportional control for reference, one using
Hidden Markov Models for state estimation, and one employing
fuzzy logic. Our method was tested comparatively with all three
controllers in a simplified phantom environment.

I. INTRODUCTION

In the last decades, Minimally Invasive Surgery (MIS) had
a significant influence on medicine. Unlike traditional open
surgery, MIS uses so-called laparoscopic tools inserted through
small incisions, while the area of operation is observed by an
endoscopic camera. Nowadays a vast number of interventions
can be performed minimal invasively, that benefits both the
patients and the hospitals—MIS usually means shortened stay
in hospital, lower risk of complications and smaller trauma [1].

The wide spread of MIS poses new challenges to the
surgeons, such as cumbersome positions and limited range
of motion. Teleoperated laparscopic surgical robots—like the
da Vinci Surgical System (Intuitive Surgical Inc., Sunny-
vale, CA [2])—appeared to ease these difficulties. Despite
the obvious advantages, the workflow of surgical procedures
performed by teleoperated systems tend to contain a number of
time-consuming and monotonous subtasks. Automating such
subtasks might reduce the cognitive load on the surgeon,
and allow them to better focus on the more critical opera-
tions [3][4][5][6].

Soft tissue retraction is an often recurring subtask in the
surgical workflow. Retraction means the delicate manipulation

of an organ or tissue in such a way that it makes possible the
execution of another subtask. The aim of retraction can either
be maintaining tension (e.g. for blunt dissection or clipping),
or only to give access to the tissue below. This subtask is an
important element of many interventions, e.g., can be found
in the workflow of laparoscopic cholecystectomy; retraction
is used during the dissection of the cystic duct and artery,
or during the separation of the galbladder and the liver [7].
Notably that, this subtask is relatively easy to perform for a
human operator, and thus often done by a surgical assistant.

In our previous work, the automation of another surgical
subtask—blunt dissection—is shown [8]. Blunt dissection is
usually used to separate loosely connected layers of tissue
without damaging sensitive anatomical structures like nerves
or blood vessels. Therefore, during this subtask no sharp
instruments are used, the layers of tissue are separated by
gentle opening movements of the instrument’s jaws. In the
case of blunt dissection, the retraction of the upper layer is
crucial, both to give access to the area of dissection and to
create tension between the layers to be separated.

In this paper, an algorithmic solution to soft tissue retraction
is presented. Despite that retraction can be performed in many
ways, e.g., push or lift without grasping, here we are focus on
the one done by grasping and pulling the tissue. Although this
is one of the easiest subtask in surgery for a human operator,
its autonomous execution presents difficulties. Most of the
available surgical robotic systems—including the da Vinci—
lack the ability of force sensing due to the size and issues with
sterilization of force sensors. For that reason, no force sensors
are used in our method; the state (angle and tension) of the
retracted tissue is estimated by stereo video stream, which is
already available in the operating room.

II. MATERIALS AND METHODS

A. Surgical phantom

The solution for autonomous retraction presented in this
paper was developed and tested on a simplified soft tissue
phantom environment, similar to the one used for blunt dissec-
tion [8]. This phantom consists of two harder layers of silicone
connected by a softer, destructible silicone layer (Fig. 1).



Fig. 1: System setup for autonomous retraction. The stereo
camera pair, the tissue phantom and the da Vinci slave arm
(controlled by the da Vinci Reserach Kit).

B. Da Vinci Research Kit (dVRK)

Our method was implemented on the da Vinci Surgical
System, controlled by the da Vinci Research Kit that interfaces
the robot to Robot Operating System (ROS) [2][9]. The
retraction is performed with a single instrument of the da
Vinci, which was registered to the coordinate frame of the
stereo camera pair.

C. Vision system

Since we do not currently have access to the image feed
from the built-in endoscopic stereo camera of the da Vinci, a
pair of low-cost USB cameras was used as stereo camera pair
(Fig. 1). It is worth mentioning that this method can be ported
easily onto the da Vinci’s imaging system in the future. Our
solution relies solely on the stereo camera images, hence it
would not require any additional device to be installed in the
already crowded operating environment.

The USB cameras were mounted on a stable frame 50 mm
from each other. The cameras were used in 640x480 pixel
resolution, with fixed focal length. The video stream of the
camera pair was obtained through ROS. The stereo camera
pair was calibrated by the ROS camera calibration package
using a 25x25 mm checkerboard pattern [10].

The state of retraction can be estimated using the disparity
map of the scene, calculated by the ROS stereo image proc
package using Block Matching (BM) algorithm [11]. The
rectified stereo images and the disparity map is read from the
ROS topic in Matlab, where all further image processing is
done as described below.

III. ESTIMATING THE STATE OF RETRACTION

The execution of retraction has to start with the grasping of
the edge of the tissue to be retracted. The point of grasping is
marked with red color to ease testing, although it can also be
chosen on the camera image manually by the surgeon. After
grasping, the tissue is lifted slightly (20-30 mm) to make the
camera able to see in between the layers.

(a) (b)

Fig. 2: The camera scene during retraction; (a) the rectified
camera image and (b) the disparity map with the detected
lines used for state estimation.

Since in the presented method no force sensors to be
employed, the position and tension of the retracted tissue were
estimated based on stereo vision as follows. First, the Region
of Interest (ROI) is calculated by the big cut-offs experienced
at the edges of the tissue layers in the disparity map (Fig. 2).
Afterwards, the line where the upper and the lower tissue
meets is detected on the disparity map; this horizontal line
consist of the vertical local minima of the disparity map [8].
Based on that line—marked with B in Fig. 2 and 3—
three additional lines are determined on the scene by simply
translating it vertically: A, C and D.

The state of the retracted tissue is estimated from the 3D
position of lines A, B, C and D, calculated from the disparity
map. The 3D positions are averaged along these lines, resulting
four representative points. Finally, the angles β and γ are
calculated (Fig. 3). Angles β and γ are used in the estimation
of the angle and the tension of the retracted tissue.

The first angle (β) is used as a direct estimation for opening
angle between the two layers of tissue, while the second
angle (γ) is used for an indirect estimation for the tension
of the retracted tissue. Although nor the absolute value of
tension cannot be calculated from γ, nor a linear relationship
can be given between the two values due to the diversity of
tissues, these values are closely related; the function between
the tension and γ accounted to be monotonic. This angle is
determined by the bending of the tissue, increasing to 180◦

as bending is decreasing, so below 180◦ in can be used to
estimate tension. A disadvantage of this method is possibly
that after the tissue is pulled completely flat, γ will be fixed
at 180◦, and the force of the pull cannot be determined by this
angle only.

IV. RETRACTION CONTROL

The retraction of the tissue is done using one arm of the
da Vinci Surgical System, registered to the coordinate frame
of the camera. This subtask is executed solely relying on the



Fig. 3: Schematic image of the estimation method for the angle
and tension of the retracted tissue layer. The angle between
the two layers of tissue is referred as β; the angle related to
the tension of the retracted tissue is referred as γ.

information gathered from the stereo camera stream, namely
β and γ. The retraction is controlled only in two dimensions,
along axes z and y (Fig. 3). In the following three different
methods are presented to control soft tissue retraction.

A. Proportional controller

The first control method utilizes a simple proportional
controller. Given the current and desired angles, βcurr, γcurr,
βdes and γdes, and the length of sections BC and CD, the
vectors

−−→
BDcurr next to the current, and

−−→
BDdes next to the

wanted instrument position can be calculated. The length of
sections BC and CD is not measured in our case. Since the
absolute length is irrelevant, those are assumed to be equal
and unity, so 1–1 unit each, and will be scaled using the Kp

parameter of the controller. So, in the current position the
vector

−−→
BDcurr can be written as follows:

−−→
BDcurr = (− cos(βcurr) + sin(βcurr − γcurr + 180◦),

− sin(βcurr)− cos(βcurr − γcurr + 180◦))
(1)

Similarly, in the desired position:

−−→
BDdes = (− cos(βdes) + sin(βdes − γdes + 180◦),

− sin(βdes)− cos(βdes − γdes + 180◦))
(2)

So the error of the D point’s position can be written as the
difference of the aboves:

−→e D =
−−→
BDcurr −

−−→
BDdes (3)

In the control loop of the retraction this error is used as the
feedback of the system, so the position of the instrument in
the z − y plane is controlled as follows:

−→
P (i+ 1) =

−→
P (i) +Kp

−→e D (4)

(a) (b)

Fig. 4: The emission (a) and transition (b) functions used in
the HMM-based method.

B. State observation with Hidden Markov Model (HMM)

Since the angle and tension of the retracted tissue is esti-
mated only, the control of these values may be inaccurate. This
inaccuracy is reduced using a Hidden Markov Model (HMM)
based method. HMMs are modeling a system that possesses
a state, that is not observed, its exact value is not known.
These systems produces emission values that are related with
those inner states, the probability of the emission is considered
to be known for each {state, emission} pair. Furthermore
the system is also able to transition into another state, the
probability of transition between all state pairs is considered
to be known, as well [12].

Following these thoughts, HMMs are defined for the values
β and γ to enhance the accuracy and reliability of retraction.
The real value of these variables are chosen to be the hidden
states of the corresponding HMMs, hence exact value of those
is not measured; the emitted values of these HMMs are chosen
to be the estimations from the computer vision algorithm.
The estimated values are assumed to be distributed normally
around the real values, so the use of Gaussian emission
functions in this approach is a plausible decision. Similarly,
the transition probabilities are chosen to be the sum of two
triangular distributions with peaks in given distance from the
current state, modeling the fact that the next state in the
sequence will probably be a bit more, or a bit less than the
current due to the manipulation of the tissue (Fig. 4).

Using the defined HMMs and the measured observation
sequences of β and γ, the real values of β and γ are can be
estimated by the Viterbi algorithm [12]. In this HMM-based
method these values are used as the input of the proportional
controller mentioned in the subsection above.

C. Fuzzy controller

In this paper another method—independent from the pre-
vious HMM-based one—is presented to control soft tissue
retraction. The control of this movement is based on mea-
surements containing considerably large errors. To reduce the
effects of these errors a simple fuzzy controller was also
implemented [13]. The inputs and outputs of this controller
were chosen to be the same as of the controllers before
({β, γ} and {z, y}). The membership functions are chosen to
be trapezoidal (Fig. 5). The output surface resulted by the
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Fig. 5: The membership functions used in the fuzzy controller:
(a) and (b) are the membership functions of the input variables
β and γ, (c) and (d) are the the membership functions of the
output variables z and y (the required displacement in axes z
and y).

Fig. 6: The output surface of the implemented fuzzy controller
for the required displacement in the y axis of the camera
coordinate frame.

rules of the controller can be seen in Fig. 6. The controller
was developed and evaluated using the Matlab Fuzzy Logic
Toolbox.

V. RESULTS

The presented methods for soft tissue retraction were tested
on the silicone soft tissue phantom described in Subsec-
tion II-A. The improvement of the estimated values by HMMs
is measured as follows. One of the angles was fixed on the
phantom (first γ, secondly β), while the other was set in a
predefined series of angles manually. In the meantime, the esti-
mation from the camera stream was performed in each setting,
and according to these estimations the HMM likelyhood states
were also calculated. The resulting measurements can be seen

Fig. 7: Testing of the computer vision and HMM-based
methods used for the estimation of the angle between the two
sissue layers (β).

Fig. 8: Testing of the computer vision and HMM-based
methods used for the estimation of the angle related to the
tension of the retracted tissue (γ).

in Fig. 7 and 8. The root-mean-square error was calculated
from the measured data series, that was decreased by the use
of HMM in case of β (25.9◦ in the basic method, 12.0◦ with
HMM) and increased in case of γ (10.2◦ in the basic method,
18.0◦ with HMM).

The settling error of the three above-presented methods
soft tissue retraction is tested comparatively. A series of 5
experiments were executed with each method, with the target
angles β = 90◦ and γ = 170◦. At the end of each session the
settled angles were measured manually. The results of these
test can be seen in Fig. 9 and 10. Based on these tests, the
method utilizes fuzzy logic found to be the best in terms of
both precision and accuracy.



Fig. 9: The measured settling error of the angle of tissue layers
(β) using the presented methods for soft tissue retraction: pro-
portional control, HMM-based proportinal control and fuzzy
control.

Fig. 10: The measured settling error of the angle γ (related
with tension) of the retracted tissue using the presented meth-
ods for soft tissue retraction: proportional control, HMM-based
proportinal control and fuzzy control.

VI. CONCLUSION AND DISCUSSION

In this paper, the development and testing of different
soft computing methods were presented for autonomous soft
tissue retraction in robot-assisted minimally invasive surgery.
It was shown how the attributes of the retracted tissue can
be estimated only using the video stream of a stereo camera,
which is already accessible in the operating room, and how
this estimation can be enhanced using Hidden Markov Models.
These estimations were used to build simple control algorithms
to perform the retraction of the tissue autonomously; one using
proportional control for reference, one using HMM alongside
proportional control, and one based on a simple fuzzy con-
troller. The mentioned methods were all tested in vitro.

In the future, the presented methods can be put through ex
vivo experiments as well, where light reflections and a more
wide scale of textures and shapes may lead to new difficulties.
Furthermore, the presented automated subtask can be used
along other autonomous methods, such as our earlier presented
blunt dissection algorithm.
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[1] Á. Takács, D. Á. Nagy, I. Rudas, and T. Haidegger, “Origins of Surgical
Robotics: From Space to the Operating Room,” Acta Polytechnica
Hungarica, vol. 13, no. 1, pp. 13–30, 2016.

[2] G. S. Guthart and J. K. J. Salisbury, “The IntuitiveTM Telesurgery
System: Overview and Application,” in Proc. of IEEE International
Conference on Robotics and Automation, San Francisco, CA, 2000, pp.
618–621.

[3] T. Osa, K. Harada, N. Sugita, and M. Mitsuishi, “Trajectory planning
under different initial conditions for surgical task automation by learning
from demonstration,” in Proc. of IEEE International Conference on
Robotics and Automation, May 2014, pp. 6507–6513.

[4] A. Murali, S. Sen, B. Kehoe, A. Garg, S. McFarland, S. Patil, W. D.
Boyd, S. Lim, P. Abbeel, and K. Goldberg, “Learning by observation
for surgical subtasks: Multilateral cutting of 3D viscoelastic and 2D Or-
thotropic Tissue Phantoms,” in Proc. of IEEE International Conference
on Robotics and Automation, May 2015, pp. 1202–1209.

[5] A. Garg, S. Sen, R. Kapadia, Y. Jen, S. McKinley, L. Miller, and
K. Goldberg, “Tumor localization using automated palpation with
Gaussian Process Adaptive Sampling,” in Proc. of IEEE International
Conference on Automation Science and Engineering, Aug. 2016, pp.
194–200.

[6] S. Sen, A. Garg, D. V. Gealy, S. McKinley, Y. Jen, and K. Goldberg,
“Automating multi-throw multilateral surgical suturing with a mechani-
cal needle guide and sequential convex optimization,” in Proc. of IEEE
International Conference on Robotics and Automation, May 2016, pp.
4178–4185.

[7] J. H. Peters, E. C. Ellison, J. T. Innes, J. L. Liss, K. E. Nichols, J. M.
Lomano, S. R. Roby, M. E. Front, and L. C. Carey, “Safety and efficacy
of laparoscopic cholecystectomy. A prospective analysis of 100 initial
patients.” Annals of Surgery, vol. 213, no. 1, pp. 3–12, Jan. 1991.
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