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Abstract Precise point positioning (PPP) can achieve high-accuracy point solution using

un-differenced code and carrier phase observations. Many PPP models have a higher

measurement noise and multipath effects, resulting in a long time to obtain sub-decimeter

to centimeter positioning accuracy during a short duration. This paper will address a

modified un-combined (MUC) model based on phase–phase geometry-free combination in

addition to code–phase ionosphere-free combination and original carrier phase observa-

tions. The observation system composed by the new combinations has a lower measure-

ment noise and orbit error level compared with the un-combined (UC) model, University of

Calgary (UofC) model and standard un-differenced ionosphere-free combined (UD) model.

Moreover, it can capture the changing characteristics of atmospheric delays between

epochs as constraints to accelerate the filter convergence. We use the data sets from about

114 international GNSS service reference stations to analyze the performance of the MUC

model. Numerical results show that the MUC model generally yields the best performance

when the observation duration is short. For the 0.5 h duration observation data sets, about

70.2 % of all 6912 convergence tests are convergent, which is an increase by 19.2, 2.8 and

49.3 % points compared with the UC, UofC and UD models, respectively. For the common

convergence parts of all the test data sets, the mean convergence time of the MUC model is

significantly reduced by 22.9, 9.6 and 35.3 %, and the percentage of the 2D position biases

within 0–5 cm is increased by 16.0, 3.4 and 55.0 %, respectively, compared with the UC,

UofC and UD models. Therefore, the proposed PPP model is more beneficial for the PPP

user to quickly obtain sub-decimeter to centimeter positioning accuracy during a short

duration.
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1 Introduction

Precise point positioning (PPP) is a desirable GNSS positioning technology because it has

the advantage of being highly accurate and it is not limited by the baseline length. PPP

technology can achieve precise positioning at a global scale using a single receiver in

combination with a precise clock, orbit and other precise products provided by organi-

zations such as international GNSS service (IGS) (Zumbeger et al. 1997; Kouba and

Heroux 2001). Therefore, it has been gradually used in precise positioning, satellite orbit

determination, atmospheric water vapor detection and seismic wave detection (Zhang et al.

2013a; Ahmed et al. 2014; Xu et al. 2013). However, in practice, the long convergence

time of the PPP technology is beyond the acceptance level of most users, which limits its

application in more fields.

How to improve the PPP performance has attracted many researchers since PPP has

been proposed. The performance of the PPP solution is affected by the number of visible

satellites, data quality, potential error sources, especially ionospheric delay. In order to

remove the ionosphere delay, a variety of PPP models have been proposed, such as the un-

differenced ionosphere-free combined (UD) model (Kouba and Heroux 2001), the

University of Calgary (UofC) model (Gao and Shen 2001), and the un-combined (UC)

model (Zhang et al. 2010, 2012). The main difference of these models is about how to

mitigate the ionospheric delays. The UD model has been derived for the first time based on

the standard ionosphere-free code and phase combination observations (Kouba and Heroux

2001). Then Gao and Shen (2001) further proposed a UofC model that is composed of the

phase and code–phase ionosphere-free observation combinations, which has a smaller

measurement noise level compared with the standard ionosphere-free code combination.

However, although the ionosphere-free combination observation can remove the iono-

spheric delay, the measurement noise and multipath effects are amplified, which prohibits

fast convergence of PPP ambiguity. Hence, in order to lower the measurement noise and

multipath effects, an UC model was derived based on original code and carrier phase

observations (Zhang et al. 2010), which mitigates the impact of the ionospheric delay by

parameter estimation. A detailed comparison and analysis of these models is presented in

the literature (e.g., Zhang et al. 2013b; Zhao et al. 2014).

In addition, some achievements have been also made to accelerate the convergence

speed of PPP solution. On one hand, we can adopt augmented corrections (e.g., atmo-

spheric delay and uncalibrated phase delay) to mitigate the potential error sources (Ge et al.

2008; Collins 2008; Laurichesse et al. 2009; Zhang et al. 2012; Shi et al. 2014), and

improve the convergence speed of PPP solution (Geng et al. 2009; Collins et al. 2010; Li

et al. 2013; Li et al. 2014a; Wen et al. 2015). On the other hand, the multi-GNSS systems

can enhance the performance of GPS-only positioning by providing more redundent

observations and improving satellite geometric strength (Moreno et al. 2014; Li and Zhang

2014; Li et al. 2014b). The positioning accuracy and convergence time can be improved

based on the augmented corrections or the multi-GNSS PPP; nevertheless, we still need the

three basic models mentioned above to obtain the PPP solutions. Although much effort has

been made to improve the PPP performance, the PPP technique still suffers from a long

convergence time of 30 min or more to obtain the required accuracy (less than 10 cm) with
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an ambiguity-float solution or to succeed in an ambiguity-fixed solution (Bisnath and Gao

2009; Geng et al. 2011; Dawidowicz and Krzan 2014).

In view of the above, this paper presents a new model namely modified un-combined

(MUC) model based on the existing research, which is suitable for a fast-PPP. The

observation system of the MUC model consists of four observation equations: phase–phase

geometry-free combination, code–phase ionosphere-free combination and two original

carrier phase observations. This model has a smaller measurement noise and orbit error

level compared with the UC, UofC and UD models. More importantly, the phase–phase

geometry-free combinations are used in the observation system, which can improve the

correlation between the estimated parameters over short observation periods.

Subsequently, the MUC model for a fast-PPP is first presented, and the differences

between the MUC, UC, UofC and UD models are analyzed. Then, the experimental design

and numerical results are described to assess the convergence performance as well as

positioning accuracy in Sect. 3. Finally, the main conclusions are summarized in Sect. 4.

2 Mathematical models

2.1 Measurement equation

For a satellite s observed by a receiver, the original code and carrier phase observations can

be expressed as follows:

Ps
i ¼ qsr þ c � dtr � c � dts þMs

d � dzhd þMs
w � dzwd þ Isi þ cðbr;i � bsi Þ þ eps

i

Us
i ¼ qsr þ c � dtr � c � dts þMs

d � dzhd þMs
w � dzwd � Isi þ kiðNs

i þ Br;i þ Bs
i Þ þ eUs

i

�
ð1Þ

where i the frequency of satellite signal, Ps
i , Ui

s the code and phase observations, qsr the

geometrical distance between satellite and receiver, dtr the receiver clock error, dts the

satellite clock error, Ms
d, Ms

w the dry and wet tropospheric mapping functions, dzhd, dzwd the

dry and wet zenith tropospheric delays, Ii
s the ionospheric delay, br;i, bi

s the code hardware

delay for receiver and satellite, Br;i, Bi
s the carrier phase hardware delay for receiver and

satellite, ki the wavelength, eps
i
, eUs

i
the sum of the multipath effects and measurement

noises of the code and carrier phase observations.

Following the literature (Teunissen and Kleusberg 1996), the hardware delay biases for

satellites and receiver will in general be different for different signal frequencies. Con-

sidering that the code hardware delay biases for satellites are contained in the precise clock

products provided by IGS analysis centers. When using the IGS clock products, the code

hardware delay biases for satellites can be removed in the PPP processing (Defraigne and

Baire 2011). Assume that all hardware delay biases for receiver are constant over time

(Teunissen and Kleusberg 1996; Ge et al. 2008). Thus, the carrier phase hardware delay

biases for satellites and receiver can also be absorbed by the ambiguities, if they are not

fixed to integers. And, the code hardware delay for receiver can be rewritten as a sum of a

mean term and a frequency-dependent bias term as given below:

br;i ¼ bavgr þ dbr;i ð2Þ

where bavgr is the mean hardware delays for the code at receiver end, dbr,i is the frequency-

dependent delay.

The mean code hardware delay bias can be assimilated into the receiver clock offset.

Thus, by applying Eq. (2), the Eq. (1) can be rewritten as:
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Ps
i ¼ qsr þ c � d�tr � c � d�ts þMs

d � dzpd þMs
w � dzpw þ Isi þ dbr;i þ eps

i

Us
i ¼ qsr þ c � d�tr � c � d�ts þMs

d � dzpd þMs
w � dzpw � Isi þ ki

�Ns
i þ eUs

i

(
ð3Þ

where d�t jr and d�ts are the reformed receiver clock offset and satellite clock offset,

respectively; �Ns
i is the sum of the integer ambiguity and hardware delay biases, referred to

as phase-biases. Hence:

d�tr ¼ dtr þ bavgr

d�ts ¼ dts þ bsi
�Ns

i ¼ Ns
i þ Br;i þ Bs

i � c � ðbavgr � bsi Þ=ki:

8<
:

The term dbr;i in Eq. (3) can be estimated as frequency-dependent unknown parameters

(Defraigne and Baire 2011). However, too many unknown parameters will weaken the

model structure for PPP. Because of assigning a much smaller weight to the code obser-

vations in the PPP processing, the term dbR,i can be neglected and its effects will show up

in the code residuals (Cai and Gao 2013; Zhao et al. 2016). Thus, the Eq. (3) can be

rewritten as:

Ps
i ¼ qsr þ c � d�tr � c � d�ts þMs

d � dzpd þMs
w � dzpw þ Isi þ eps

i

Us
i ¼ qsr þ c � d�tr � c � d�ts þMs

d � dzpd þMs
w � dzpw � Isi þ ki

�Ns
i þ eUs

i
:

�
ð4Þ

The noise level reflects the accuracy of the observation system. To lower the code

observation noise level, the code observation Ps
i and carrier phase observation Ui

s can be

combined using the following equation:

Ls
Ps
iU

s
i
¼ Ps

i þ Us
i

� ��
2 ¼ qsr þ c � d�tr � c � d�ts þMs

d � dzpd þMs
w � dzpw þ ki �N

s
i

�
2 þ eLPs

i
Us
i
:

ð5Þ

Equation (5) is the so-called code–phase ionospheric-free combination that eliminates

the ionospheric effect.

Moreover, a new phase–phase geometry-free combination is considered to strengthen

the algebraic structure for PPP model, as shown in the following equation:

Us
GF ¼ Us

1 � Us
2 ¼ �Is1 þ Is2 þ k1

�Ns
1 � k2

�Ns
2 þ eUs

GF:
ð6Þ

It is obvious that the orbit error has been eliminated by the phase–phase geometry-free

combination in Eq. (6). Moreover, the new combination has a smaller measurement noise

level than the ionospheric-free combination or original code observation, which is bene-

ficial to the PPP solution.

Subsequently, a new model is obtained based on the original carrier phase observations

U1
s , U2

s in Eq. (4), code–phase ionospheric-free combinations Ls
Ps
iU

s
i

in Eq. (5) and phase–

phase geometry-free combination Us
GF in Eq. (6). Note that the code–phase ionospheric-

free combinations still have a higher measurement noise level because of including the

code observation. We can choose any one from the two code–phase ionospheric-free

combinations Ls
Ps

1U
s
1

and Ls
Ps

2U
s
2
, to avoid the impact of the more higher measurement noise

when using both them. In this paper, the code–phase ionospheric-free combinations Ls
Ps

2U
s
2

is used to build a new model for a fast-PPP. Taking into account the ionospheric effects on

the dual-frequency phase and code observations, Is2 ¼ f 2
1

�
f 2
2 �Is1, the observation system of

the new model can be expressed as:
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Us
1 ¼ qsr þ c � d�tr � c � d�ts þMs

d � dzpd þMs
w � dzpw � Is1 þ k1 � �Ns

1 þ eUs
2

Us
2 ¼ qsr þ c � d�tr � c � d�ts þMs

d � dzpd þMs
w � dzpw � f 2

1

�
f 2
2 � Is1 þ k2 � �Ns

2 þ eUs
2

Ls
Ps

2U
s
2
¼ Ps

2 þ Us
2

� ��
2 ¼ qsr þ c � d�tr � c � d�ts þMs

d � dzpd þMs
w � dzpw þ k2 � �Ns

2

�
2 þ eLs

P2U2

Us
GF ¼ Us

1 � Us
2 ¼ f 2

1

�
f 2
2 � 1

� �
� Is1 þ k1 � �Ns

1 � k2 � �Ns
2 þ eUs

GF
:

8>>><
>>>:

ð7Þ

If qsr0 is the approximate geometric distance between satellite and receiver, then the

linearized model of the observation system in Eq. (7) is given as

y ¼ A � X þ ey; ey � Nð0;XyÞ ð8Þ

with

y ¼ DU1
1 � � � DU j

1 DU1
2 � � � DU j

2 DL1
P2U2

� � � DL
j
P2U2

DU1
GF � � � DU j

GF

h iT

X ¼ x y z c � d�tr dzpw I1
1 � � � I

j
1

�N1
1 � � � �N j

1
�N1

2 � � � �N j
2

� �T

A ¼
e3

0

� 	
� B C� Ij D� Ij

� 	

8>>>>><
>>>>>:

ð9Þ

where y the vector of observed minus computed measurements, DUs
1 ¼ Us

1 � qsr0 þ c � d�ts,
DUs

2 ¼ Us
2 � qsr0 þ c � d�ts, DLs

P2U2
¼ Ls

P2U2
� qsr0 þ c � d�ts,DUs

GF ¼ Us
GF � qsr0 þ c � d�ts, X

the estimated parameter vector, A the linearization design matrix, ey the system noise, Xy

the covariance matrix of the system noise ey, ‘�’ the Kronecker product, e3 a 3-dimen-

sional column-vector with all elements as one, Ij a j-dimensional identity matrix.

The sub-matrices B, C and D, given in Eq. (9), take the following form:

B ¼

oq
ox


 �1
oq
oy


 �1
oq
oz


 �1

1 M1
w

..

. ..
. ..

. ..
. ..

.

oq
ox


 � j
oq
oy


 � j
oq
oz


 � j

1 M j
w

2
666664

3
777775
;C ¼

�1

�f 2
1

�
f 2
2

0

f 2
1

�
f 2
2 � 1

2
664

3
775;D ¼

k1 0

0 k2

0 k2=2

k1 �k2

2
664

3
775:

The new model is called a MUC model because it adopts some of un-combined

observations and can estimate the ionospheric delay. To assess the advantage of the MUC

model, assume that code observations P1 and P2 have the same accuracy, as well as the

carrier phase observations of U1 and U2, namely rP1
= rP2

= 0.3 m and

rU1
= rU2

= 0.002 m. The observation systems of four different PPP models are sum-

marized in Table 1. Among the models, the MUC model has the lowest measurement noise

level, and eliminates the orbit error, which is more beneficial for the PPP user to obtain the

required accuracy (e.g., less than 10 cm) during a short duration.

In order to down-weight low-elevation satellite observations, an elevation-dependent

weight method is used to determine the weights of different observations in PPP data

processing (Shen et al. 2009). Then, the variances for the code and carrier phase obser-

vations are as follows:
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r2
P ¼

r2
P;0

sin2ðhÞ

r2
U ¼

r2
U;0

sin2ðhÞ

8>>><
>>>:

ð10Þ

where h is the satellite elevation angle; r2
P;0 and r2

U;0 are the a priori variance of code and

carrier phase observation, respectively.

Moreover, without considering the correlation between code and carrier phase obser-

vations, the variance–covariance matrix of the jth satellite observations in the MUC model

can be derived using the propagation law of variance and covariance. Hence,

r2
j ¼

r2
U1

0 0 r2
U1

0 r2
U2

r2
U2

2
�r2

U2

0
r2
U2

2

r2
U2

þ r2
P2

4
�
r2
U2

2

r2
U1

�r2
U2

�
r2
U2

2
r2
U1

þ r2
U2

2
666666664

3
777777775
: ð11Þ

2.2 Kalman-filtering equation

Kalman-filtering is usually used to estimate the state of the observation system. In this

case, the system dynamics can be written as follows:

Xkþ1 ¼ Ukþ1;kXk þ wk; wk � Nð0;QkÞ ð12Þ

where Xk the state vector, Ukþ1;k the state transition matrix, wk the system noise, Qk the

covariance matrix of the system noise wk.

The covariance matrix Qk reveals the time-varying characteristic of each parameter to

be estimated. The MUC model can provide the estimation of the ionospheric delay along

the signal path in addition to receiver coordinates, receiver clock, tropospheric delay and

phase biases. A random walk process is used to characterize the receiver clock, ionospheric

Table 1 Observation system, measurement noise level and estimated atmospheric delay parameter in four
PPP models

Method Observation system Measurement noise level
(m)

Atmospheric delay
parameter

UC P1, P2, U1, U2 rP1
¼ 0:3, rP2

¼ 0:3
rU1

¼ 0:002, rU2
¼ 0:002

Tropospheric delay
Ionospheric delay

UD PIF ¼ f 2
1 � P1 � f 2

2 � P2

� �
= f 2

1 � f 2
2

� �
UIF ¼ f 2

1 � U1 � f 2
2 � U2

� �
= f 2

1 � f 2
2

� � rPIF
¼ 0:894, rUIF

¼ 0:007 Tropospheric delay

UofC LP1U1
¼ P1 þ U1ð Þ=2

LP2U2
¼ P2 þ U2ð Þ=2

UIF ¼ f 2
1 � U1 � f 2

2 � U2

� �
= f 2

1 � f 2
2

� �
rL

P1U1
¼ 0:15, rLP2U2

¼ 0:15

rUIF
¼ 0:007

Tropospheric delay

MUC U1, U2

LP2U2
¼ P2 þ U2ð Þ=2

UGF ¼ U1 � U2

rU1
¼ 0:002, rU2

¼ 0:002
rLP2U2

¼ 0:15, rUGF
¼ 0:003

Tropospheric delay
Ionospheric delay
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and tropospheric delay in PPP data processing, while the phase biases are assumed to stay

constant. Thus, the covariance matrix Qk can be expressed as:

Qk ¼

qp
3�3

Dt 0 0 0 0

0 qtrDt 0 0 0
0 0 qtropDt 0 0
0 0 0 qion

n�n
Dt 0

0 0 0 0 0
2n�2n

2
6666664

3
7777775

ð13Þ

where Dt the time increment, qp the spectral density of receiver coordinates, which is the

identity (or zero) matrix in static (or dynamic) mode, respectively, qtr the spectral density

of receiver clock, qtrop the spectral density of the tropospheric delay, qion the spectral

density of the ionospheric delay.

3 Experiments and result analysis

In this part, we perform static PPP to test the MUC model and compare with the UC, UofC

and UD models. Both solutions have been performed over the same 5-day observations

data at IGS mana station from June 17 to 21, 2013 (DOY 168–172) and 1-day observations

data from 144 IGS stations on June 17, 2013 (DOY 168). The distribution of the stations is

shown in Fig. 1. In PPP data processing, the final precise GPS satellite orbits at a sampling

interval of 15 min and satellite clock corrections at an interval of 30 s are used (ftp://igsws.

unavco.org/pub/gps/). For the Kalman filter, the spectral densities of receiver clock, tro-

pospheric delay and ionospheric delay are set as 1.0 9 105 m2/s (El-Mowafy 2009),

7.7 9 10-12 m2/s (Abdel-Salam and Gao 2003), 1.0 9 10-4 m2/s (Zhang et al. 2010),

respectively. The cut-off elevation angle is set up to 5�.

-180 -120 -60 0 60 120 180
-90

-60

-30

0

30

60

90Fig. 1 Distribution of IGS
stations
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In order to analyze the convergence percentage, convergence time and positioning

accuracy of the MUC model, two experiments are conducted. These experiments are as

follows:

Experiment I Access the convergence performance of the MUC model. The 5-day

observations data at IGS mana station are performed to analyze the convergence time and

positioning accuracy. Then, the 1-day observations data from 144 IGS stations are split in

every 1, 0.5 and 0.25 h, to get 3456, 6912 and 13,824 group data sets, respectively. We

perform the static PPP to analyze the percentages of achieving sub-decimeter level posi-

tioning within a relatively short observation period.

Experiment II The 6912 group data sets with 0.5 h observation duration are used to

evaluate the positioning performance. We extract the data sets that can both achieve sub-

decimeter level positioning based on the MUC and UC models, the MUC and UofC

models, as well as the MUC and UD models, to get 3007, 4090 and 1180 group data sets

respectively, denoted as A, B and C in the sequel. The convergence times and positioning

accuracies for different PPP models are analyzed based on the data sets A, B and C. We

analyze the mean bias and standard deviation in the north, east and up components, as well

as their 2-dimensional (2D) and 3-dimensional (3D) position for the MUC model, and

compare with those of the UC, UofC and UD models.

Note that ‘‘convergence’’ often refers to the positioning accuracy reaching a certain

level. In these experiments, the coordinates provided by IGS (ITRF 2008) are used as the

true coordinates. When the horizontal position biases between the calculated and the true

coordinates are all less than 10 cm from a certain epoch, sub-decimeter level positioning

can be achieved. The convergence time refers to the span from the first epoch to a certain

epoch from which the horizontal position biases are all less than 10 cm.

The results are as follows:

(1) Experiment I

In this study, we first perform static PPP with real-valued phase-biases based on the

5-day observations data at IGS mana station. Figure 2 shows the positioning accuracies

and convergence time for the MUC, UC, UofC and UD models at IGS mana station. After

convergence, the position RMS errors of all PPP models are at the sub-centimeter level in

the north, east and up. However, there are a few differences in terms of the convergence

time. Compared to the UC, UofC and UD models, the MUC model just costs 13.5 min to

achieve positioning accuracies within 10 cm in both the north and east components.

In order to analyze the positioning performance of the MUC model during a short

observation duration, we perform static PPP with real-valued phase-biases based on 3456,

6912 and 13,824 group data sets, respectively. The percentages of achieving sub-decimeter

level positioning are obtained. Figure 3 shows the convergence percentages for the MUC,

UC, UofC and UD models for different observation durations. Generally, PPP solution

gradually converges to sub-decimeter level with the accumulation of the observations data.

As can be seen from Fig. 3, the convergence performance of all PPP models decreases with

the reduction of the observation duration, but the MUC model still has a better conver-

gence performance compared with the UC, UofC and UD models. For the 1 h duration

observation data sets, a similar convergence percentage of about 86.5 % is obtained for the

MUC and UofC models because of the relatively abundant observation data, while the

mean convergence time is 18.6 and 19.7 min, respectively. Moreover, compared with the

UC and UD models, the convergence percentage for the MUC model is increased by 6.7

and 43.9 %, and the mean convergence time is shortened by 24.1 and 41.9 %, respectively.
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When the observation time span is short, the estimated parameters are highly-correlated

resulting from a small change in the receiver-satellite geometry, which goes against the

convergence performance. However, in the MUC model, a new phase–phase geometry-free

combination is considered to improve the correlation between the parameter variables over

short observation periods. And the MUC model can capture the changing characteristics of

atmospheric delays between epochs as constraints to accelerate the filter convergence.

These are beneficial to improve the convergence performance. When the observation

(a) (b)

(c) (d)

(e) (f)

Fig. 2 Position biases for the different PPP models at IGS mana station. a, b The time series of the north
component, c, d the time series of the east component, e, f the time series of the up component

1.0 h 0.5 h 0.25 h
0

20

40

60

80

100

P
er

ce
nt

ag
e 

(%
)

Duration (h)
 MUC   UC   UofC   UD

Fig. 3 Percentage of conver-
gence to sub-decimeter level in
the horizontal components per-
formed by the MUC, UC, UofC
and UD models for the 1.0, 0.5
and 0.25 h duration observation
data sets
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duration is reduced to 0.5 h, the convergence percentage of the MUC model is the highest

at 70.2 %. Compared with the UC, UofC and UD models, the convergence percentage is

increased by 19.2, 2.8 and 49.3 % points, respectively. Furthermore, about 27.4 % of all

13,824 convergence tests can obtain sub-decimeter level positioning after 0.25 h of

observation for the MUC model, which is increased by 19.6, 7.9 and 26.1 % points

compared with the UC, UofC and UD models. Thus, the MUC model is more beneficial to

enhance convergence performance during a short observation duration.

(2) Experiment II

It’s well known that for ambiguity-float PPP, it takes about 30–60 min to obtain smaller

than 10 cm position error in static mode (Bisnath and Gao 2009; Dawidowicz and Krzan

2014). So this paper focuses on the analysis of the convergence time using the 0.5 h

observations data. The mean convergence times of different PPP models are analyzed

based on the data sets A, B and C. Figure 4 shows the detailed statistical results of the

convergence time of achieving sub-decimeter level positioning in corresponding data sets.

In Fig. 4, the box plot is particularly useful for obtaining condensed information about the

convergence time, which shows the maximum, minimum, median and quartile values, as

well as the average for all the convergence times.

To some extent, the convergence speed suffers from higher measurement noise and

orbit error level, so that a longer convergence time is required for the UC model, as shown

in Fig. 4a. For the UC model, about half of all 3007 group data can converge to sub-

decimeter level within 15.5 min, a quarter of that is less than 11.5 min. When using the

MUC model, the convergence time is significantly reduced. There are about half of all the

test data sets which can converge to sub-decimeter level within 11.0 min, a quarter of that

is less than 8.0 min. And the mean convergence time of the MUC model is 12.1 min,

which is shorter by 22.9 % compared with the UC model. These numbers show that the

mean convergence time is shorter and more concentrated than that of the UC model. In

addition, the statistical results of the convergence time for the MUC and UofC models are

as shown in Fig. 4b. The UofC model has a better convergence performance compared

with the UC and UD models because of its smaller measurement noise (Zhang et al. 2013b;

Zhao et al. 2014). However, the observation system of the UofC model still has a higher

measurement noise and orbit error level compared with the MUC model. It can be seen that

the mean convergence time of the UofC model is 13.6 min, and only 12.3 min for the

MUC model. Therefore, a 9.6 % improvement has been obtained using the MUC model

proposed by this paper. Moreover, for the MUC and UofC models, about half of all 4090

group data sets can converge to sub-decimeter level within 11.5 and 13.0 min,
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Fig. 4 Statistical results of the convergence time. a The results from all data set A with the 0.5 h
observation duration, b the results from all data set B with the 0.5 h observation duration, c the results from
all data set C with the 0.5 h observation duration
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respectively, and a quarter is less than 8.0 and 9.5 min, respectively. It shows that the

convergence speed of the MUC model is faster than that of the UofC model. Among these

PPP models, the observation system of the UD model has a highest measurement noise

level, resulting in a long convergence time. Compared with the UD model, the mean

convergence time of the MUC model is significantly reduced by 35.3 %, as shown in

Fig. 4c.

From these results, it can be concluded that the MUC model has a better convergence

performance compared with the UC, UofC and UD models. It is more beneficial for the

PPP users to quickly obtain sub-decimeter positioning within a short duration.

Further, some preliminary analysis on positioning accuracy has been conducted based

on the MUC, UC, UofC and UD models with data sets A, B and C. Figure 5 shows the

magnitude distribution of these coordinate biases, where the biases follow normal distri-

butions in the north, east and up components.

The mean bias and standard deviation for data set A, B and C are plotted in Fig. 6.

Among the MUC, UC and UofC models, the mean bias shows a satisfactory agreement in

both positioning biases. The biases are about 0.5, 0.1, 0.6, 3.7 and 10.0 cm in the north,

east, up, 2D and 3D, respectively, which are better than that of the UD model. In addition,

the standard deviations for the four models are about 2.4–4.5 cm in both the north and east

components, and 10.5–13.9 cm in the up component resulted from the strong correlation

between the up component and the tropospheric delay (Li et al. 2010). As can be seen from

Fig. 6d–f, the standard deviation for the MUC model is about 2.3 cm in the 2D position

and 5.5 cm in the 3D position. Based on the mean and standard deviation (Fig. 6a–f), the

positioning accuracy of the MUC model is better than 6.0 cm in the 2D position and less

than 16.0 cm in the 3D position. Moreover, the positioning accuracies of the MUC model

agree well with those of the UofC model over all test data sets, and these are better than

those of the UC and UD models.

-40 -20 0 20 40
0

20

40

60

(i)

)
% (

e gatne cre
P

Up biases (cm)

MUC UD

-0.10 -0.05 0.00 0.05 0.10
0

20

40

60

(h)

)
%(

egatnecr e
P

East bias (cm)

MUC UD

-10 -5 0 5 10
0

20

40

60

(g)

)
%(

egatnecre
P

North bias (cm)

MUC UD

-40 -20 0 20 40
0

20

40

60

(f)

)
% (

e gatne cre
P

Up biases (cm)

MUC UofC

-10 -5 0 5 10
0

20

40

60

(e)

)
%(

egatnecr e
P

East bias (cm)

MUC UofC

-10 -5 0 5 10
0

20

40

60

(d)

)
%(

ega tnecre
P

North bias (cm)

MUC UofC

-40 -20 0 20 40
0

20

40

60

(c)

)
% (

e gatne cre
P

Up biases (cm)

MUC UC

-10 -5 0 5 10
0

20

40

60

(b)

)
%(

egatnecr e
P

East bias (cm)

MUC UC

-10 -5 0 5 10
0

20

40

60

(a)

)
%(

egatnecre
P

North bias (cm)

MUC UC

Fig. 5 Distribution of coordinate biases in the north, east and up components for 0.5 h observation
duration. a–c The results from data set A, d–f the results from data set A, g–i the results from data set A

Acta Geod Geophys (2017) 52:375–388 385

123



Due to the low accuracy in up component, we emphatically analyze the accuracy in the

2D position estimate to assess the performance of the MUC model. Figure 7 shows the

distribution of the 2D position biases the MUC, UC, UofC and UD models with data sets

A, B and C, respectively. From Fig. 7a, it can be seen that the mean 2D position biases of

the MUC and UC models are 3.7 and 4.3 cm, respectively. And compared with the UC

model, the percentage of the 2D position biases within 0–5 cm is improved by 16.0 %

from 65.0 to 75.4 % using the MUC model. It shows that the accuracy in the 2D position is

higher than that of the UC model, which is a result of the smaller measurement noise and

orbit error level in the observation system of the MUC model. Figure 7b is the results from

the data set B based on the MUC and UofC models. It can be seen that a similar mean 2D

position bias is obtained for the MUC and UofC model, being 3.7 and 3.9 cm, respectively.

Moreover, more than 73.9 % of all 2D position biases are less than 5 cm using the MUC

method, which is increased by 3.4 % compared with the UofC model. Because of the

higher measurement noise of the observation system for the UD model, the mean 2D

position bias is 5.2 cm, while that of the MUC model is smaller, just being 3.7 cm
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(Fig. 7c). Moreover, the percentage of the 2D position biases within 0–5 cm is improved

by 55.0 % compared to the UD model.

4 Conclusions

We have proposed a modified un-combined PPP model to accelerate the position con-

vergence. An optimal observation system with minimal measurement noise has been

developed. It can capture the changing characteristics of atmospheric delays between

epochs as constraints to accelerate the filter convergence. In order to improve the corre-

lation between the parameter variables over short observation periods, the phase–phase

geometry-free combinations are used in the observation system. A stochastic model used in

Kalman filter estimation has also been presented. Then, the MUC model has been tested

and compared with the UC, UofC and UD models. Numerical results indicate that the

MUC model has a better convergence performance compared with the UC, UofC and UD

models. Especially for a short observation period, such as 0.5 h, the convergence per-

centage for the MUC model is increased by 19.2, 2.8 and 49.3 % points, respectively,

compared with UC, UofC and UD models. For the common convergence parts of all the

test data sets, the mean convergence time of the MUC model is shortened by 18.4, 7.2 and

29.5 %, respectively, compared with the UC, UofC and UD models. And the percentage of

the 2D position biases within 0–5 cm is increased by 16.0, 3.4 and 55.0 %, respectively.

Therefore, the MUC model is more beneficial for the PPP users to quickly obtain posi-

tioning accuracies within 10 cm during a short duration.
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