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Abstract The weighted total least-squares (WTLS) estimate is sensitive to outliers and

will be strongly disturbed if there are outliers in the observations and coefficient matrix of

the partial errors-in-variables (EIV) model. The L1 norm minimization method is a robust

technique to resist the bad effect of outliers. Therefore, the computational formula of the L1

norm minimization for the partial EIV model is developed by employing the linear pro-

gramming theory. However, the closed-form solution cannot be directly obtained since

there are some unknown parameters in constrained condition equation of the presented

optimization problem. The iterated procedure is recommended and the proper condition for

stopping iteration is suggested. At the same time, by treating the partial EIV model as the

special case of the non-linear Gauss–Helmert (G–H) model, another iterated method for the

L1 norm minimization problem is also developed. At last, two simulated examples and a

real data of 2D affine transformation are conducted. It is illustrated that the results derived

by the proposed L1 norm minimization methods are more accurate than those by the WTLS

method while the observations and elements of the coefficient matrix are contaminated

with outliers. And the two methods for the L1 norm minimization problem are identical in

the sense of robustness. By comparing with the data-snooping method, the L1 norm

minimization method may be more reliable for detecting multiple outliers due to masking.

But it leads to great computation burden.
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1 Introduction

In recent years, the total least-squares (TLS) or weighted TLS (WTLS) as a method of

parameter estimation for the errors-in-variables (EIV) model has been researched inten-

sively in geodetic field (Schaffrin and Wieser 2008; Shen et al. 2011; Amiri-Simkooei and

Jazaeri 2012; Mahboub 2012; Fang 2013; Li et al. 2013; Jazaeri et al. 2014). Unfortu-

nately, like LS estimate, the WTLS estimate is also very vulnerable to outliers in data

(Schaffrin and Uzun 2011; Amiri-Simkooei and Jazaeri 2013), and even a single outlying

observation can result in an entirely wrong conclusion. Therefore, a new method to adapt

the problem may be an important issue.

Robust method and outlier detection are two essential ways to deal with outliers. There

are many publications for Gauss-Markov (G–M) model from researchers and scholars in

geodesy. One can refer to Baarda (1968), Pope (1976), Hekimoglu (1997, 1999), Gui and

Liu (1999), Gui et al. (2005, 2007), Guo et al. (2007, 2010), Yang (1999), Yang et al.

(2002), Xu (1989, 1993, 2005), Baselga (2007), Koch (2013), Yang et al. (2013). Although

these methods may, in principle, be applied to the EIV models, bearing in mind that these

models are special in structure, more efficient methods may be highly desirable.

To overcome those obstacles, Schaffrin and Uzun (2011) generalized the mean-shift

method to adapt to the EIV models for detecting a single outlier located in the observations

or coefficient matrix, and a test statistic following F distribution was constructed. Based on

the WTLS method (Amiri-Simkooei and Jazaeri 2012), Amiri-Simkooei and Jazaeri (2013)

applied the data-snooping procedure to identify outlier. In view of the masking and

smearing (Hadi and Imon 2009; Gui et al. 2011), above-mentioned two approaches may be

unreliable for multiple outliers in the EIV model. Although the robust methods based on

M-estimation for the EIV model have been partly investigated in statistical literature

(Brown 1982; Zamar 1989). Mahboub et al. (2013) pointed out that those methods would

only be applied to linear regression. For this reason, the iteratively reweighted total least-

squares (IRTLS) (Mahboub et al. 2013) as a robust method was proposed by making use of

the WTLS method (Mahboub 2012), and an improved weight function was introduced. The

robustness of resisting outlier was proved to be superior to the traditional strategies. In

addition, the IRTLS method to the linearized Gauss–Helmert (G–H) model was also

developed (Tao et al. 2014; Lu et al. 2014). These methods were applied in GPS height

fitting and three-dimensional similarity coordinate transformation so that more reliable

estimates of the unknown parameters were obtained.

Actually, the WTLS method requires that the weighted sum of squared residuals should

be minimized as a L2 norm minimization method. In contrast to the L2 norm minimization

method, the L1 norm minimization method which has been thoroughly discussed in G–M

model (Marshall and Bethel 1996; Amiri-Simkooei 2003; Yetkin and Inal 2011), is more

immune to outlier as a robust technique. The L1 norm minimization problem in the EIV

model solved by a trust region method (Watson and Yiu 1991) was also studied prelim-

inary. Sincerely, this method is not easy to be understandable and can only be effective for

the independent observations with equal weight. Nevertheless, Xu (2005) proved that the

L1 norm minimization method would not be robust under certain conditions of weights.

Additionally, it cannot deal with the case where there are the fixed elements in the coef-

ficient matrix and the repeated random elements in different locations. To circumvent these

difficulties, a new formula of the L1 norm minimization problem for the partial EIV model

is proposed by taking advantage of the linear programming theory in this paper.
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The remaining of this paper is organized as follows. In Sect. 2, known as a generalized

EIV model, the partial EIV model (Xu et al. 2012) is briefly introduced. In Sect. 3, two

formulae of the L1 norm minimization problem for the partial EIV model based on the

linear programming theory are presented and the iterated algorithms are proposed. In

Sect. 4, the simulated examples and the real data of a 2D affine transformation are utilized

to demonstrate the availability of the proposed methods. Finally, some conclusions and

further discussions are given.

2 Partial EIV model and WTLS method

Firstly, let us consider the EIV model (Schaffrin and Wieser 2008; Shen et al. 2011) as

follows:

L ¼ A� EAð ÞX þ D ð1Þ

where L is the n 9 1 vector of observations, A is the n 9 t coefficient matrix with full

column rank affected by the random errors EA, X is the t 9 1 vector of unknown

parameters and D is the n 9 1 vector of random errors. The stochastic character is

described as

D
e ¼ vec EAð Þ

� �
� 0

0

� �
; r2 QD 0

0 Qe

� �� �
ð2Þ

where ‘‘vec’’ denotes an operator that transforms a matrix into a vector by stacking the

columns of the matrix one underneath the other, r2 is the unknown variance component,

QD and Qe are the n� n and nt � nt known cofactor matrices of D and e, respectively.

As a matter of fact, not all of the elements of the coefficient matrix A are random and

there are some repeated random elements in different locations such as the coordinate

transformation. Taking above into consideration and to eliminate the correlations of the

repeated random elements in the coefficient matrix, the partial EIV model (Xu et al. 2012)

is more appropriate to be used, and it is represented as follows:

L ¼ XT � In
� �

ðhþ B�aÞ þ D
a ¼ �aþ c

�
ð3Þ

where h is the nt � 1 vector of deterministic constants constituted of zero and the non-

random elements of A, In is the n� n identity matrix, B is the nt � s structured matrix, s is

the number of different random elements of A which are stored in the vector a, �a is the true

value of a, the cofactor matrix of a is denoted by Qc. It is assumed that D is statistically

independent with c.

The estimates of �a and X can be obtained by solving the following minimization

problem (Xu et al. 2012):

min : X1

¼ �a� að ÞTQ�1
c �a� að Þ

þ XT � In
� �

� hþ B�að Þ � L
	 
T

Q�1
D XT � In

� �
� hþ B�að Þ � L

	 

ð4Þ

which is equivalent to
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min : X1 ¼ cTQ�1
c cþ DTQ�1

D D ð5Þ

Obviously, the minimization problem (5) can be regarded as a L2 norm minimization one.

The WTLS solution is achieved by conducting first partial derivatives of X1 with respect to

the variables �a and X, and letting them equal to zero.

3 Formulation of L1 norm minimization in partial EIV model

When there are outliers in L and a simultaneously, the objective function X1 will be larger

than in the case without outliers. A method to control the bad effect of outliers for X1 is

proposed, which minimizes the weighted sum of the absolute values of errors in the

observations and the different random elements of the coefficient matrix. Namely, the L1

minimization problem of (3) is regarded as

min: X2 ¼ pTc cj j þ pTD Dj j ð6Þ

where pc and pD are the s� 1 and n� 1 vectors consisting of the diagonal elements of the

weight matrix Q�1
c and Q�1

D , respectively, j j is a mathematical operator that derives the

absolute value of variable. That is to say, for a vector, one will obtain a new vector whose

each component is the absolute value of the original component.

Unfortunately, the above optimization solution cannot be realized by taking partial

derivative of X2 with respect to variables �a and X and equating these derivatives to zero

because there are absolute notations. An efficient method to solve this optimization

problem is to bring in the slack variables.

Firstly, in order to remove the correlations between observations, the Cholesky factorizations

QD ¼ WT
DWD; Qc ¼ WT

cWc ð7Þ

are conducted and after some transformations, the model (3) is expressed as follows

~L ¼ WT
D

� ��1
XT � In
� �

hþ BWT
c
~�a

� �
þ ~D

~a ¼ ~�aþ ~c

(
ð8Þ

where

~L ¼ WT
D

� ��1
L; ~D ¼ WT

D

� ��1
D; ~a ¼ WT

c

� ��1

a; ~�a ¼ WT
c

� ��1

�a; ~c ¼ WT
c

� ��1

c:

However, as mentioned in Xu (1989), outliers will be spread to all the observations no

matter whether the original observations contain outliers or not.

To eliminate the absolute value notations, some slack vectors g and n for X, u and w for

~c, and a and b for ~D are introduced. If one uses these slack variables to replace the

corresponding variables, that is,

~c ¼ u� w; u;w� 0

~D ¼ a� b; a; b� 0

X ¼ g� n; g; n� 0

ð9Þ

the nonnegativity of parameters will be satisfied. Then, the L1 minimization problem (6)

can be rewritten as
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min: X3 ¼ 0T 0T �h
T �h

T �h
T �h

T
h i

g

n

a

b

w
u

2
6666664

3
7777775

ð10Þ

subject to

~A � ~A In �In WT
D

� ��1
XT � In
� �

BWT
c � WT

D

� ��1
XT � In
� �

BWT
c

h i
g

n

a

b

w
u

2
6666664

3
7777775
¼ ~L

ð11Þ

where g; n; a; b;w; u� 0; ~A ¼ WT
D

� ��1
A; �h

T ¼ 1; 1; . . .; 1½ �:
Let us define

�X ¼

g

n

a

b

w
u

2
6666664

3
7777775
; C ¼

0
0
�h
�h
�h
�h

2
6666664

3
7777775

ð12Þ

And

�A ¼ ~A � ~A In �In WT
D

� ��1
XT � In
� �

BWT
c � WT

D

� ��1
XT � In
� �

BWT
c

h i
ð13Þ

Then, the L1 norm minimization problem with (10) and (11) can be taken compactly as

min: X4 ¼ CT �X ð14Þ

subject to

�A �X ¼ ~L; �X� 0 ð15Þ

As we know, the unknown parameter X is located in �A, which limits the usefulness of

the linear programming theory (Vanderbei 2014). Therefore, an iterated method named as

algorithm 1 is proposed to solve the optimization problem with (14) and (15). The

implemented procedure of algorithm 1 is summarized as follows:

Step 1 Give the initial value

Xð0Þ ¼ ATQ�1
D A

� ��1
ATQ�1

D L;

Step 2 Compute �A by replacing X with Xð0Þ;
Step 3 For any i, compute X̂

ðiÞ
by solving the optimization problem with (14) and (15).
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Step 4 The implemented procedure will be stopped when the

X̂
ðiÞ � X̂

ði�1Þ



 


 or X̂

ðiÞ � X̂
ði�1Þ




 


� X̂
ði�1Þ � X̂

ði�2Þ



 


��� ���

is less than 0.00001; otherwise, one returns to Step 2 by taking X̂
ðiÞ

as the initial

value for next iteration, where X̂
ðiÞ

is the ith iterated solution.

As we see, the above algorithm requires iterations so that the accurate solution cannot

be guaranteed to be derived all the time, which is reported in next section with the

numerical results.

As a matter of fact, the partial EIV model is a non-linear model. An efficient method for

obtaining the WTLS solution is to replace the original model by a sequence of linearized

G–H model through the LS adjustment. Therefore, making a transformation

~L ¼ WT
D

� ��1
XT � In
� �

hþ BWT
c ~a� ~cð Þ

� �
þ ~D ð16Þ

for model (8), one has

~L ¼ ~AX � WT
D

� ��1
XT � In
� �

BWT
c ~cþ ~D ð17Þ

If the approximate value Xð0Þ is given,the partial EIV model is transformed to a lin-

earized G–H model as follows:

~L� ~AXð0Þ ¼ ~Axþ In � WT
D

� ��1
Xð0Þ� �T� In

� �
BWT

c

h i ~D
~c

� �
ð18Þ

By introducing the above slack variables (9), one can form an optimization problem as

follows:

min: X5 ¼ 0T 0T �h
T �h

T �h
T �h

T
h i

g

n

a

b

w
u

2
6666664

3
7777775

ð19Þ

subject to

~A � ~A In �In WT
D

� ��1
Xð0Þ� �T� In

� �
BWT

c � WT
D

� ��1
Xð0Þ� �T� In

� �
BWT

c

h i
g

n

a

b

w
u

2
6666664

3
7777775

¼ ~L� ~AXð0Þ

ð20Þ

Here x ¼ g� n. Certainly, one should also take iterations to solve the minimization

problem with (19) and (20) for estimating unknown parameters. Above method is taken as

Algorithm 2.
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With the basic linear programming theory (Vanderbei 2014), the computation com-

plexity of two proposed algorithms in this paper is proportional to Oð2ðnþ t þ sÞ2
nÞ. But

the computation complexity of structured EIV approaches is proportional to Oððnþ tÞ3Þ
(Abatzoglou et al. 1991). As a result, the two L1 norm minimization methods require more

computation burden than the WTLS method because 2n is greater than nþ t. In addition, it

should be pointed out that the two optimization problems are valid in the absence of

correlation between observations and coefficient matrix.

4 Numerical results and discussions

The linear regression and 2D affine transformation examples are chosen to demonstrate the

effectiveness of the L1 norm minimization method in presence of outliers.

4.1 Example 1: linear regression

Consider a simple linear regression model as follows:

yi � eyi ¼ n2 � xi � exið Þ þ n1 ð21Þ

where yi and xi are the observations containing the errors, n1 and n2 represent intercept and

slope, respectively. The major data are taken from Schaffrin and Wieser (2008). The

random errors with nominal standard deviation 0.01 are added to yi and xi based on the G–

M model and the reference values for producing the simulated observations is

½n1; n2� ¼ ½5:4799� 0:4805� ð22Þ

Considering the case with single outlier, we add the gross error of size 0.1 to the x

component of point 5. In this example, the criterion of stopping iteration for the WTLS

method and L1 norm minimization method is that the Euclidean distances between the two

estimates of the unknown parameters for consecutive iterated steps are less than 0.00001 or

the number of iterations is beyond 200. The unknown parameters are estimated by the

WTLS method and L1 norm minimization method with two algorithms, respectively. Then

the Euclidean distances between the estimates of the transformation parameters and the

reference values are computed, which is displayed in Table 1. The results show that the

unknown parameters obtained by the L1 norm minimization method are closer to the

reference values than those by the WTLS method, which means that the L1 norm

Table 1 Unknown parameters estimated by the WTLS method (without outlier and with single outlier), L1

norm minimization method (with single outlier) and the WTLS method after deleting the outlier with the
data-snooping method and L1 norm minimization method

Parameter WTLS
(without
outlier)

WTLS
(with
outlier)

L1 norm
(algorithm 1)

L1 norm
(algorithm 2)

WTLS (After
deleting outlier by
data-snooping)

WTLS (After
deleting outlier
by L1 norm)

n1 5.4820 5.5126 5.4869 5.4869 5.4830 5.4830

n2 -0.4811 -0.4861 -0.4817 -0.4817 -0.4813 -0.4813

X̂ � Xref



 

 0.0022 0.0332 0.0071 0.0071 0.0032 0.0032
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minimization method is not sensitive to outliers, and two algorithms for the L1 norm

minimization problem are identical in terms of robustness. The goodness-of-fit test is a

global test to evaluate whether the underlying method may be distorted by outliers (Amiri-

Simkooei and Jazaeri 2013). The global test statistic is computed as v2 ¼ 320:58, but the

threshold value is v2
ð0:975;8Þ ¼ 17:53, which shows that at least one outlier exists in the

observations or coefficient matrix. To keep the same with the data-snooping method

proposed by Amiri-Simkooei and Jazaeri 2013) and make the comparative analysis for

detecting outliers, the residuals of the L1 norm minimization method for detecting outlier is

adopted as

V ¼ In � WT
D

� ��1
Xð0Þ� �T� In

� �
BWT

c

h i ~D
~c

� �
: ð23Þ

From the w test statistics and the residuals displayed in Tables 2 and 3, one can clearly

judge that one outlier is located in point 5. After deleting point 5, the new residuals and

w test statistics are derived. At the same time, the corresponding global test statistic is

15.22, which now is smaller than the threshold value 16.01, and there are no larger

residuals for the L1 norm minimization method. Therefore, the only one outlier is identified

correctly for the simulated case. After deleting all suspicious outlying observations, the

unknown parameters are estimated again by the WTLS method, which is given in rank 6

and 7 of Table 1. The Euclidean distance between the estimates after deleting the outlier

and the reference values is just 0.003, which is superior to the result given by the WTLS

method while there is an outlier in coefficient matrix.

To give an accurate evaluation for the proposed method with multiple outliers, two new

gross errors of size 0.1 are added to the y components in point 1 and point 7 simultane-

ously. Table 4 presents the unknown parameters estimated by the L1 norm minimization

method and WTLS method, respectively. Those results show that the L1 norm mini-

mization method is more reliable than the WTLS method in terms of resisting outliers. And

the proposed algorithms are convergent for only 2 iterations. To demonstrate the superi-

ority of the proposed method for detecting multiples outliers, a comparison between the

proposed method and the data-snooping method proposed by Amiri-Simkooei and Jazaeri

(2013) is performed. For the data-snooping method, the global test is rejected because the

statistic v2 ¼ 3352:17 is greater than the threshold value v2
ð0:975;8Þ ¼ 17:53, which indicates

Table 2 Residuals and w-test
statistics of the data-snooping
procedure proposed by Amiri-
Simkooei and Jazaeri (2013)
(with single outlier)

Eq. no. With outlier Deleting one outlier

ê w ê w

1 -0.0029 -0.0487 0.0266 1.9231

2 -0.0174 -0.3960 0.0076 0.7505

3 -0.0178 -0.6150 0.0030 0.4611

4 -0.0208 -1.0402 -0.0039 -0.8687

5 0.0335 2.7603 – –

6 -0.0122 -0.9009 -0.0039 -1.2708

7 -0.0049 -0.7239 -0.0005 -0.3453

8 0.0009 0.1129 0.0009 0.5115

9 -0.0049 0.3214 0.0053 1.0247

10 0.0081 0.2779 0.0018 0.2770
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that the observations are contaminated with outliers. Table 5 presents the residuals and w-

test statistics obtained by the data-snooping procedure. From rank 3 and 4 of Table 5, the

maximum of the absolute values of the w-test statistics is 2.66 while the threshold value is

2.31. As a result, the point 7 is considered as an outlying one under the criterion for

identifying outlier (Amiri-Simkooei and Jazaeri 2013). For the case with multiple outliers,

the data-snooping procedure needs to be implemented step by step. In order to detect next

outlier, the point 7 should be deleted. But the global test statistic fulfills the condition

v2 ¼ 383:32[ v2
ð0:975;7Þ ¼ 16:01 ð24Þ

after deleting the point 7, which indicates that there are additional outliers in the obser-

vations. Then the new residuals and w-test statistics are obtained, which is displayed in

rank 5 and 6 of Table 5. However, the maximum value of the absolute values of the w-test

statistics is 2.02 which is smaller than the threshold value 2.36. Obviously, the masking is

emerged in accordance with the set simulated case. Therefore, we can make a conclusion

that the data-snooping procedure is not reliable for detecting multiple outliers.

Following above discussions, we will employ the L1 norm minimization method to

detect multiple outliers. The residuals for the purpose of detecting outliers are presented in

Table 6. Because the global test is not accepted, the corresponding point 7 is judged as the

observations contaminated with outliers on the base of the residuals. After deleting the

point 7, the global test is still rejected due to the statistic

Table 3 Residuals obtained by
the WTLS method (without out-
lier, with single outlier and after
deleting outlier) and L

1
norm

minimization method (with sin-
gle outlier and after deleting
outlier)

Eq. no. With outlier After deleting outlier

WTLS
ê

L1 norm
V

WTLS
ê

L1 norm
V

1 -0.0029 0.0227 0.0266 0.0328

2 -0.0176 0.0056 0.0076 0.0172

3 -0.0178 0 0.0030 0.0145

4 -0.0208 -0.0183 -0.0038 -0.0014

5 0.0335 0.1985 – –

6 -0.0122 -0.0253 -0.0039 -0.0112

7 -0.0049 -0.0158 -0.0005 0

8 0.0009 0 0.0009 0.0039

9 -0.0049 0.0459 0.0053 0.0443

10 0.0081 0.0350 0.0018 0

Table 4 Transformation parameters estimated by the WTLS method (without outlier, with multiple outliers
and after deleting the outlier) and L1 norm minimization method (with multiple outliers and after deleting
the outlier)

Parameter WTLS
(without
outlier)

WTLS
(with
outlier)

L1 norm
(algorithm 1)

L1 norm
(algorithm 2)

WTLS (After
deleting outlier by
data-snooping)

WTLS (After
deleting outlier
by L1 norm)

n1 5.4820 5.5328 5.4914 5.4914 5.5223 5.4796

n2 -0.4811 -0.4830 -0.4821 -0.4821 -0.4874 -0.4806

X̂ � Xref



 

 0.0022 0.0530 0.0116 0.0116 0.0430 0.0003
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v2 ¼ 383:32[ v2
ð0:975;7Þ ¼ 16:01: ð25Þ

Therefore, the outlier detection should be sustained for next steps. The new results from

Table 6 show that the residuals of point 5 are obviously greater than others. The same with

above, point 5 is considered as an outlier and should be removed. After that, the global

statistics v2 ¼ 155:39 is smaller than the threshold value v2
ð0:975;6Þ ¼ 14:45, which implies

that there are contaminated observations with outliers. By contrasting with the residuals,

the point 1 is verified as the outlier. After deleting point 1, the global test is accepted

because

v2 ¼ 7:06\v2
ð0:975;5Þ ¼ 12:83: ð26Þ

According to above analysis, all outliers are accurately identified. After deleting all

outliers suggested by the data-snooping procedure and the L1 norm minimization method,

the unknown parameters are estimated again by the WTLS method, which is presented in

Table 5 Residuals and w-test
statistics of the data-snooping
procedure proposed by Amiri-
Simkooei and Jazaeri (2013)
(with multiple outliers)

Eq. no. With outlier Deleting one outlier

ê w ê w

1 0.0768 0.3930 0.0873 1.2380

2 -0.0406 -0.2825 -0.0262 -0.5036

3 -0.0437 -0.4645 -0.0252 -0.7459

4 -0.0491 -0.7569 -0.0272 -1.1703

5 0.0028 0.0704 0.0282 2.0402

6 -0.0460 -1.0516 -0.0163 -1.0629

7 0.0588 2.6616 – –

8 -0.0382 -1.5423 -0.0010 -0.1384

9 -0.0331 -0.4587 0.0059 0.2269

10 -0.0350 -0.3755 0.0078 0.2338

Table 6 Residuals obtained by the L1 norm minimization method (with multiple outliers)

Eq. no. With outlier After deleting
one outlier

After deleting
two outliers

After deleting
three outliers

V V V V

1 0.118 0.1227 0.1227 –

2 0 0.0056 0.0056 0.0185

3 -0.0076 0 0 0.0159

4 -0.0282 -0.0183 -0.0183 0

5 0.1844 0.1985 – –

6 -0.0376 -0.0252 -0.0253 -0.0112

7 0.8005 – – –

8 -0.0174 0 0 0

9 0.0267 0.0459 0.0459 0.0384

10 0 0.0350 0.0350 -0.0187
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rank 6 and 7 of Table 4. The Euclidean distance between the estimates and reference

values are 0.043 and 0.0003 for the data-snooping method and the L1 norm minimization

method, respectively, which demonstrate that the L1 norm minimization method is superior

to the data-snooping method in case of the masking with multiple outliers.

4.2 Example 2: 2D affine transformation

The mathematical model of the 2D affine transformation can be expressed as

xt

yt

" #
¼ xs ys 1 0 0 0

0 0 0 xs ys 1

� �
a1

b1

c1

a2

b2

c2

2
6666664

3
7777775

ð27Þ

where ðxs; ysÞ and ðxt; ytÞ are the coordinates of the same point in the start system and target

system, respectively; ai; bi and ciði ¼ 1; 2Þ are the transformation parameters to be esti-

mated. The data are taken from Mahboub et al. (2013). Suppose that the reference values of

the transformation parameters are

a1 b1 c1 a2 b2 c2½ � ¼ 0:9 �0:8 1 0:6 0:7 5½ �: ð28Þ

The new coordinates without any errors in the target system are generated by the

coordinates of points in the start system with Eq. (27). To verify the effectiveness of the

proposed method, the Monte Carlo simulation has been performed. The Gaussian noises

whose variance–covariance matrixes are Qstart and Qtarget are introduced to the error-free

coordinates in the start system and target system, respectively,

Qstart ¼ I2 � Q; Qtarget ¼ I2 � QT ð29Þ

QS ¼ 0:005Diag 1; 2; 3; 1; 5; 4; 2; 7; 2; 1; 8; 3; 6ð Þ;QT

¼ 0:005Diag 1; 3; 6; 1; 1; 8; 4; 3; 6; 5; 4; 5; 2ð Þ:

And the gross error of magnitude of 2 is added to the xs component of point 4 in the start

system. The outlier with size 2 is greater than some observations and simulated random

noises, which may influence the robustness of the L1 norm minimization method (Xu

2005).

In order to analyse the convergence of the proposed algorithm, the simulation is

implemented for 500 replications. Firstly, the Euclidean distances between the estimated

transformation parameters and reference values are computed, which is plotted in Fig. 1.

As expected, the WTLS method without outliers achieves the best estimate of the trans-

formation parameter among three schemes. The proposed L1 norm minimization method

generally produces more accurate and reliable transformation parameter than the WTLS

method for 494 of 500 simulations in total. For the several invalid resutls, we abandon

adding the outlier, and in this case the L1 norm minimization algorithm is converged after

several iterations. The reason is that there are some large outliers in the coefficient matrix

so that the L1 norm minimization method is not efficient in the case of robustness (See Xu

2005). Some statistical results are presented in Tables 7 and 8. As for the case with

multiple outliers, the 4 gross errors of size 2 are put simultaneously in both components of

point 4 in the start system and both components of point 7 in the target system. The
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Euclidean distances between the estimated transformation parameters and the reference

values are displayed in Fig. 2. As expected, the WTLS estimates are disturbed more

seriously when the observations are contaminated with multiple outliers than the case with

single outlier. And the transformation parameters estimated by the L1 norm minimization

method outperform those by the WTLS method. The statistical results in Tables 9 and 10

further make clear that the proposed L1 norm minimization algorithms are effective and

feasible to resist the bad effect of outlier.
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Fig. 1 Euclid distances between transformation parameters estimated by different methods and reference
value for 500 replications with single outlier

Table 7 Statistical results of the Euclidean distances between the estimate of the transformation parameters
estimated by the different methods and reference values for 500 replications with single outlier

Distance WTLS (without outlier) WTLS (with outlier) L1 norm (with outlier)

Mean Max Mean Max Mean Max

X̂ � Xreal



 

 0.1941 0.5389 0.7462 1.0682 0.3150 0.9897
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4.3 Example 3: Real data about map rectification

The example is about the map rectification. The 2D affine transformation is used to rectify

the map. The scale of the map is 1:500 for Fig. 3. The theoretical coordinates of the 10

common points and 15 non-common points are previously known. Then we sample the

coordinates on the distorted map. The sampled coordinates and the theoretical coordinates

Table 8 Euclidean distance between the estimate of the transformation parameters estimated by the dif-
ferent methods and reference values for 500 replications with single outlier

Differences WTLS (without outlier) WTLS (with outliers) L1 norm (with outliers)

Mean Max Mean Max Mean Max

da1j j 0.0557 0.2385 0.1310 0.4465 0.0909 0.3956

db1j j 0.0306 0.1006 0.3041 0.4979 0.0556 0.2218

dc1j j 0.1130 0.4533 0.5241 0.9197 0.1780 0.8245

da2j j 0.0473 0.1831 0.0869 0.2573 0.0705 0.3584

db2j j 0.0272 0.1079 0.1881 0.3316 0.0490 0.2260

dc2j j 0.0959 0.3604 0.3171 0.5992 0.1584 0.7458
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Fig. 2 Euclid distances between transformation parameters estimated by different methods and reference
value for 500 replications with multiple outliers
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can be treated as the coordinates of the start coordinate system and target system. The

transformation parameters can be estimated by using the common points with the 2D affine

transformation. Then the coordinates of non-common points in the target system can be

derived by the coordinates of the non-common points in the start system and the estimated

transformation parameters. The estimates of the transformation parameters with different

methods are presented in Table 11.

To judge whether the observations are contaminated with outliers, the data-snooping

method and the proposed L1 norm minimization method are employed to detect the

Table 9 Statistical results of the Euclidean distances between the estimated transformation parameters and
reference values for 500 replications with multiple outliers

Distance WTLS (without outlier) WTLS (with outliers) L1 norm (with outliers)

Mean Max Mean Max Mean Max

X̂ � Xreal



 

 0.1969 0.6244 1.2524 2.1046 0.3447 0.8250

Table 10 Euclidean distance between the transformation parameters estimated by the different methods
and reference values for 500 replications with multiple outliers

Differences WTLS (without outlier) WTLS (with outliers) L1 norm (with outliers)

Mean Max Mean Max Mean Max

da1j j 0.0535 0.2115 0.5221 0.8288 0.0690 0.2904

db1j j 0.0313 0.1752 0.1748 0.3344 0.0420 0.1452

dc1j j 0.1124 0.5503 0.6051 1.2009 0.1283 0.5398

da2j j 0.0484 0.2492 0.6422 1.2197 0.0866 0.3146

db2j j 0.0279 0.1116 0.6163 0.8170 0.0910 0.3150

dc2j j 0.0979 0.4322 0.2494 0.8770 0.2405 0.7396

Fig. 3 The distorted map (a) and its rectified map (b) using affine transformation
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outliers, respectively. From Table 12, the maximum of the absolute values of w-test

statistics is 3.73 which is greater than the threshold value 2.14. So the no. 14 equation is

distinguished as an outlying one. Then the new residuals and w-test statistics are obtained

after deleting the outlying observation. Apparently, right now, there is no outlier in the

observations and coefficient matrix because all the absolute values of w-test statistics are

less than the threshold value 2.16. On the other hand, we know that the yt component of the

point 7 is contaminated with outlier by comparing with the residuals in Table 13 given by

Table 11 Transformation parameters estimated by the WTLS method and L1 norm minimization method
before and after deleting outliers

Before deleting outlier After deleting outlier

WTLS L1 norm (algorithm 1) L1 norm (algorithm 2) Data-snooping L1 norm

0.30309 0.30305 0.30305 0.30309 0.30311

0.00003 0.00005 0.00005 0.00003 0.00003

10.47529 10.47486 10.47486 10.47529 10.47511

0.00140 0.00008 0.00008 0.00001 0.00001

0.30313 0.30377 0.30377 0.30382 0.303821

58.46941 58.49029 58.49029 58.48958 58.48958

Table 12 Residuals and w-test statistics of the data-snooping procedure by Amiri-Simkooei and Jazaeri
(2013)

Eq. no. Point no. Coord. ê w ê w

1 1 x 0.0060 0.1137 0.0060 1.5793

2 y -0.0252 -0.4801 0.0029 0.7775

3 2 x -0.0052 -0.1003 -0.0052 -1.39

4 y 0.0498 0.9511 -0.0021 -0.5918

5 3 x 0.0047 0.0798 0.0047 1.1082

6 y -0.0184 -0.3155 -0.0016 -0.3773

7 4 x -0.0044 -0.0779 -0.0044 -1.0774

8 y 0.0607 1.0679 -0.0024 -0.6210

9 5 x -0.0011 -0.0175 -0.0011 -0.2438

10 y -0.0023 -0.0377 0.0033 0.7586

11 6 x -0.0033 -0.0537 -0.0033 -0.7462

12 y 0.0071 0.1169 0.0015 0.3521

13 7 x 0.0019 0.0354 0.0019 0.4721

14 y -0.2119 -3.7327 – –

15 8 x -0.0063 -0.1085 -0.0063 -1.5083

16 y 0.0114 0.1951 -0.0055 -1.3026

17 9 x 0.0077 0.1458 0.0077 2.0386

18 y 0.1015 1.9339 0.0046 1.3923

19 10 x 0.0001 0.0014 0.0001 0.0228

20 y 0.0273 0.5213 -0.0007 -0.2001
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the proposed L1 norm minimization method. After rejecting the outlying observation, the

more reliable transformation parameters are obtained, which can be found in Table 11.

By comparing with the reliability of the proposed method, the existing non-common

points in the target system are treated as the check points. The RMSE (root mean square

error) can be used to evaluate the reliability of the proposed algorithm. Therefore, the

RMSE is computed as 0.033, 0.01, 0.0089, 0.0091 for WTLS method with outliers, L1

norm minimization method, WTLS method after deleting outlier identified by L1 norm

minimization method and WTLS method after deleting outlier identified by data-snooping

procedure, respectively, which show that the coordinates obtained by the L1 norm mini-

mization method are more accurate than those obtained by the WTLS method. The reason

is that the transformation parameters estimated by the WTLS method are disturbed with the

outlying observations. In this case, the proposed L1 norm minimization method is more

reliable to be employed for resisting the bad effect of outlier.

5 Conclusions

In this paper, the L1 norm minimization method for the partial EIV model based on the

linear programming theory is developed. However, the close-form solutions would not be

exploited due to the unknown constrained condition equations for the optimization

Table 13 Residuals obtained by the L1 norm minimization method and WTLS method

Point no. Eq. no. L1 norm
(with outlier)
V

L1 norm
(deleting outlier)
V

WTLS (before
deleting outlier)
ê

WTLS (after
deleting outlier)
ê

1 1 0.0078 0.0078 0.0060 0.0057

2 0 0 -0.0252 0.0029

2 3 -0.0060 -0.0004 -0.0052 -0.0048

4 -0.0005 -0.0005 0.0498 -0.002

3 5 0.0061 0.0061 0.0047 0.0045

6 -0.0038 -0.0038 -0.0184 -0.0016

4 7 -0.0055 0 -0.0044 -0.0038

8 0 0 0.0607 -0.0024

5 9 0 0 -0.0011 -0.0011

10 0.0019 0.0019 -0.0023 0.0033

6 11 -0.0026 -0.0026 -0.0033 -0.0032

12 0.0008 0.0008 0.0071 0.0015

7 13 0 – 0.0019 –

14 -0.2943 – -0.2119 –

8 15 -0.0060 -0.0060 -0.0063 -0.0062

16 -0.0054 -0.0054 0.0114 -0.0055

9 17 0.0054 0.01094 0.0077 -0.0062

18 0.0092 0.0092 0.1015 -0.0055

10 19 0 0 8.671e-005 0.0003

20 0 0 0.0273 -0.0007
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problem and the iterative method is proposed. At the same time, by treating the partial EIV

model as a non-linear G–H one, another iterative algorithm is also proposed. The results of

some numerical experiments show that the two proposed methods are superior to the

WTLS method when the observations and coefficient matrix are contaminated with outliers

simultaneously. And the two algorithms are equivalent in the case of robustness.

It is found through the Monte Carlo simulation that the L1 norm minimization method

may not efficient if there are the larger outliers in the coefficient matrix (Xu 2005) that can

lead to divergence. If one wants to detect a single outlier, the data-snooping procedure

proposed by Amiri-Simkooei and Jazaeri (2013) and the L1 norm minimization method can

do it all. But the L1 norm minimization method maybe more reliable for detecting multiple

outliers due to masking. Unfortunately, the computation burden is significantly increased.
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